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The concept of homotopy is a mathematical formulation of the intuitive idea 
of a continuous transition between two geometrical configurations. The concept 
of homology gives a mathematical precision to the intuitive idea of a curve 
bounding an "area" or a surface bounding a "volume." 

1. TJ'he first step toward connecting these two basic concepts of topology was 
taken by L. E. J. Brouwer in 1912 by demonstrating that two continuous map
pings of a two-dimensional sphere into itself can be continuously deformed into 
each other if and only if they have the same degree (that is, if they are equiva
lent from the point of view of homology theory). 

After having generalized Brouwer's result to an arbitrary number of dimen
sions, H. Hopf undertook a systematic study of the problem of classifying the 
continuous mappings of a polytope P into a polytope Q. Each mapping/induces 
homomorphisms of homology groups of P into the corresponding groups of Q. 
Two mappings / and g are said to belong to the same homology class- if they in
duce identical homomorphisms of homology groups (for all dimensions and all 
coefficient domains). The mappings / and g are said to belong to the same homo-
topy class if they can be embedded into a common one-parameter continuous 
family of mappings. The homotopy class of a mapping determines its homology 
class, but not conversely, as shown by the example of the mappings of the sphere 
Ss into $2 which all belong to the same homology class although there is an 
infinite number of homotopy classes. The question arises: under what special 
conditions the homotopy classification of the mappings of P into Q coincides 
with their homology classification. The classical result of Hopf states that this 
is the case if P is a polytope of dimension n and Q the n-dimensional sphere Sn . 
Using cohomology groups instead of homology groups, H. Whitney gave the 
following elegant formulation to Hopf's theorem. Homotopy classes of mappings 
of an ^-dimensional polytope P into the sphere Sn are in one to one correspond
ence with the elements of the n-dimensional cohomology group of P with integers 
as coefficients. 

2. In 1934-1935 the author developed the concept and theory of higher 
dimensional homotopy groups. Given an arcwise connected topological space F, 
the n-dimensional homotopy group irn(Y) is defined as follows: Let an arbitrary 
point yQ Ç F be singled out once and for all as the "reference point," and let 
also a fixed point xQ be selected on the fixed n-sphere Sn. An element of irn(Y) 
is determined by a continuous mapping of Sn into F, satisfying the condition 
(XQ) = y0 . Two mappings / and g determine the same element of irn(Y) if and 
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Only if they can be continuously deformed into each other, in such a fashion 
ihat the image of x0 remains at yQ during the entire process of deformation (this 
condition can be dispensed with if F is simply connected). In this case every con
tinuous mapping of Sn into F determines uniquely an element of 7r„(F). The 
group composition law is defined in a fairly obvious way by identifying two 
ft-spheres tangent at x0 with the two hemispheres of a single sphere whose 
equator has been shrunk into xQ . 

An alternative way to introduce homotopy groups is to consider the topo
logical space F of all continuous mappings of Sn-i into F satisfying the condi
tion f(x0) = 2/0 , where XQ is a fixed point of £„_i . Although this functional space 
is, generally speaking, disconnected, it can be shown that its arcwise connected 
components have the same homotopy type (see below) and consequently have 
isomorphic fundamental groups. We can thus speak about the fundamental 
group of the functional space F, and this group turns out to be isomorphic to 
the ^-dimensional homotopy group 7r„(F) in the sense of the previous definition. 
The group TTI(Y) is, of course, the fundamental group of F. A simple geometric 
argument shows that for n > 1 the groups irn(Y) are abelian. In contrast with 
homology groups the homotopy groups of an ?i-dimensional space may be non-
trival even in dimensions higher than n. For instance, ws(S2) is an infinite cyclic 
group (Hopf's theorem) and for n > 2 the group 7rn+i(S„) is of order 2 (Freuden-
thal-Pontrjagin theorem). 

To determine the homotopy groups of a given space is, generally speaking, 
an extremely difficult problem (even for finite polytopes) which so far has been 
solved only in a few special cases. In this respect there is a significant difference 
between homotopy and homology. When a polytope P is broken up in two sub
polytopes Q and R, there is a relatively simple relation (Meyer Vietoris theorem 
restated recently in terms of the so-called exact sequences) between the homology 
invariants of the polytopes P, Q, R and the intersection Q f) R. No analogous 
relation exists for homotopy groups. This is tied up to the fact that a continuous 
image of the n-sphere in P cannot be decomposed into "small" spherical images, 
the way a simplicial chain can be decomposed into "small parts." Therefore the 
basic process of homology theory consisting in decomposing a space into smaller 
pieces with simpler homology structure has no counterpart in homotopy theory. 
The difficulty is illustrated by the fact that even in the case of a space P repre
sented as the union of two subspaces Q and R with only one point in common, 
there is no simple relation between higher dimensional homotopy groups of P, 
Q, and R. 

3. In certain "elementary" cases, homotopy groups can be reduced to homol
ogy groups. Let F be an arcwise connected space and let Hn(Y) be the n-dimen-
sional homology group of F based on singular chains, with integers as coeffi
cients. A continuous image of Sn in F can be regarded as a singular n-cycle. 
Since two homotopic spherical images determine homologous singular cycles, 
one obtains a "natural" homomorphism of irn(Y) into Hn(Y). The fundamental 
equivalence theorem states: 
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Ifn*t2 and the homotopy groups Wi(Y) are trivial for i < n, the nth homotopy 
group irn(Y) is isomorphic to the nth homology group Hn(Y) under the natural 
homomorphism. 

For example Ti(Sn) is trivial for i < n and hence rn(Sn) is infinite cyclic. 
Arcwise connected spaces whose homotopy groups in dimensions less than or 
equal to n vanish are /Called n-connected. This property is equivalent to the con
dition that every continuous image of an arbitrary n-dimensional polytope in 
F be homotopic to a single point. An obvious corollary to the equivalence 
theorem states that F is n-connected if and only if the groups iri(Y)j H^Y), • • • , 
Hn(Y) are trivial. I t follows that a polytope can be shrunk to a point in itself 
if and only if it is simply connected ( = 1-connected) and has vanishing ho
mology groups in all dimensions. 

4. The equivalence theorem just stated can be formulated in the following 
way: If the arcwise connected space F i s (n — l)-connected (n ^ 2), the homotopy 
classes of mappings of Sn into F coincide with their homology classes. Compar
ing this result to Hopf's theorem mentioned above we find that the assertions in 
both theorems are of the same type. Hopf's theorem and the equivalence theorem 
are both contained in the following more general theorem : 

If Y is an (n — l)-connected space (n _̂  2) and P an n-dimensional polytope, 
the homotopy classification of P into Y agrees with their homology classification. 
More refined results in this direction can be obtained by using the concept of 
a homotopy obstruction developed by S. Eilenberg (implicitly this idea was used 
for the first time by H. Whitney in his revealing proof of Hopfs theorem). 
Let F be a 1-connected space and P an arbitrary polytope.; Let us denote by 
Pm the m-dimensional skeleton of P , that is, the union of all Simplexes of P of 
dimensions less than or equal to ra. Consider now two continuous mappings / 
and g of P into F. An attempt to deform / continuously into g can be carried 
out stepwise, each step involving considerations in one dimension only. Suppose 
we have succeeded in deforming / into a mapping / ' which agrees with g on the 
(m — 1)-dimensional skeleton Pm"~\ For each oriented simplex <rm of P the images 
f(<rm) and g(am) (which coincide on the boundary of O yield, in an obvious 
fashion, a continuous image of an ra-sphere. Let us denote by (p(o~m) the element 
of the homotopy group irm = xm(F) determined by this spherical image. The 
function çp can be regarded as an m-dimensional cochain of P with coefficients in 
the group 7rm. This cochain turns out to be a cocycle. Its cohomology class is 
called the homotopy obstruction for the couple (/', g). The notation is justified 
by the following theorem: If the obstruction is zero (that is, if the cocycle <p is 
cobounding), the deformation process can be pushed one step further so as to deform 
f into a mapping / " which agrees with g on the m-dimensional skeleton Pm. More
over the deformation can be carried out in such a way that the image of Pm~2 (but 
not necessarily of Pm~1) remains unchanged. 

If the cohomology group H(P, irm) of P with coefficients in wm is trivial (this 
will be the case, for instance, if irm = irm(Y) vanishes), all obstructions in 
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dimension m are zero, and hence any two mappings which coincide on Pm~l are 
homotopic on Pm. 

The author derived further results by connecting homotopy obstructions with 
so called homology obstructions. Let IIm = IIm (Y) be the rath homology group of 
F with integers as coefficients, in the sense of the singular homology theory, and 
let Hm(P, Hm) be the mih. cohomology group of P with coefficients in Hm. 
The natural homomorphism of 7rm into Hm yields a homomorphism of H(P, Tm) 
into H(P, Hm). Under this homomorphism the homotopy obstruction of the 
couple (/', g) is sent into an element of H(P, Hm) which is called the homology 
obstruction of the couple (/', g). The homology obstruction is zero if the mappings 
/ ' and g, or—what amounts to the same thing—the mappings / and g belong to 
the same homology class. 

Under certain conditions, homotopy obstructions coincide with homology 
obstructions. This is, for instance, the case if irm(Y) is isomorphic to Hm(Y) 
under the natural homomorphism. Under such circumstances the homotopy 
problem in dimension ra is completely reducible to the corresponding homology 
problem. 

6. The groups 7r„(F) are a special case of more general invariants called 
relative homotopy groups, which are in many respects analogous to relative 
homology groups. 

Let F be a topological space and Z a subset of F. Both F and Z are assumed 
to be arcwise connected. For every integer n è 2 we shall define the relative 
homotopy group wn(Y, Z). Let En be a fixed n-cell with the boundary Sn-i. 
Let us select a point xQ of Sn-i and a point g0 of Z. An element of irn(Y, Z) is 
determined by a continuous mapping of En into F satisfying the boundary 
conditions 

f(Sn-i) C Z, f(xQ) = So. 

Two mappings determine the same element of irn(Y, Z) if they can be con
tinuously deformed into each other in such a way that the boundary conditions 
are satisfied during the entire process of deformation. The composition law is 
defined by partitioning an n-cell into two cells with an (n — l)-cell in common 
and shrinking this (n — l)-cell into a single point xQ. I t is evident that no 
reasonable composition can be defined when n = 1. An alternative definition 
describes relative homotopy groups as fundamental groups of suitably defined 
functional spaces. 

For n > 2, irn(Y, Z) is abelian. The group 7r2(F, Z) is in general nonabelian, 
and this accounts for some of the peculiar difficulties encountered in the homo
topy theory of two-dimensional spaces. 

In exactly the same way as in the case of absolute homotopy groups, one 
defines a natural homomorphism of the relative homotopy group irn(Y, Z) into 
the relative homology group Hn(Y, Z) (with integer coefficients). We shall call 
the couple (F, Z) n-connected (n ^ 2) if (a) the group TTI(Z) is isomorphic to 
7Ti(F) under the natural homomorphism and (b) 7r,„(F, Z) vanishes for 
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2 __ ra _S n. Without using homotopy groups, the definition can be formulated 
as follows: the couple (F, Z) is n-connected if given any n-dimensional polytope 
P with a subpolytope Q and any continuous mapping / of P into F satisfying 
f(Q) C Z, f can be deformed, without changing the image f(Q), into a mapping 
g satisfying g(P) C Z. In analogy with the equivalence theorem for absolute 
homotopy groups we have: 

If the couple (F, Z) is (n — l)-connected, the homotopy group irn(Y, Z) is 
isomorphic to the homology group Hn(Y, Z) under the natural homomorphism. 

Relative homotopy groups play a basic role in the study of fibre spaces and 
fibre bundles. 

An important generalization of relative homotopy groups has been developed 
recently by A/L . Blakers and W. S. Massey. They define homotopy groups of 
a so-called "triad," that is, of a space F supplied with two closed sets U and V 
whose union is F. Roughly speaking, the elements of the n-dimensional homotopy 
group of a triad are defined by mappings of an n-dimensional cell into F such 
that çne of the two hemispheres of the boundary of the cell is mapped into U 
and the other one into V. The theory of homotopy triads helps greatly to under
stand Freudenthal's so-called "suspension homomorphism" which is the basic 
tool in the discussion of homotopy groups of spheres. 

6. The problem of classifying mappings of one space into another space is 
closely related to the problem of classifying spaces themselves according to their 
homotopy properties. Two spaces X and F are said to have the same homotopy 
type if there exists a continuous mapping/ of X into F and a continuous mapping 
g of F into X such that the combined mappings / ° g and g ° / are homotopic to 
identities. Two spaces which have the same homotopy types have isomorphic 
cohomology rings and isomorphic homotopy groups in all dimensions. As has 
been shown recently by J. H. C. Whitehead, a necessary and sufficient condition 
for X and F to have the same homotopy type is the existence of a continuous 
mapping / of X into F which induces isomorphic mappings of the fundamental 
group and the homology groups of X into the corresponding groups of F. 

J. H. C. Whitehead has succeeded in completely describing the homotopy types 
of simply connected four-dimensional polytopes in terms of their homology in
variants. This description involves in addition to cohomology rings the so-
called "Pontrjagin squares." 

7. So far we have been concerned mainly with the problem of reducing homo
topy properties of mappings and spaces to their homology properties. In certain 
cases, however, one is led to the converse problem of obtaining information 
about homology properties of a space from its known homotopy properties. 
A typical example is an aspherical space. By this is meant a space whose homotopy 
groups vanish in all dimensions n ^ 2. I t is known that the homotopy type and 
hence all homology invariants of an aspherical space are determined by its 
fundamental group. An analogous result holds for spaces which have only one 
nonvanishing homotopy group. The algebraical process by which in cases of 
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this type the homology invariants of the space are determined by its homotopy 
groups has been studied extensively by Eilenberg-MacLane. Their research 
resulted in a fruitful theorjr of homology invariants associated with abstract 
groups. This theory has interesting applications in algebra and in the theory of 
Lie groups. 

8. At present the main effort in homotopy theory seems to concentrate on the 
problem of determining homotopy groups of spheres. The tools used in this 
research are predominantly of algebraical nature, like generalized Hopf in
variants studied by G. Whitehead, or "cup products" introduced by N. Steenrod. 
Important advances have been made, most significant of which is the result 
established recently by G. Whitehead and Pontrjagin, to the effect that irn+2(Sn) 
is a group of order 2 for n ^ 3. Nevertheless our knowledge of homotopy groups 
of spheres remains meager. 

Perhaps the present trend of research does not put enough emphasis on tools 
that could be provided by the geometrical structure from the point of view of dif
ferential geometry, like properties of geodesic lines, study of critical points, etc. 
Recent work of E. Pitcher seems to indicate that some progress can be expected 
from this direction. 
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