
SOME ASPECTS OF LINEAR AND 
NONLINEAR PARTIAL 

DIFFERENTIAL EQUATIONS 

By L. NIRENBERG* 

The speaker's committee has asked me to speak on some of the recent 
work in nonlinear partial differential equations. I would like to start by 
quoting from Prof. G. Temple's address [58] at the Edinburgh Congress— 
"the closely guarded secret of this subject (differential equations) is that it 
has not yet attained the status and dignity of a science but still enjoys the 
freedom and freshness of pre-scientific study The work of classification 
and systemization of specimens has hardly begun." Indeed most of the 
specimens considered still deal directly with equations arising from physical 
theory or from geometric problems, and the work seems rather special and 
indeed peculiar to some mathematicians from other fields. In the past 
decade, however, the general theory of linear partial differential equations 
with constant coefficients has been greatly developed; this progress is 
described elsewhere in this Congress. 

In this talk which is necessarily limited by my own restricted knowledge 
and inclinations I shall not deal with equations arising from physical pro
blems. Thus, in particular, and also because of time restrictions, I will not 
describe the intensive attack that has been made again in recent years, 
after the basic work by J. Leray in the 30's, on the existence problems for 
the Navier-Stokes equations of fluid mechanics, except to make reference 
to the recent book by 0. A. Ladyzhenskaya [28] (soon to appear in English 
translation) for a clear exposition of much of the recent developments, as 
well as expository articles by G. Prodi [52], J. Serrin [55] and R. Finn [10] 
where further references may be found. (Rather than have a lengthy 
bibliography, I have tried to limit it to papers containing fairly comprehen
sive lists of references.) 

I wish to describe some recent developments in existence and regularity 
theory for nonlinear boundary value problems, mainly for elliptic differen
tial equations, with side remarks for parabolic and hyperbolic equations. 
Since this lecture is directed to nonexperts, I would like to give some 
indication of the techniques used and not merely list the latest and strongest 
results which are often quite complicated to formulate. 

§ 1. Most results for nonlinear problems are still obtained via linear ones, 
i.e. despite the fact that the problems are nonlinear not because of it. So we 
shall begin with the simplest question for a nonlinear problem, a perturba
tion problem, in which the problem differs slightly from a linear one; this 
simply involves the implicit function theorem in a suitable framework. 

To fix notation we usually treat functions u(x), x = (x1,...,xn) defined in 
a bounded domain in En with smooth boundary; u may represent a system 
of functions. Differentiation is denoted by D = (D1,...,Dn),Dj = dldxj, 

1 The author is a Sloan Fellow. 
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D* = Df1...Dnn for a = (a1,...an) with the ^integers >0, and D*has order 
| a | = 2a,. We also write the first and second derivatives of u as UXì,UXìXJ-
For &>0 an integer we use the norm 

\u\k= 2 sup |D%| 

for the space Gk. 
Consider a nonlinear partial differential equation of order m depending 

on some parameters a 
F(e,x,u,D*u)=0, (1.1) 

we are interested in solutions satisfying, say, homogeneous conditions on 
the boundary (or part of the boundary) assuming that u0 is a solution for 
6=0. Hi LQ=L(uQ) is the linearized operator about the solution uQ, the first 
variation of F: 

LQv = L(u0) v = 2 ^ru (0, x, D«u0) IFv, 

then one writes the nonlinear equation (by writing J a s a linear term in 
(U—UQ) plus a remainder term of higher order) 

L0(u-u0) = R[u,e], 

where R involves higher order terms in u—u0 and its derivatives. If the 
linearized problem 

L0v=f 

with the homogeneous boundary conditions has a solution (say unique) 
v =Lô1f, such that if / belongs to a certain class of functions then the mth 

order derivatives of the solution v belong to this same class, the Picard 
iteration: 

un+i=Là1R[unìé] 

will yield a solution. This is just the usual implicit function theorem. In 
applying it the main thing to verify is the property of the solution Lô1f— 
that it is sufficiently differentiable. Otherwise one loses differentiability in 
each iteration step. 

For elliptic partial differential operators L0 and for a wide class of boun
dary conditions it has been shown that LQ1 has the right properties, in a 
suitable function space. This is a consequence of the, so-called, Schauder 
type estimates for such equations; see S. Agmon, A. Doughs, L. Nirenberg 
[1] (these estimates have been derived also for general elliptic systems in 
part 2 soon to appear), see also F. Browder [3]. 

We remark that the class of boundary conditions for which such estimates 
hold are those satisfying certain algebraic relations involving their leading 
parts and the leading part of the operator L0. (A simple way of describing 
these conditions at the boundary point xQ is to consider the leading part 
L'o of LQ, and leading parts of the boundary differential operators with 
coefficients having their value at x0, i.e. constant, and to imagine the boun
dary as flat at x0, and require that the only bounded finite sum of ex
ponentials v satisfying L'Qv=0 in the half space, and satisfying the leading part 
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of the boundary conditions on the boundary of the half space, and tend
ing to zero as we go to infinity normal to the boundary, isv = 0.) Re
cently there have occurred some situations in which the lower order 
terms also play a crucial role, in particular, in the work of C. B. Morrey 
[39] and its extension by J. J. Kohn [27] on complex analytic manifolds; 
the general situation here has yet to be cleared up. For planar boundaries 
and constant coefficients, in the case of one operator, L. Hörmander [22] 
has resolved the problem of regularity at the boundary. 

Let us return to the general perturbation problem or implicit function 
theorem. The Picard iteration method described there converges like a 
geometric series. Namely ||wn+1—wn|| ^ö||^n—wn_1 | |,0<l. Here || || denotes 
some norm. It may occur in practice that the operator LQ1 "loses" deriva
tives. For instance, if we work with the spaces Ck (which is not very suitable 
for elliptic problems) we want LQ1 to map Ce boundedly into CQ+m but it may 
only map Ce boundedly into Ce+m~a (thus a loss of a derivatives). Then 
Picard iteration doesn't work. In 1956 J. Nash [46] was able to treat a special 
situation just of this kind occurring in his work on isometric embedding of 
Riemannian manifolds. He did this by means of a rather remarkable but 
complicated and, to me, mysterious scheme involving a combination of 
approximation and "smoothing" of functions. This method was set into a 
general framework by J. Schwartz [54] who proved a general implicit func
tion theorem. Recently J. Moser [44] has succeeded in giving a clear and 
conceptually straightforward proof of this and I would like to describe the 
idea of this important method—sticking still to a partial differential equa
tion although the method works for general nonlinear functional equations. 
I t involves two devices: 

(1) An iteration scheme—Newton's instead of Picard's. Newton's method 
is the following 

U>n+1-Un= - I r ( f ^ ) - 1 J ( c , a ? , 2 ) X ) S ï a , - i W - ^ M j . 

Thus we assume not only that L(u0) is invertible but also L(u), for u suffi
ciently "close" to u0. By the mean value theorem we have 

| F[un] - F[un-i] - L(un-i){Un ~ Un-i) \Q < COnst | Un - Un-i |m+p- (1.2) 

If L(un)~
x were a bounded linear map of Ce+m into CQ we would consequently 

have 
| Un+i — Un \m+Q < COnst I Un — Un-x \m+Q 

and hence very rapid convergence of the iteration scheme. 
Moser uses this scheme together with a smoothing device (also used by 

Nash), an operator TN depending on a parameter N: 
(2) For every N large TN is a linear mapping of functions into C°° func

tions with the properties (here ô >0 is a fixed number): 
For all integers p, q ̂  0 

(i) \TNu\p+q<const Nq+Ô\u\p, 

(ii) \u-TNu\p<const N-Q+Ô\u\p+Q. 

The constants depend on p and q. Condition ii) expresses the fact that the 
approximation TNu is very close to u if u itself is very smooth. (In case we 
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consider functions u defined in all En [or periodic in all variables] such 
smoothing operators may be obtained by multiplying the Fourier transform 
of u [or Fourier coefficients of u] by functions with compact support, or, 
what is equivalent, by convoluting u with suitable kernels K(Nx) such that 
$K(x)dx = l. One even obtains (i) and (ii) with (5=0.) 

Let us see how to obtain a solution u of (1) in some class Cm+Q assuming 
that the inverse of the linear operator L(u) is defined for |w—w0|m suffi
ciently small and is a bounded map of Ce into CQ+m~a, i.e. it loses a deriva
tives. Moser's iteration scheme is to choose Nn+1=N%2, and set 

With fjt=3(a+ô),l=*35(a+ô + l) one shows inductively that 

| Un+l - Un | m + e < COnst Nnii» 

\v>n-U0 |m+ö+Z < COnst Nl
n. 

These estimates are not very difficult to prove using (i) and (ii) and assuming 
that u0, the initial solution, belongs to cm*Q+l. The iterates un converge to 
a solution u in Gm+e; u is thus considerably less smooth than the initial 
solution u0. In working with general nonlinear operator equations Moser 
imposes a third condition (condition (3) in [44]) which is usually satisfied 
in practice, and which we have omitted here. 

This result and its proof are set within the framework of linear spaces. 
For nonlinear problems this seems slightly unnatural, but there is as yet no 
systematic theory operating without these spaces. 

Moser has applied similar techniques in studying stability of Ck solutions 
of ordinary differential equations. In this work he is not able to operate in 
a linear function space. Furthermore the nonlinear character of the equa
tions is used in an essential way, indeed he obtains results because of the 
nonlinearity not despite it. This work is related to the work of Kolmogorov 
and Arnold on stability for analytic nonlinear differential equations; the 
use of Newton's method was suggested by that work (see Moser's report at 
the Congress). 

§ 2. We turn to more special equations—second order quasilinear equa
tions of the form (using summation convention) 

atj(x, u, Du) uXiXj = f(x, u, Du) (2.1) 

axì positive definite matrix, or equations in divergence from 

—a%(x, u, Du) = f(x, u, Du), (2.2) 
oXi 

daijdux} positive definite matrix, such as arise from regular variational 
problems 

o\F(x,u,Du)dx = 0, (2.3) 

for which the Euler equation is 
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\OUxiJxi OU 

One may also write (2.2) in the "weak" from 

> Dv) U + f(x, u, Du) Ç)dx = 0 (2.2') (a±(x, u,, 

for all f G Go3, i.e. for all functions CEC00 with compact support in the domain. 
Since Hilbert formulated the problem of showing regularity of solutions of 
(2.3) or (2.4) these equations have received much study concerned also with 
existence theorems for boundary value problems. 

Much of the work in connection with these equations has been directed 
to finding a priori bounds for solutions of the equations, i.e. bounds for a 
solution and its derivatives, assuming that a smooth solution exists. The 
search for such bounds goes back to the fundamental work of S. Bernstein, 
and their use has been fully clarified in the basic work of J. Leray and J. 
Schauder [33]. 

We can give a brief indication, to those who are not familiar with the 
field, how these bounds may be used in proving existence of a solution of, 
say, (2.1) with given boundary values. Assuming that we know how to solve 
linear elliptic problems (elliptic here means that atj is positive definite), 
insert in the coefficients of (2.1) a function v (and its first derivatives), and 
solve the corresponding linear elliptic equation for a function u taking on 
the given boundary values. This defines a transformation u = T[v] which, 
because u belongs to a higher differentiability class than v, can be shown to 
be a compact operator. If we had a priori bounds for solutions of such linear 
elliptic equations which involve practically no knowledge of the coefficient, 
say that u and some derivatives are bounded, then we could assert that T 
maps the set of functions satisfying these conditions into itself. Because T 
is compact it would follow, by the Schauder fixed point theorem, that T 
has a fixed point—which is then a solution of (2.1). Thus we see why it is 
useful to obtain a priori bounds for solutions of linear equations under 
minimal assumptions on the coefficients. 

A more general procedure is to obtain a priori bounds for solutions of the 
nonlinear problem by using some special features or structure of the equa
tion. Then one connects the equation by a one parameter family of equations 
Et,0<t<l, to an equation El9 which one can solve. If a priori bounds for 
solutions of all these equations can be obtained, e.g. that some norm 
||w|| of the solutions u remain bounded, ||%|| <K, then in the sphere \\u\\ <K 
in the Banach space with || || as norm one may try to use the Leray-Schauder 
[33] theory of degree of mapping (see also Leray [32] and M. Nagumo [45]) 
to show that all the equations Et possess solutions starting from El9 since 
the solutions cannot cross the boundary of the sphere \u\ <ÜT. 

Before taking up any special equations let me mention a few tools of the 
calculus which are used; these sometimes enable one to treat certain lower 
order terms in an equation as minor perturbation terms. In the following 
we use | D*u \ LQ to denote the sum of the LQ norms of all derivatives of u of 
order /, and denote constants by c; also j<m below., 

file:///OUxiJxi
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Sobolev inequalities: 

\Diu\L9<c(\Dmu\Lp+\u\Lp) 

1 _ 1 m — ?\ 

q p n 

Interpolation inequalities: 

> 0 . 

\Dju\Lq<c\Dmu\a
Lp\u\\-r

a + c\u\Lr, for ^ < a < l 

1 j—am a \—a ^ 
if - = L + - + >0. 

q n p r 

The latter inequalities enable one to say that the set of bounded functions 
with derivatives of order m in Lp form an algebra—a fact that is useful in 
nonlinear problems. (Proofs of these may be found in L. Nirenberg [48], 
lecture 2, and in E. Gagliardo [13].) The interpolation inequalities are special 
cases of general abstract interpolation inequalities that have been found in 
the last few years which are generalizations of the Riesz-Thorin convexity 
theorem. These should prove useful in nonlinear problems. We content our
selves here with the following references: E. Gagliardo [14], A. P. Calder on 
[4], J. L. Lions [34] where further references may be found. Some applica
tions to nonlinear problems are indicated in chapters 4, 8 and 10 of J. L. 
Lions [35]. 

Another concept that is used in the study of nonlinear differential equa
tions is that of "weak" or "generalized" solution. Using Wp, (or Hm,p) to 
denote the completion in the norm 2i a \^m \ F>Ku \ LP of C°° functions (the pre
ceding inequalities extend to functions lying in these spaces) one says, say, 
that u G Wp is a weak solution of 

(aijUx^xj^f 

(aaUxiCxj + U)dx = 0 for al l £ G <70°°. / « 

In seeking to prove existence of regular solutions of nonlinear elliptic 
equations it is often convenient (and usually simple) to prove first the exist
ence of a weak solution. Then one attempts to show that this solution is 
regular. 

§ 3. In considering second order equations I shall divide the results to be 
described into two classes; those similar to results for linear equations and 
others which are more nonlinear—starting with the former. In seeking 
bounds for solutions of equations (2.1) and (2.2) one has first, in case the 
maximum principle applies, a bound for the solution itself. In the 1930's 
Schauder developed an extensive theory for linear equations with Holder 
continuous^) coefficients (this has been extended in [1]). Applying this 
theory one obtains bounds for all derivatives of a solution of (2.1) if a bound 

(1) A function v is Holder continuous, or satisfies a Holder condition if 

\v{x)-v{y)\ 
sup—j T^— <oo, a < l . 

\x-y\ 
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for its first derivatives and their Holder continuity is known. So we shall 
restrict ourselves to these. For two dimensional, (n=2) problems, after 
Schauder and Leray (see C. Miranda [36] for other references) the basic 
work in getting bounds for solutions, from which much further work stems 
is due to C. B. Morrey [37-38]. This work is connected with the theory of 
quasi-conformai mappings (see also L. Bers, L. Nirenberg [2]). In higher 
dimensions little was known (see, however, H. 0. Cordes [5] where other 
references may be found) until in 1957 E. de Giorgi [6] (and in 1958 John 
Nash [47], for parabolic equations, which we mention later) succeeded in 
estimating the Holder continuity in compact subsets of solutions u of linear 
elliptic equations in divergence, i.e. in the weak, form 

/ • 
aijUxiÇxjdx = 0 for all f G CS3, (3.1) 

assuming the equations to be uniformly elliptic, i.e. to satisfy 

3 

for suitable positive constants m, M. They showed that a solution u in 
W\ is Holder continuous. De Giorgi used this result to prove the analy-
ticity of solutions of uniformly elliptic variational problems, 

•J-o\F(Du)dx = 0. 

Any first derivative uXk of such a solution satisfies an equation of the form 
(3.1), namely 

I •& UiUj uXkxi Çqdx = 0 for all £ G (7g° 

and Uxk is easily seen to belong to W\. Therefore uXk is Holder continuous, 
and the analyticity of u then follows from previously known results. The 
proof of Holder continuity of solutions of (3.1) involves two steps: 

(a) Obtaining a bound for u, of the form 

\u(y)\2dy, 
-x\<R 

(b) Then deriving a Holder condition for u. 
Alter de Giorgi simpler proofs have been given by J. Moser [42-43] and 

G. Stampacchia [56]. Stampacchia's proof of (a), which is closer to de 
Giorgi's, involves choosing for £ in (3.1) a CQ function ip times a truncation 
of u,uk = msbx(u — Jc,Q). This choice gives immediately a bound on the L2 

norm of grad uk. Using Sobolev's inequalities one obtains a bound for the 
measure ak of the set where u>Jc. Repeating this argument again one ob
tains an estimate for ah in terms of ak, h>k and one finds that for h > some 
k0,ah=0, i.e. u<h almost everywhere. Moser's proof of (a) works with the 
Lp norm of u in place of ah; he chooses for £ a function ip G (7J° times a power 
of u (note that though this is a linear problem nonlinear operations are per-
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formed), and shows that the Lp norm of u on a compact subset remains 
bounded as p-*oo. 

Stampacchia (see his Congress lecture and [57] has used his method of 
proof to prove the following 

Maximum principle: Let u G W\ be a weak solution in a domain 3) of 

(aifuXi + f])Xj > 0, ayÇigj >m|f, u = <f> on boundary (3.2) 

i.e. (anuxi + //)Çxjdx < 0 for £ > 0, £ = 0 on boundary. (3.2') 

then -M<max<i-i — 2 1 / J U » f° r #>?&. 
r m y 

We may give a brief sketch of the proof. Take for £ the function 
max (u — k, 0) with k > max <f>. Then from (3.2') we find, letting Dk denote 
the set where u>k, and ak its measure 

m\ |gradw|2efo< 1 2 / ^ / 1 ^ ^ 1 |gradw|2da;i I 2 | / i | 2 ^ ) 

or, by Holder's inequality, 

m [ j j grad ufd^ * < ß \f, UW"^'. 

By Sobolev's inequality it follows that for some constant C 

( fz>j^^^N^) 1 / f f <£ 2 | / / k c r Ä < p" 2 ) / 2 P 3 for q= 2n 
n-2' 

Therefore restricting the integration on the left to Dh, for h>kwe find 

h — k 

For jp > n the power of a* on the right is greater than that of oh on the 
left and one shows consequently, fairly readily, that 

v f ^ i const^, , , 
ah = 0 for h > max ó H > /y kp 

which is the desired result. 
The most elegant proof of the Holder continuity (b) has been given by 

Moser in [43] (his second proof). I t is based on a 
Harnack inequality: any nonnegative solution u of 

(avuXi)Xj = 0, m 2 & < auSib < M 2 Sf 

in a unit sphere, satisfies in any concentric smaller sphere S 



LINEAR AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 155 

max u < C min u, 
s s 

where C depends only on m, M and S. 
This yields easily the fact that if u is a bounded solution of (3.1) in a sphere 

then its oscillation (max-min) in a concentric sphere of half the radius is 
bounded by 0( < 1) times its oscillation in the full sphere. Holder continuity 
then follows easily in turn from this result. 

(Moser's proof makes use of a lemma by F. John and L. Nirenberg [25] 
which has also been used by F. John in an interesting paper [24] studying 
(nonlinear) mappings of a domain in En into En which differ little from an 
isometry. 

LEMMA. Suppose u is an integrable function in a cube C0; denote by uc the 
average of u in a parallel subcube C. Assume that for every such subcube C the 
inquality 

(k-«c|)c<l 

holds then u£Lp for avery p, in fact j"c0 ea^u~UOo^dx^ const, for some suitable 
constant a > 0.) 

The results of de Giorgi have also been extended to hold in the full domain 
(not just compact subsets) for solutions satisfying various boundary condi
tions. These extensions yield existence theorems for uniformly elliptic 
equations (2.2) and (2.4). The results have also been extended to certain 
nonuniformly elliptic equations. The main extensions of this kind, and 
applications to boundary value problems, have been given by C. B. Morrey, 
O. A. Ladyzhenskaya and N. N. Uraltseva, O. A. Oleinik and C. N. Kruzh-
kov. The equations are not required to be uniformly elliptic but, say for 
(2.2), the coefficients at are permitted to behave like polynomials in the 
uXi. The conditions on the coefficients are too complicated to be stated 
here, but there are examples showing that these conditions are rather 
natural. I mention here just one condition involved in one case for (2.2), 
here F2 = l + |w|2 + |grad u\2, f = (fi,...,fn) a rea,l vector; 

mF fc |£|2<|^,<MFk |£|a ( i>- l ) , 
CUxj 

and at is permitted to grow like Ffc+1. In case (2.2) comes from a variational 
problem (2.3) the further conditions express the requirement that the func
tional $F(x,u,Du)dx be of class C2 in the space W\+2. 

This work, together with complete references, may be found in the clear 
expository article by Ladyzhenskaya and Uraltseva [29], in the papers 
[40-41] by Morrey and in Oleinik, Kruzhkov [50]. 

I will just mention one result from the paper [29]. Consider the simple 
nonlinear equation: 

Au = quadratic in the u^u^^ on boundary 

(here A represents the Laplace operator, this is a very special case of a 
result in [29]). I t is known, and in fact not difficult to derive with the aid 
of the interpolation inequalities mentioned above, that if ̂  is small, or if 
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the coefficients in the quadratic are small, or even if the oscillation of u in 
a fixed region is small, then one can obtain a priori estimates for all deriv
atives of u and prove the existence of a solution. If the quadratic is replaced 
by something of higher degree in uXi then a regular solution need not exist, 
while for lower degree it is quite easy to prove existence. I t has been an 
open question for some time to see if there is existence in the case of a gen
eral quadratic. This is settled in the affirmative in [29] by Ladyzhenskaya 
and Uraltseva. The main step is an estimate of the Holder continuity of u, 
and its derivation is similar to their extension of de Giorgi's work, and is 
therefore not very simple. 

G. Stampacchia [57] and D. Gilbarg [16] have also obtained existence 
theorems with the aid of de Giorgi's result and its extensions. In particular 
for equations in a strictly convex domain they have independently obtained 
some very clean results. To mention one, consider a variational problem 

ô F(uXi)dx = 0, u = <f> (smooth) on boundary, 

which is supposed to be regular, i.e. for which the Euler equation is elliptic, 
d2FjduXiduXj is positive definite—then F is a convex function. They prove 
that there exists a unique (regular) solution of this problem. The proof is 
based on the a priori estimate 

|^| +|gradai <#(©,<£) 

where the constant K depends only on the (strictly convex) domain 2) and 
the boundary function <f>, K does not depend on the function F. The estimate 
is easily derived with the aid of the maximum principle (which holds also 
for grad u) and a comparison function which is linear. Using the estimate 
Stampacchia's existence proof proceeds as follows: He modifies the function 
F for [grad u | >K so that the new function F is uniformly regular, i.e. the 
eigenvalues of the Hessian matrix are bounded from above and below by 
fixed positive constants; this indeed is the main step of the proof. For the 
variational problem ô$F(uXi)dx = 0, u =cf> on boundary, it is very easy to find 
a weak solution in W\. Using the extension of de Giorgi's result to the 
boundary for uniformly elliptic problems it follows that this solution is 
regular. But it must also satisfy the a priori estimate above, and hence is 
seen to be a solution of the original problem. 

A word about parabolic equations. Using quite different methods J. Nash 
[47] proved the analogue of de Giorgi's result for parabolic equations in 
full space of the form 

du 
— = (ai3uXi)Xj. 

This has been generalized by Oleinik and Kruzhkov [50], and rederived and 
extended by Ladyzhenskaya and Uraltseva [30] by adapting de Giorgi's 
methods. The analogue of the Schauder theory for linear equations had been 
established by A. Friedman [11] who treated also nonlinear problems [12]. 
Various existence (as well as nonexistence theorems), a priori estimates and 
stability theorems, have also been given by A. F. Filippov [8] and S. Kaplan 
[26]. Unfortunately we cannot describe these results here. 
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What about higher order elliptic equations? Very little is known, but 
recently M. I. Vishik [59-60] has made an interesting beginning by proving 
existence of weak solutions for certain classes of quasilinear systems (written 
in divergence form) whose coefficients behave essentially like polynomials in 
the unknown functions and their derivatives. The analogue of the de Giorgi 
results, giving regularity, has yet to be found. 

§ 4 . 1 would like to turn now to second order elliptic equations which, are 
"truly nonlinear", in the sense that one has new phenomena occurring 
which have no analogue for linear equations. The best known specimen (of 
which most of the others are variations and generalizations) is the minimal 
surface equation, expressing the fact that the surface is a solution of the 
variational problem 

o\dA=0, 

where dA is element of surface area. If the surface has simple projection 
on the (x,y) plane, i.e admits the representation u=u(x,y) in (x,y,u) space, 
then u satisfies 

(l+q2)uxx-2pquxy + (l+p2)uyy=0, p=ux, q = uy. 

Geometrically this asserts that the spherical image mapping of the surface 
by the unit normal to the unit sphere is conformai. For this equation have 
been known for some years a variety of results showing marked difference 
from linear equations. To mention just a few (references can be found in the 
papers listed later): 

1. S. Bernstein's classical theorem that the only solution defined over the 
whole plane is a linear function. 

2. Removability of isolated singularities (L. Bers). 
3. It is possible to estimate the Gauss curvature of the surface u=u(x,y) 

defined in x2 + y2<R2 at (0,0) in terms of the gradient of u at (0,0). (E. 
Heinz, E. Hopf.) On letting k->oo this estimate yields another proof of 
Bernstein's result 1. 

In recent years these results have been extended in various directions. 
R. Osserman [51] showed that Bernstein's theorem holds in general for a 
complete (i.e. geodesies can be extended to have infinite length) minimal 
surface which need not have a simple projection on a whole plane, provided 
that the spherical image of the surface deletes an open set on the sphere. 
This was done by showing that such a (simply connected) surface, when 
regarded as a Riemann surface, is of parabolic type. He also obtained esti
mates for the Gauss curvature analogous to those in 3. 

R. Finn has treated boundary value problems, obtained estimates as well 
as the removable singularity theorem, and other results, for a class of equa
tions which he calls of minimal surface type (see [9] and other papers by 
Finn) 

<*>(P> q)v<xx + 26(;p, q)uxy + c(p, q)uyy = 0 

of the form (A(p9q))x + (B(p,q))y=0. 

In this work one uses results for quasi-conformai mappings. Some of his 
results are new also for minimal surfaces. 
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I would like to call attention to an interesting paper by H. B. Jenkins 
[23] in which he treats a class of nonparametric variational problems of the 
form 

ò Jaunit normal) dA =0, 

where F is homogeneous function of three variables of degree zero such that 
o<m<F<M and the surface \x\F(x) = l, is closed convex with Gauss 
curvature > 0; F = 1 for minimal surfaces. For such variational problems, to 
which he shows that the theory of Finn applies, he derives a variety of 
interesting results including Osserman's extensions of Bernstein's result. 
More recently Jenkins together with J. Serrin have derived a priori estimates 
for derivatives of solutions of such variational problems, improving Finn's 
results and, in particular, have derived an interesting Harnack inequality 
for solutions with simple projection on a disc, i.e. solutions of the form 

u=u(x, y) > 0 in unit circle', 

namely ^(r, u(0)) < u(x, y) < c/>2(r, u(Q)), r = Vx2 + y2, 

where however c/)2(r,u(0))->°° as r-^r0'u(0))< 1. 
This behavior of <f>2 is also shown to be appropriate even for minimal sur

faces. Furthermore they show that 

r0(£)->0 as t->°° and r0(t)->l as t-M). 

Finn has also recently obtained extensions of his earlier results. 
Finally I would like to mention the deep and difficult work of E. Heinz in 

a series of papers [18-20] on elliptic Monge-Ampère equations in the plane 

uxxuyy — wly + quasüinear second order expressions=0. 

In these papers Heinz extends the important work of Hans Lewy on 
such equations which are analytic to non analytic equations, deriving esti
mates for derivatives of solutions. This work really deserves more time here 
but the results are complicated to state. Let me just say that Heinz makes 
essential use of characteristic coordinates for the equation, i.e. new coordi
nates (depending on the solution) which reduce the leading part of the equa
tion regarded as linear to the Laplace operator. 

To mention just one of his simpler results, proved with the aid of charac
teristic coordinates and some theorems on quasi-conformal mappings, he 
shows [21] that if 

0<OL<UxxUyy— Uly <ß<00 &&& \u\ <Ô 

in a circle then in any compact subset the first derivatives of u (which are 
easily estimated a priori because of convexity of u=u(x,y)) satisfy also a 
fixed Holder condition. 

I might also mention that in [17] Heinz proved the existence of surfaces 
of constant mean curvature spanning a given closed curve in space. 

§ 5. I have said nothing about nonlinear hyperbolic equations. Recently 
using extensions of Sobolev's inequalities L. Gârding and Leray [15] and 
P. A. Dionne [7] have treated the existence and uniqueness of regular solu-
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tion for the initial value problem and have reduced it to the possibility of 
deriving a priori estimates of a certain number of derivatives of the solutions 
—in case one wants global solutions. 

Besides tha t much work has been done in recent years on the very impor
tant initial value problem involving discontinuous initial data. Here, in 
contrast to elliptic problems one seeks some form of generalized solution 
admitting discontinuities—shocks to be exact. The basic problem of finding 
the appropriate class of generalized solution in which one has existence and 
uniqueness has still not been solved except in special, though very interesting 
cases. In particular in the case of more than one space variable essentially 
nothing is known. There are expository papers on the subject by P . D. Lax 
[31], O. A. Oleinik [49], and B. L. Rozhdestvenskii [53]. 
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