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jectories nor the deformations would have been adequately defined. This is 
shown by an example due to Whitney. 

Whitney's example. Whitney has shown the existence of a function F defined 
and continuous on a unit square in the (x, y)-plane, with Fx and Fy continuous, 
yet with F possessing a connected set X of critical points whose critical values 
fill an interval. One might say that the mission of the critical point theory was 
already fulfilled in the Whitney example since the existence of infinitely many 
critical points is granted. However, this view would be mistaken since the Morse-
theory also aims at the relations between the critical sets <r (each at one /-level 
and closed at that level) classified according to the nature of associated local 
relative homology groups. See Morse [2; 3]. We shall term a function / whose 
critical values fill some interval a function of Whitney type. 

Limitations imposed by the use of singular cycles. The Morse theory aims to 
associate a critical set o- with each nontrivial homology class H on M (or Ü). 
Thus for a cycle z £ H, let | z | C M be a compact carrier (always minimal) 
of z and set 

(1.1) c(H) « inf [sup f(x)] 
zÇM x£\z\ 

(1.2) #, = cr U x I (f(x) < /(a-)). 

We say that H "causes" a if c(H) = f(o), if Nff 3 z for some z Ç H, and if no 
proper closed subset of c has this property. If singular cycles (rather than 
Vietoris cycles) are used, an homology class H need cause no critical set when M 
and / are not analytic, even when N is a compact differentiable manifold of 
class Cin) and / of class C(n) on M, with n arbitrarily large. This is shown in 
Morse [5] and is not equivalent to the well-known fact that singular homology 
groups are not always isomorphic to the corresponding Vietoris homology groups. 

A theorem on dim <r. Suppose that IIn and Hr are different homology classes 
of cycles of dimension n and r respectively. If c(Hn) = c(Hr), simple examples 
will show that Hn and Hr may cause a common critical set cr consisting of just 
one point. If, however, n > r, there are simple conditions sufficient that the 
critical set c caused by Hn be such that 

(1.3) dim o- ^ n — r. 

In the special case in which the critical values of / are isolated and f is of class 
Qn, such conditions have been given by Lusternik and Schnirelmann. If, however, 
/ is a function of the Whitney type or if the orthogonal trajectories of the level 
manifolds of / fail to have the usual field properties, then the earlier proofs of 
(1.3) are not applicable. However, a general theorem with (1.3) as a conclusion 
can be stated in terms which are purely topological and proved without reference 
to the category theory. One may assume that the compact manifold M is merely 
locally euclidean (not in general differentiable) and that the function / is merely 
continuous. One uses a purely topological defmitiori of a critical point of / . 
Such a theorem is stated for the first time in §5. 
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Multiple integrals. Prior to 1936 the theory had not been applied to obtain any 
general theorems on the existence of unstable (non-minimizing) extremals of 
multiple integrals J. The reasons for this are clear. There is as yet no workable 
generalization for J of the orthogonal trajectories of the level manifolds of /. 
In addition, the theorem on the existence of minimizing extremals in the small 
for positive definite regular simple integrals has no apparent counterpart for 
multiple integrals. Finally, it turned out that the concept of lower semi-con
tinuity of a positive definite functional J, while adequate in the theory of the 
absolute minimum (if accompanied by conditions implying compactness of the 
set of admissible elements), requires the addition of the concept of upper re-
ducibility of J (defined in §2) if unstable extremals are sought. The general 
grounds preparing for an attack on multiple integral problems were laid in 
Morse [2]. 

Minimal surfaces. Using these general concepts Morse and Tompkins, and 
Shiffman, independently and at essentially the same time, proved the existence 
of unstable minimal surfaces of disc type spanning a simple closed curve g. 
The conditions initially imposed on g were somewhat heavier than rectifiability. 
These conditions have been progressively reduced until Shiffman has established 
the existence of a minimal surface of minimax type for a rectifiable g. Morse has 
verified Shiffman's result by an independent proof not yet published. Some of the 
results of Morse and Tompkins cover more general topological aspects and have 
not yet been reduced to the hypothesis of rectifiability. 

To escape the limitations of the earlier development the critical point theory 
has advanced at three levels in 

(a) the general causal theory Morse [2], 
(b) the span theory Morse [3], 
(c) the nondegenerate theory Morse [4]. 

These three levels are distinguished by their objectives and hypotheses. They are 
all concerned with a positive lower semi-continuous function F on an abstract 
metric space S. We further distinguish these theories as follows. 

2. The causal theory Morse [2]. This theory imposes minimum conditions 
on F and S and is concerned with critical sets as caused by homology or homotopy 
classes of various types. Extreme types of deformations are the isotopies (de
formations in which the images at any one time are topological) and the F-de-
formations which require no derivatives of F for their definition. See §5. The 
function F is assumed positive and lower semi-continuous over the metric 
space S. 

As distinguished from the span theory and nondegenerate theory, the causal 
theory does not aim at a complete set of relations between the classified critical 
sets. Its hypotheses are too general and the critical sets too numerous and 
complex in most problems to make a theory of relations feasible. On the other 
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hand Whitney functions can be treated under this theory. The causal homology 
theory imposes two additional conditions on the function F and metric space S: 

(i) the F-accessibility of S; 
(ii) the upper-reducibility of F. 

We shall define these conditions. 
The set of points x 6 S on which F(x) g c < oo will be denoted by Sc. 

The space S is termed F-accessible if any nonbounding Vietoris fc-cycle z, given 
as homologous to zero mod Sc + « for each e > 0, is homologous to a ft-cycle in Sc. 
If the subsets Sc are compact for each c, S can be shown to be F-accessible, 
making use of the lower semi-continuity of F. 

A continuous deformation of a subset A C S which replaces each point 
x £ A by a point x* £ S at the time t is called an F-deformation of A if for 
each t (0 g £ ^ 1) and x 6 A 

(2.1) F(») - F(z') è 0. 

This deformation is termed proper over A if the difference (2.1) is bounded from 
zero whenever the distance d(x, x') is bounded from zero. The integrals of 
variational theory are ordinarily lower semi-continuous but not upper semi-
continuous. Upper reducibility in some form is, however, satisfied in general and 
serves in place of upper semi-continuity. 

Let p be a point of S with F(p) < oo. We term F upper reducible at p if for any 
set Sb, with b > F(p), there exists an F-deformation D of a neighborhood Nb 
of p relative to Sb such that 

(2.2) lim sup F(xl) ^ F(p) (x G Nb, 0 ^ t£ 1) 
Us)-*(1,2P) 

and such that D is a proper F-deformation of any subset of Nb on which F(x) 
exceeds F(p) by a positive constant. Note that the deletion of t in (2.2) yields the 
definition of upper semi-continuity of F at p. It is easy to show that lower semi-
continuity and upper reducibility are independent conditions on F. 

To state the principal theorem one must define a homotopic critical point. 
A point p of S at which F is finite will be called homotopically ordinary if some 
neighborhood of p, relative to some Sb with ò > F(p), admits a proper F-de
formation (0 ^ t ^ 1) which ultimately (for some t) displaces p. The point p 
will be termed homotopically critical if not homotopically ordinary. 

THEOREM 2.1. Suppose that F is positive, lower semi-continuous and upper 
reducible on an F-accessible metric space S. Let H be a nontrivial homology class of 
Vietoris cycles on S. If there is a k-cycle z G H on some set Sa with finite a, there is 
a least value of a such that there is a k-cycle of H on Sa . If c is this minimum value 
of a, there is at least one homotopic critical point p with F(p) = c. 

In establishing the existence of unstable minimal surfaces it was fundamental 
to show that the Douglas-Dirichlet integral 

//[?(£)'+(£)>* a = i, 2,3) 
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taken over the circular disc D was upper reducible, admitting harmonic surfaces 
Xi(u, v), i = 1, 2, 3, spanning the given simple closed curve g. A modification of 
the above theorem was then used in which the homology class H was replaced 
by a suitable relative homology class. See Morse-Tompkins or Shiffman. 

3. The span theory Morse [3]. In seeking the totality of relations between the 
critical values clarified by means of the associated groups of "caps," one alter
native is to turn to nondegenerate functions (see §4) for which the critical 
points are isolated. Another alternative is to classify "caps" according to their 
(tspans}> e. I t turns out very remarkably that on employing only caps of given 
fixed span greater than e, a consistent topological theory of critical values results 
which behaves formally as if F were a real analytic function for which the number 
of critical values < c < 1 is finite. An infinitely complex problem is thus reduced 
to an essentially finite problem. 

It is convenient to suppose that 0 ^ F ^ 1. If this were not the case, the 
functions 

F 
1 + F 

could be used in place of F. Certain new terms needed here must be defined. 
Let F(p) = c < oo. The space S will be said to be locally F-connected of order 

r at p if corresponding to each positive constant e there exists a positive constant 
5 such that each singular r-sphere on the ô-neighborhood of p and on Sc+& bounds 
an (r + l)-cell of diameter at most e on Sc+e. We say that S is F-reducible at 
c = 1 if corresponding to any compact subset A of S there exists an F-deforma-
tionDA of A into some subset Sc of S for which c < 1. The principal hypotheses 
in the span theory are then as follows. 

(i) The function F is positive and lower semi-continuous on S. 
(ii) The sets S0 are compact for each c < 1, S is F-reducible ate = 1 and locally 

F-connected of all orders at each point x at which F(x) < 1. 
I t remains to define cap-spans. Given a with 0 S a < 1, we say that a set 

A (for example, the compact carrier of a Vietoris cycle) lies definitely in Sa 

(written d-on Sa) if A C Sa-e for some e > 0. The phrase d-mod Sa shall mean 
mod Sa-e for some e > 0. 

k-cap-spans. Let u be a relative Vietoris fc-cycle d-mod Sa, with a carrier 
| u | in Sa . If u oo 0 on Sa , d-mod Sa , u is called a k-cap with cap-height a(u). 
The boundary ßu of such a /c-cap is d-on Sa(U) . The cycle u is termed linkable 
or nonlinkable according as ßu ~ 0 or ßu no 0, d-on Sa(V) . If u is linkable, set 
cr(u) = sup b for all b such that 

(3.1) u nu 0 [on Sh, d-mod Sa{u)] 

and set 

(3.2) span u = a(u) — a(u) ^ 0. 

If u is nonlinkable, set r(u) = inf b for all b such that 

(3.3) ßu ~ 0 [d-on SaM , d-mod Sb] 
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and set 

(3.4) span u = a(u) — r(u) > 0. 

Corresponding to each nontrivial homology class H there is a fc-cycle z G H 
which is also a fc-cap and for which the cap-height a(z) is a minimum for all 
fc-cycle-caps G H. This fc-cycle z will be termed canonical. Morse [3]. 

Recall that the group of coefficients which we are using is a field G. We shall 
be concerned with classes A of fc-caps or fc-cycles such that the conditions 
u G A, 8 G G, and 5 5^0, imply 8u G A. A "maximal group" of elements in A 
is a group 5 every element of which, except the null element, is in A, while B 
is a proper subgroup of no other such group of elements in A. With this under
stood, let e > 0 be given and fixed. We introduce maximal groups 

Ml of fc-caps with span greater than e, 
Nk of nonlinkable fc-caps with span greater than e, 
Pk of canonical fc-cycles. 
If A stands for any of these three defining properties, it is a theorem in Morse 

[3] that any two maximal groups with property A are isomorphic, with corre
sponding elements u and uf such that u — u' does not have property A. It is also 
shown in Morse [3] that the group Nl is isomorphic with ßNl where u G Ni 
corresponds to ßu. It is remarkable that dim Nl is finite, and that Pk is also a 
maximal group of nonbounding fc-cycles. We have the following fundamental 
theorem. Morse [3, Corollary 12.2], 

THEOREM 3.1. The maximal groups Nl can be so chosen that the direct sum 

(3.3) m + mu + Pk (* = o, i , • • o 

is a maximal group of k-caps with span greater than e. 

It is easy to show that the cap-heights a(u) of fc-caps with span greater than e 
have at most the cluster point a = 1. Moreover a maximal group of fc-caps with 
cap-height a and span greater than e always has a finite dimension. A maximal 
group of fc-caps with span greater than e is seen to be the direct sum of maximal 
groups of such fc-caps with the respective cap-heights. On setting 

dim Ml = ml, dim Nl = nl, dim Pk = Pk 

we have the following corollary. 

C O R O L L A R Y , m l — p k = n l + n l + i ( f c = 0 , 1 , • • • ) . 

I The numbers pk are of course the connectivities of S, One has the relations 
ml ^ pu , and if one sets Ek = ml — ph whenever pk < oo, and defines Ek as the 
right member in the corollary when pk = °°, the members Ek satisfy the infinite 
set of inequalities 

(3.4) En - En+i + . . . + ( - ! )*% è 0, (n = 0, 1, • -•). 
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The preceding results hold for each e > 0. I t is clear that ml increases mono-
tonically as e decreases. If F is an analytic function of the point on an analytic 
compact manifold, the numbers ml are finite and independent of e > 0 for e 
sufficiently small. The span theory is a theory of critical values. I t easily yields a 
theory of critical points and sets on adding the hypothesis of upper reducibility 
of F. 

4. The nondegenerate theory Morse [4]. As distinguished from the causal 
theory, the objective here is to obtain the totality of relations between the critical 
points classified according to their indices. As distinguished from the span 
theory, the topological hypotheses that the critical points be nondegenerate 
makes it possible to treat all the critical points together rather than the generic 
subset of critical points associated with caps of span greater than e. The con
ditions on F are here necessarily more restricting, but there is a sense in which 
the nondegenerate F may be everywhere dense among all F admitted in the 
preceding sections. This has been established in important cases of considerable 
generality. 

The nondegenerate theory owes much of its importance to the fact that it is 
through this theory that analysis extends topology as contrasted with the aid 
topology usually gives to analysis. The homology characters of Q, in (B) and (C) 
of §1 and of the symmetric square of the n-sphere were first obtained in this 
theory by a principle which we shall describe. Striking relations of this theory 
with homotopy theory have long been apparent and are now beginning to be 
explored. (See Morse [1, pp. 231-243] and Morse [6].) 

The index. If there is just one nondegenerate critical point p at an F-level c, 
then as one passes from Sc-e to Sc+e for e > 0 sufficiently small only one homol
ogy group changes, and that by the addition of a fc-cycle or subtraction of a 
(fc — 1)-cycle as a generator. We say that p then has the index k, and, if a fc-cycle 
is added, that p is of increasing type. We state a fundamental theorem. Morse 
[1, p. 230] and Morse [4]. 

THEOREM 4. / / there exists on the abstract metric space S a nondegenerate function 
F all of whose critical points are of increasing type, then the k-homology group has a 
minimum base which includes just one k-cycle associated with each critical point of 
index fc, and no other k-cycles. 

If / is a function of class C" defined in an n-dimensional local coordinate 
system, an ordinary differential critical point p of / was termed nondegenerate 
if the Hessian H of / at p was nonvanishing; otherwise put, if no characteristic 
root of the determinant of H vanished. This generalizes for variational problems 
as follows. Given a critical extremal g in a variational boundary value problem, 
the Jacobi equations and the given boundary conditions give rise to a classical 
characteristic value problem associated with g. The critical extremal g is termed 
nondegenerate if and only if there is no vanishing characteristic value. The writer 



150 MARSTON MORSE 

has shown, Morse [1, p. 230], that the integral of length J(P, Q), along curves 
joining two fixed points P and Q on a compact differential n-manifold Mn of 
class Cfn without boundary, admits no degenerate extremals for any fixed P 
and almost all Q on Mn . It is in this sense that nondegenerate curve-functions 
J(P, Q) are dense among all admissible functions J(P, Q). 

A general problem. I t turns out that a closed extremal g of J on Mn is degenerate 
in the above sense if and only if the Jacobi equations based on g have no non-
null periodic solution. The question arises, is it possible to give meaning and 
validity to the statement: "Among admissible manifolds of class C" , near Mn 

in a suitably restricted sense, those manifolds on which every closed extremal is 
nondegenerate are everywhere dense"? The writer has established such a theorem 
when n = 2, but the case n > 2 is open. More generally it should be possible in 
the case of variational problems in the large of general type to show that in some 
sense the nondegenerate function is everywhere dense. 

The most useful principle of this sort is the following. On the above manifold 
Mn point functions / of class C" which are nondegenerate are everywhere dense 
among functions / of class C". This follows from work of the writer (cf. Morse 
[6]) and will be more explicitly elaborated and used in a later paper. The theory 
of nondegenerate functions parallels the theory of analytic functions in many 
remarkable ways. 

Nondegeneracy topologically defined. Morse [4]. We shall start with a homotopic 
critical point p of F when F is a positive lower semi-continuous function on the 
metric space S. Suppose that F(p) = c < oo. We shall be concerned with an 
F-bounded neighborhood U of p, that is, a neighborhood of p relative to some 
Sb for which b > F(p). If D* is a deformation of U on S with time parameter 
t, 0 ^ t g 1, the terminal mapping of U'mto S at the time 1 is JD1. We shall refer 
to a topological image Kr in S of a euclidean r-disc. We take KQ as a point. 

DEFINITION D. A homotopic critical point p of F will be termed nondegenerate 
if there exists a proper F-deformation Dt of some F-bounded neighborhood U of p 
such that 

(i). Dl leaves p invariant and deforms U into a topological r-disc Kr which con
tains p as an interior point when r > 0, and on which F(x) < F(p) when x j& p. 

(ii). The terminal mapping JD1, as applied to Kr H U, is F-deformable in Kr 

into the identity holding p fast. Morse [4, p. 50]. 
I t has been shown that an ordinary nondegenerate critical point of a point 

function / in a local n-dimensional coordinate system is nondegenerate in the 
above topological sense. See Morse [2, pp. 43-46]. The condition (ii) can be 
satisfied in the case of this / by choosing D* so that the mapping in (ii) is the 
identity. I t has also been shown that a critical extremal (an arc c) which is 
nondegenerate in the earlier sense of this section is also nondegenerate in our 
topological sense (Morse [4, p. 72]). 

In Morse [4] the function F is termed nondegenerate if its homotopic critical 
points are topologically nondegenerate and finite in number below any finite 
F-level, and if certain F-deformations exist. All these conditions are topological. 
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The subscript r of the r-disc Kr appearing in the preceding definition is shown 
to be the index of the critical point. The homology theory used is the singular 
theory of Eilenberg. Let pk be the fcth connectivity of S and mk the number of 
critical points of index fc. Then mk è Pk and there exist integers bk , with 0 ^ 
h g oo, and b0 = 0, such that 

(4.1) mk -pk = h + 6,+1 (fc = 0, 1, -. 0 . 

The numbers Ek = mk — pk, if finite, satisfy the relations (3.4). 
Lacunary index sequences. One can obviously derive many properties of the 

connectivities pk from the index sequence 1(F) 

(4.2) mQ, mi , ??i2, • • • . 

If each integer mk ?* 0 in (4.2) has vanishing adjacent integers, 7(F) will be 
termed lacunary. From (4.1) one obtains the new theorem: 

THEOREM 4.1. If (4.2) is a lacunary sequence, then mk = pk (fc = 0, 1, • • •) 
where pk is the kill connectivity of S. 

An important use of this theory is the determination of the homology groups 
of the space S = tiM(P, Q) of sensed arcs joining two fixed points on a differen
tiable manifold M of class C,h'. The homology groups are independent (up to 
isomorphisms) of the choice of P and Q so that one can take P and Q so that the 
length integral F = J(P, Q) is nondegenerate. The index mk is then the number 
of geodesies joining P to Q on which there are fc conjugate points of P preceding 
Q. Cf. Morse [1, p. 229]. In the case of an n-sphere the index sequence is known 
to consist of zeros except that mk = 1 when fc = 0 mod (n — 1). Morse [1, p. 
247J. Hence in the case of the ?i-sphere (n > 2) the connectivities pk of QM(P, Q) 
are zero except that pk = 1 when fc = 0 mod (n — 1). 

The question arises, what geometric manifolds admit a Riemann metric such 
that the nondegenerate length integral J(P, Q) possess a lacunary sequence? 
There are infinitely many geometric manifolds with this property. In par
ticular, the writer has shown in an unpublished paper that the cartesiani product1 

(4.3) SmX'-XSnr = M 

of any finite number of ra-spheres with ni > 2 admit such lacunary sequences. 
Thus a knowledge of the conjugate points of the geodesies joining P to Q on 
such M suffices to determine the homology groups of £lM(P, Q)- This is con
sistent with, but not equivalent to, the theorem that the homology groups of 
&M(P, Q) are obtained from the homology groups of ü8ni(P, Q), i = 1, •••,*", 
by the combinatorial processes usual for products. The latter theorem, proposed 
by the writer to Pitcher during the preparations of this report, was confirmed 
by Pitcher and later verified by the writer. 

It is of interest to note that if mn+i = 0, and if Ei = ra,- — pi is finite for 
i — 1, • • • , n, then 

(4.4) En - #n-i + • • • + (-l)nEo = 0. 
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Thus the absence of geodesies g joining P to Q with n + 1 points on g conjugate 
to P implies (4.4). 

5. A theorem on the dimension of a critical set. The results of this section 
will be published in detail in a later memoir. The principal theorem will be 
stated under much weaker conditions than the theorem on continuous functions 
on a manifold suggested at the end of §1. To this end, let F be defined over a 
metric space S, with 

(i) F positive, lower semi-continuous, and upper reducible, 
(ii) the sets Sc compact for each c < oo. 
Given a nonempty closed subset A C Sc, an infinite sequence 

(5.1) - (D) = D1}D2,Ds, . - . 

of F-deformations will be regarded as applicable to A if Z>i is an F-deformation of 
A yielding a terminal image Ai of A, if then D2 is an F-deformation of Ax yield
ing a terminal image A2 of Ai then, D3 an F-deformation of A2 , etc. Let 

(5.2) An = DnDn-X . . . A 

be the resultant deformation of A, obtained on applying D\ to A, J92 to A i , 
• • • , Dn to An_i. Let 7\> be the terminal transformation of A under An . 

I t is always possible to choose a sequence (5.1) of F-def ormations applicable 
to A, together with a sequence (en) of numbers with en > 0 andew —» 0 as 7& f oo, 
such that the following holds. If one sets 

(5.3) lim [ sup F(x)] = v(A) , 

the set <r of homotopic critical points at the level v(A) is not empty; if Bn is the 
subset of Tn(A) on which x > v(A) — en , then Bn is not empty and 

(5.4) 0 = lim [sup d(x, o-)] (d = distance). 
»fco x$Bn 

We-suppose the sequence (5.1) and the sequence (en) so chosen, and term v(A) 
an F-barrier of A. 

We shall define an intrinsic property of a compact set A. Let r and n be integers 
with 0 < r < n. We say that A is (r, n)-admissible if corresponding to an ar
bitrary closed subset X C A, 

(1) #&e bounding in A of each Vietoris (n — r)-cycle in X implies 
(2) even/ Vietoris r-cycle in A is homologous in A to an r-cycle in A — X. 

The theory of manifolds contains explicit conditions for the existence of (r, n)-
admissible sets A. It is clear, however, that A need not be restricted to mani
folds. The theory of characters is involved. In this connection it should be re
called that our group of coefficients is a finite field. The fundamental theorem 
follows: 

THEOREM 5.2. Let Abe a closed (r, n)-admissible subset of SG with an F-barrier 
v(A) and such that any (n — r)-cycle in A which bounds in Sc bounds in A. Let 
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H be a nontrivial r-homology class in A. If v(A) = c(H), then the set of homotopic 
critical points at the level v(A) carries an (n — r)-Vietoris cycle which is non-
bounding in So, so that 

dim o- è n — r. 

The proof of this theorem makes no use of category. In general, it seems to 
be possible to obtain many results on the minimum number of critical points 
which have been obtained by a use of the category theory without using that 
theory, and to add to these results a causal relation between various homology, 
homotopy, and isotopy classes and the respective critical points. 

It should be noted that the critical point theory suggests many other numerical 
topological invariants in addition to the category: for instance, the minimum 
number N of nondegenerate critical points of a continuous nondegenerate func
tion / defined over a geometric manifold, as / ranges over all such functions. 
If R is the minimum number of isolated homotopic critical points of a continuous 
function / defined over a geometric manifold, as / ranges over all such functions, 
it is clear that N ^ R. Both N and R are topological invariants over geometric 
manifolds for which N is defined. When is N > R? 

6. Other advances. I shall refer first of all to the unpublished work of E. 
Pitcher which makes use of the mechanism (Morse [1, pp. 244-247]) whereby the 
homology groups of the space fì(P, Q) of §4 were determined for the space of 
curves joining P to Q on an n-sphere by explicitly giving a base for the non-
bounding cycles. Pitcher's work makes it clear that these models will be useful 
in analyzing the homology groups irr(S

n , x) of the w-sphere. Here x is the point 
in Sn into which the fixed point of the antecedent r-sphere Sr is mapped. In 
results announced at the Congress, Pitcher has used these new geometric meth
ods to verify the result of Whitehead that 7TB(S8) yields the integers mod 2. 
The variational methods are capable of great extension in the direction of 
determining models for use in homotopy theories. For example, one can replace 
curves joining two fixed points on an w-sphere by disc-type surfaces spanning 
a circle. 

The papers by Morse and Ewing introduce a new approach to the restricted 
problem of three bodies. The Jacobi least action integral J which is studied is 
neither regular nor positive definite. Nevertheless Morse and Ewing have 
established the upper reducibility of J under suitable conditions and prepared 
for the advances to follow. Ewing has used the Weierstrass generalized integral 
to give an essential simplification of one of the proofs. In the general direction of 
fundamental definition of integral and length see Menger, What Paths Have 
Length? 

Special attention is called to the remarkable work of the Russian school. Thè 
recently published paper by L. Lusternik and Schnirelmann [4] gives more detail 
concerning early results and continues their program. The paper by Seifert cited 
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refers to the general problem of periodic motion and runs into the same problem 
of one motion covering another. 

Reference should be made to the forthcoming Colloquium Lectures, American 
Mathematical Society, New York, by Arnold Hedlund where his researches on 
flow, transitivity, symbolic dynamics, etc., have much to do with variational 
theory. A paper by Rauch to appear in the Annals of Mathematics uses varia
tional theory in the large, and in particular uses generalized comparison theorems 
to obtain sufficient conditions on the variation in ratio of the Riemann curvature 
on â  compact simply-connected manifold of positive curvature in order that the 
manifold be the topological image of an w-sphere. 

A fundamental paper by C. B. Morrey first solves the problem of Plateau for 
a general Riemannian manifold in the case where the manifold is not coverable 
by a single coordinate system. This result should accelerate variational theory 
in the large for multiple integrals. In this direction is the penetrating work of 
Shiffman who has attacked the crucial problems of the multiple integral theory 
with great ingenuity and success. Courant has aided the general advance by 
his papers on minimal surfaces and conformai mapping. His book contains other 
references. 

In a basic topological study Leray has initiated a theory of mappings which 
embraces part of the critical point theory and suggests unsuspected relations. 
One may expect striking developments along this line in the near future. 

The extensive work of McShane and L. C. Young is in another direction but 
has introduced new power and completeness into thç foundations of the theory 
of generalized curves and surfaces. 

The recent work of Morse and Transue gives an abstract representation of a 
generalization of the second variation. The generalized Euler equations include 
classical Euler equations as well as integral and integro-differential equations of 
general type. The relation to the variational theory in the large is in connection 
with the unpublished characteristic value theory and index theory. 

S. Bergman has made use of the theory of level manifolds and of critical 
points in his study of pseudo-conformal mapping. In particular the theory of 
equivalence of Reinhardt domains clearly calls for such analysis. 

BIBLIOGRAPHY 

S. BERGMAN 

Sur la fonction noyau d'un domaine et ses applications dans la théorie des transforma
tions pseudo-conformes, Mémorial des Sciences Mathématiques, vol. 108, Paris, 
Gauthier-Villars, 1948. 

R, COURANT 

Dirichlet's principle, conformai mapping, and minimal surfaces, New York, Interscience 
Publishers, Inc., 1950. 

S . ElLENBBRG 
Singular homology theory, Ann. of Math. vol. 45 (1944) pp. 407-449. 

L. ELSHOLZ 

1. Zur Theorie der Invarianten, die zur Bestimmung der unteren Grenze der Anzahl der 
kritischen Punkte einer stetigen Funktion, die auf einer Mannigfaltigkeit bestimmt ist, 
dienen können, Ree. Math. (Mat. Sbornik) N.S. vol. 5 (1939) pp. 551-558 (in Russian)*. 



ADVANCES IN VARIATIONAL T H E O R Y I N T H E LARGE 155 

2. Die Länge einer Mannigfaltigkeit und ihre Eigenschaften, Ree. M a t h . (Mat . Sbornik) 
N.S . vol. 5 (1939) pp. 565-571 (in Russian). 

>. E W I N G 

Minimizing an integral on a class of continuous curves, Duke Ma th . J . vol. 10 (1943) p p . 
471-477. 

I. F o x 
On the Lustcmik-ScJmirelmann category, Ann. of Ma th , vol, 42 (1941) pp . 333-370. A 

bibliography for the category theory is found here. 
5. F R O L O F F and L. ELSHOLZ 

Limite inférieure pour le nombre des valeurs critiques d'une fonction, donnée sur une variété, 
Ree. M a t h . (Mat. Sbornik) vol. 42 (1935) pp . 637-643. 

T. GORDON 

On the minimal number of critical points of a real function defined on a manifold, Ree. 
Math . (Mat. Sbornik) N.S. vol. 4 (1938) pp . 105-113. 

r. L. K E L L E Y and E. PITCHER 

Exact homomorphism. sequences in homology theory, Ann. of Math . (2) vol. 48 (1947) p p . 
682-709. 

T. L E R A Y 

L'anneau spectral et Vanneau filtré d'homologie d'un espace localement compact et d'une 
application continue, J. Math . Pures Appi. vol. 29 (1950) pp . 2-139. 

a. LUSTERNIK 

On the number of solutions of a variational problem, C. R . (Doklady) Acad. Sci. URSS 
N.S . vol. 40 (1943) pp. 215-217. 

1». L U S T E R N I K and L. SCHNIRELMANN 

1. Existence de trois lignes geodésiques fermées sur toute surface de genre 0, C. R . Acad. 
Sci. Paris vol. 188 (1929) pp. 534r-636; vol. 189 (1929) pp . 269-271. 

2. Méthodes topologiques dans les problèmes variationnels, Ins t i tu te for Mathemat ics and 
Mechanics Moscau, 1930, (in Russian). 

3. Méthodes topologiques dans les problèmes variationnels, Par is , Hermann, 1934. 
4. Topological methods in variational problems and their application to the differential 

geometry of surfaces, Uspehi Matematiôeskih Nauk N.S . vol. 2 no. 1 (17) (1947) p p . 166-
217 (in Russian). 

5. J . M C S H A N E 

Generalized curves, Duke Math . J . vol. 6 (1940) pp . 513-536. 
£. M E N G E R 

What patlis have length?, Fund. Math . vol. 36 (1949) pp . 109-118. 
3. B . M O R R E Y 

The problem of Plateau on a Riemannian manifold, Ann. of Math . (2) vol . 49 (1948) p p . 
807-851. 

A. M O R S E 

1. The calculus of variations in the large, Amer. Ma th . Soc. Colloquium Publicat ions vol . 
18, New York, Ì934. 

2. Functional topology and abstract variational theory, Mémorial des Sciences M a t h é 
matiques vol. 92, Paris, Gauthier-Villars, 1939. 

3 . Rank and span in functional topology, Ann. of M a t h . vol . 41 (1940) p p . 419-454. 
4. A positive lower semi-continuous non-degenerate function on a metric space, Fund. 

Math . vol. 35 (1948) pp. 47-78. 
5. Sur le calcul des variations, Bull. Soc. Math . France (1939). 
6. The analysis and analysis situs of regular n-spreads in (n + r)-space, Proc. Nat . 

Acad. Sci. U.S.A. vol. 13 (1927) pp . 813-817. 
A. M O R S E and M. H E I N S 

Causal isomorphisms in the theory of pseudoharmonic functions, Ann. of M a t h . vol . 46 
(1945) pp . 600-624. 



156 MARSTON MORSE 

M. MORSE and G. EWING 
1. The variational theory in the large including the non-regular case, First paper, Ann. 

of Math. vol. 44 (1943) pp. 329-353. 
2. The variational theory in the large including the non-regular case, Second Paper, Ann. 

of Math. vol. 44 (1943) pp. 354r-374. 
M. MORSE and C. TOMPKINS 

1. The existence of minimal surfaces of general critical types, Ann. of Math. vol. 40 (1939) 
pp. 443-472. (Corrections for this paper appear in the Ann. of Math. vol. 42 (1941) p. 331. 

2. Minimal surfaces o* unstable type by a new mode of approximation, Ann. of Math. vpl. 
42 (1941) pp. 62-72. 

3. Unstable minimal surfaces of higher topological structure, Duke Math. J. vol. 8 (1941) 
pp. 350-375. 

4. The continuity of the area of harmonic surfaces as a function of the boundary repre
sentations, Amer. J. Math. vol. 63 (1941) pp. 825-838. 

M. MORSE and W. TRANSUE 
A characterization of the bilinear sums associated with the classical second variation, 

Annali di Matematica Para ed Applicata voi. 28 (1949). References to ten related papers 
by Morse and Transue can be found here. 

H. SEIFERT 
Periodische Bewegungen mechanischer Systeme, Math. Zeit. vol. 52 (1945) pp. 197-216. 

H. SEIFERT and W. THRELFALL 
' Variationsrechnung im Grossen, Berlin, Teubner, 1938. 
M. SHIFFMAN 

1. The problem of Plateau for non-relative minima, Ann. of Math. vol. 40 (1939) pp. 834-
854. 

2. Unstable minimal surfaces with several boundaries, Ann. of Math. vol. 43 (1942) pp. 
' ' 197-222. 

3. Unstable minimal surfaces with any rectifiable boundary, Proc. Nat. Acad. Sci. U.S.A. 
vol. 28 (1942) pp. 103-108. 

' 41. Instability for double integral problems in the calculus of variations, Ann. of Math. 
vol. 45 (1944) pp. 543-576. 

L. C. YOUNG 
Generalized surfaces in the calculus of variations, Ann. of Math. vol. 43 (1942) pp. 530-

554. ' 

INSTITUTE FOR ADVANCED STUDY, 

PRINCETON, N. J., U. S. A. 


