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LINEARIZATION A N D DELINEARIZATION 

By G. T E M P L E f 

1. Introduction 

My terms of reference, as prescribed by our President, are to survey 
problems of applied mathematics which still challenge the pure mathe
matician. This is an agreeable exercise for it enables me to range over 
a wide field, to select such topics as fancy and caprice may dictate, and 
above all to shun the rigours of precise proof and detailed definition. 

The group of problems which I propose to describe belong to that 
Cinderella of pure mathematics—the study of differential equations. 
The closely guarded secret of this subject is that it has not yet attained 
the status and dignity of a science, but still enjoys the freedom and 
freshness of such a pre-scientific study as natural history compared with 
botany. The student of differential equations—significantly he has no 
name or title to rank with the geometer or analyst—is still living at the 
stage where his main tasks are to collect specimens, to describe them with 
loving care, and to cultivate them for study under laboratory conditions. 
The work of classification and systematization has hardly begun. 

This is true even of differential equations which belong to the genus 
technically described as 'ordinary, linear equations'. The morphology 
of this genus has progressed only as far as equations which possess three 
or at most four regular singularities. In the case of non-linear equations, 
Lie's theory of transformation groups has done little but suggest a 
scheme of classification. An inviting flora of rare equations and exotic 
problems lies before a botanical excursion into the non-linear field. 

I propose today to speak of some linear and non-linear differential 
equations as they arise in mathematical physics, with an eye to the 
unsolved analytical problems which they present. 

The history of mathematical physics during the last century may be 
divided into two periods—the linear period and the non-linear period. 
In those happy far-off times of the linear period, all differential equations 
were linear and the principle of superposition reigned supreme. In the 
present distressful times most differential equations are non-linear and 
no effective general method of solution has yet been proposed. We have, 
however, two practical expedients—the method of linearization by which 
non-linear equations are forcibly reduced to an associated, approximate 
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linear form, and the method of delinearization by which the non-
linearities are partially restored. 

Linearization and delinearization are the main topics of my address, 
especially in relation to the equations of fluid dynamics, but perhaps it 
is desirable to illustrate the nature of the problems involved by some 
trivial examples. 

2. Regular and singular perturbations 

Consider the ordinary differential equation of the first order 

dujdx = F(x,u9a)9 

in which a is a small parameter. The classical existence theorem can be 
easily proved by the use of dominant functions (Goursat[7]). It shows 
that, if F is an analytic function of x, u and a in the neighbourhood of 
a point x = xQ9 u = u0 and a = ot0, then the differential equation possesses 
a solution u = u(x9 a), which is analytic in some neighbourhood of the 
point x = x09 and such that uQ = u(xQ9 a), if a is in some neighbourhood 
of a0. In the type of problem which we wish to study we are especially 
interested in the solution for small values of oc, and therefore in the 
'reduced equation' ^ ^ = ^ % > Q)> 

which, in practice, is often much simpler than the original 'perturbed 
equation', dujdx = F(x,u,a). The solution of the reduced equation is 
called the 'basic solution\fQ(x) = u(x9 0). It is clear that the perturbed 
equation will possess a solution of the form 

u = fQ(x) + af±(x) + ...+ocnfn(x) +..., 

convergent in some interval \cc\ < p9 and reducing to u0 at x = x0, if 
the function F is analytic in a neighbourhood of x = xQ, u = uQ, a = 0. 
Also the leading term f0(x) will then satisfy the reduced equation. In 
this case the perturbation is said to be 'regular' at (x0,u0). But if the 
function F is not analytic in a neighbourhood of x = x0, u = u0, a = 0, 
the perturbation is said to be 'singular'. The classical existence theorem 
then applies no longer. This is the interesting case which frequently 
arises in applied mathematics. 

There is one obvious method of dealing with singular perturbations— 
it is to find a transformation which will result in an equation (or equa
tions), for which the perturbation is regular. 

Consider, for example, the trivial equation 

(x + a) dujdx + ̂  = 0, 
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with the reduced equation 
xdujdx + u = 0, 

and the initial conditions x = 1, u = 1. 

The full perturbation equation is regular everywhere in the x9 w-plane 
except at x = 0. The solution of the perturbed equation is 

u(x9oc) = (l + (x)j(x + (x)9 

while the basic solution is f0(x) = x~x. 

The relation between the basic solution and the perturbed solution is that 

«(x, a)-/.(«)-g=|-0(«), 

but the approximation indicated by the order term is not uniformly 
valid for all values of x. In fact it is uniformly valid only in domains 
which exclude x = 0 and x = — a. 

If, however, we express the equation and solution in inverted form as 

udxjdu + x + oc = 0 

and x(u9 oc) = — a + (1 + a) vr1, 

then the perturbation is regular, the basic solution is 

x(u, 0) = vr1, 

and x(u9 a) — x(u9 0) = — a + au-1 = 0(a), 

uniformly in a neighbourhood of oc = 0. 

3. Neighbouring solutions 

If u = u(x, a) is an integral curve of 

dujdx = F(x9 u9 oc)9 

which passes through a point (xQ9 u0) in a region D in which the differ
ential equation is regular, then 

u(x9oc)-u(x90) = 0(oc) (3.1) 

uniformly in D. But, as the preceding example shows, this is no 
longer true if D contains points at which the differential equation is 
singular. 

The significance of the relation (3.1) is that the integral curves 
u = u(x9oc) and u = u(x90) are 'neighbouring curves', with ordinates 
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differing by 0(oc) in D. But the preceding example suggests at once a 
more general concept of neighbourliness. 

Elementary geometrical considerations applied to a system of curves 

ç5(#, u9 oc) = 0 
suggest that the curves 

T or <f>(x9u,0) = 0, 

and C or <j)(x9 u9 oc) = 0, 

should be regarded as 'neighbouring' in a region D, if, with any point 
(£, rj) on F, we can associate a point (x, u) on C such that 

s - g = 0(a), 

and w — ?/ = O(oc), 

uniformly in D. In the preceding example 

u = 7]9 # - £ = - a ( l - £ ) . 

This then suggests that the whole system of curves 

(j)(x, u,oc) = 0 

should be regarded as a system of neighbouring curves if they can be 
represented in the parametric form 

x = X(z9 a), u = U(z9 oc)9 

where X and U are analytic functions of z and oc reducing to £ and TJ 
respectively when oc = 0. 

Since g and TJ are connected by the relation çi(£, rj9 0) = 0 this repre
sentation is equivalent to 

x = £ + £ a^xn(i)9 « = 5(0 + 5 ^ ( 9 , 
i i 

in a region where drjjdE, is bounded. 
Although there is no a priori reason to assert that the solutions of a 

given singular perturbation problem must form a system of neighbouring 
curves, the preceding ideas do provide a powerful and flexible technique 
for searching for solutions and approximations which are uniform within 
a region containing singular points. 

This technique is due to Lighthill and has received numerous applica
tions in fluid dynamics. It is reminiscent of the method of small per
turbations employed by Poincaré[16], but the motivation of Poincaré's 
work was not any singularity in the perturbation but practical con
venience in calculating the period of non-linear oscillations. 
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4. Uniformization 

If the original perturbation equation 

dujdx = F(x, u, oc) (u = u0 at x = x0), 

possesses a system of neighbouring solutions 

x = x(£,oc), u = T](^9a)9 

then the equations for x(E>9 oc) and ?/(£, oc) must be regular in a neigh
bourhood of £ = xQ9 U = Tj(xQ, 0). The search for systems of neighbouring 
solutions therefore depends upon the introduction of a new variable £ 
and the replacement of the original equation 

dujdx = F(x, u, a) 
by two new equations, 

dxjdi; = X(£, x, u, oc), dujdE, = Ì7(£, x, u, oc), 
regular ina . 

This process may be called the 'uniformization' of the original equa
tion, and it is equivalent to the method introduced by Lighthül[13]. 

Thus a typical equation discussed by Lighthill 

(x + au) dujdx + q(x) u = r (x) 

possesses the uniformizing equations 

jy = r(x)-q(x)u, 

dx 
— = x + au. 
ài 

These equations are manifestly analytic in a, and in fact their solutions 
are precisely those given by Lighthill if we write £ = log z. 

Consider for example, the equation 

(x + au)dujdx + (2 + x)u = 0, 

with the condition u = e~x at x = 1. 

The reduced equation xdujdx + (2 + x) u = 0 

has the solution u = x~2 e~x. 

To obtain the solution of the perturbed equation which is valid near 
x = 0 we must therefore uniformize by introducing an auxiliary variable. 
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To facilitate comparison with LighthilTs solution[13] (p. 1190) we write 

zdxjdz = x + au, zdujdz = — (2 + x) u9 

with x = 1, u = e_1 at 3 = 1 . 

These equations are analytic in a and possess solutions of the form 

x = xQ + ax1 + ...9 u = u0 + au1 +..., 

where xQ = z, uQ = z-2e~z, xx = z<f)(z), 

ux = ~z~ 

Hence, near z = 0, 

* J 0(£) (ft, <ß(z) = f V 4 e " s efo. 

x = z-\az~2 + 0(a2\z% 

u = z-2-\az-* + 0(a2\z% 

and, at a: = 0, u = (Zja)% + 0(a~i). 

The method of uniformization suggested here systematizes Lighthill's 
method of expansion in powers of an auxiliary variable. Its main 
advantage is that it establishes the existence of a solution which is 
analytic in the small parameter, without becoming embroiled in the 
details of its computation. 

5. Singular boundary conditions 

The singular perturbation equations which arise in fluid dynamics 
are often of a rather different character from those discussed above. 
In the first place they are usually of the second order, and in the second 
place the singularity is not in the equation but in the boundary con
ditions. 

The first difference is of little importance. An equation of the second 
order can be replaced by a pair of equations of the first order, e.g. 

F(x, u, v, dujdx, a) = 0, dvjdx = u. 

The process of uniformization then consists in introducing an auxiliary 
variable z in such a way that the original system of equations is replaced 
by a system , ,, ^, x 

J J dxjdz = X(z, x, u9 v9 a), 
dujdz = U(z9 x9 u9 v9 a), 

dvjdz = uX, 
which is analytic in a. 
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The second difference is much more significant and a systematic 
examination of this question is lacking. 

A survey of those problems of compressible fluid flow which can be 
reduced to ordinary differential equations has been given by Lighthill[12]. 
Some of these require the location of a shock wave and involve singular 
boundary conditions. 

A striking example given by Lighthill[13] refers to the waves produced 
in still air by the slow uniform expansion of a circular cylinder with 
radial velocity aaQ9 a0 being the speed of sound in the undisturbed air, 
and a 8b small parameter. The velocity potential has the form 

<ß = a2tf(x)9 

where t is the time since the cylinder was of zero radius, and x = rj(a0t). 
The disturbed region is bounded externally by a shock wave at r — Ma0t 
or x = M9 and internally by the surface of the cylinder r = aaQt or 
x = a. The main problem is to calculate M for small values of a. 

Bernoulli's equation gives the local speed of sound in the form 

a = a0{l-(7-l)(f-xf' + ïn}ï, 

while the potential equation is 

a2 div grad ç5 = '̂ + 2ç5r <j)r + $2 <firr. 

Hence { l - ( 7 - l ) ( / - . / ' + i H ( f + . T ) = {x-fff-

The boundary conditions are 

(1) at x = a9 /'.(#) = a, 

(2) at x = M, f(M) = 0, 

and f(M) = 2(Jf - M~1)j(y+1). 

To put the differential equation in standard form we write / ' = u, 

J ~~ ' P dujdx+ Qujx = 0, dvjdx = u9 

where P = l-x2 + (y+l)xu-(y- l)v~l(y+l)u2
9 

and Q= l + (y-l)(xu-v-%u2). 

If we linearize this equation we find that 

( 1 — x2) dujdx + ujx = 0, 

whence \u\ = G\x-2-1|*, 

and C = a 2 ( l - a 2 ) - i 
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I t is then obvious that this approximation fails as we approach the upper 
limit x = M. We therefore proceed to uniformize the equation by writing 

zdxjdz = xjQ9 zdujdz = —ujP9 

and we construct solutions of the form 

x = z + a2x1 + a/Lx%+..., 

u = a2uQ+a/Lu1 +..., 

v = a2v0 + a*v1+.... 

This preserves the solution of the linearized equation in the leading 
terms, with , „ _ ,1 

u0 = (z~2-l)t. 

The solution then follows the lines of Lighthill's argument[13] (p. 1191) 

and finally yields M = 1+Uy+D*«*+.... 

6. Perturbations which are singular almost everywhere 
A specially interesting type of perturbation equation is one which is 

singular everywhere in the x, %-plane except on a certain curve C, e.g. 
the equation , _ 

Ut VU Wl U/tl/ — J] \tl/9 U/Ì. 

A classical example occurs in the theory of relaxation oscillations of the 
type studied by van der Pol. Here the perturbation equation can be 
expressed in the form 

audujdx = u — \u% — x = F(x,u). 

The periodic solution is represented approximately by a closed curve 
in the x, %-plane, consisting of certain arcs of the curve F(x, u) = 0 
and of certain straight lines parallel to the #-axis (Stoker[18], p. 128). 

The basic equation ^ ^ 1 q 

^ F = 0 or x = u — fu3 

provides an approximate solution except near the points where 

dxjdu = 1 — u2 

vanishes, i.e. at # = + § , u = ±1. 
Near these points uniformization is easily carried out by employing 
the Carrier 'two-way stretch'^, 

x = ±f + am£, u= ±l + anT/9 



LINEARIZATION AND DELINEARIZATION 241 

with suitable exponents m and n9 chosen so as to make the resulting 
equation regular. The simplest choice is 

m = 1, n = 0, 

which yields the regular equation 

( + l + ri)driJdE> = +7/2- |?/3-a£. 

7. The thin aerofoil problem 

Although a number of interesting and important problems in fluid 
dynamics involving singular perturbations of partial differential equa
tions have been examined and uniformized by Lighthill[13], Carrier[4] 

and Whitham ([21] and numerous subsequent papers), the theory is in a 
much less advanced state than the corresponding theory for ordinary 
equations. It therefore seems preferable to give just a few specific 
examples. 

In the first place we consider the problem of a thin two-dimensional 
symmetric aerofoil (or strut) with profile 

y = ±ocf(x) ( 0 < a < l ) , 

placed in a uniform stream of incompressible, in viscid fluid with velocity 
components (Ucosa, ÎJsina) at infinityC14]. The potential a<j> of the 
disturbance velocity satisfies the equation 

and the boundary conditions 

ç5 = 0(R-1) 

for large R = (x2 + y2)i9 

and ( U sin a + a<j)y) — ± ( U cos a + a<f>x) af'(x), 
on the surface of the aerofoil. Now near the leading edge 

[f(x)f = c2x + 0(x2) (c + 0), 

and f'(x) = 0(x~i). 

The surface boundary condition is therefore singular at the leading edge. 
The reduced boundary condition is 

(U + <f>y) = ±Uf'(x), 

to be satisfied on the x-axis, y = 0, 0 < x < 1, and it is this equation 
together with the potential equation for 0 which forms the basis of 'thin 

l6 TP 
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aerofoil theory'. The main problem is to improve this approximation 
without making a completely fresh start. 

The boundary conditions can be uniformized by introducing parabolic 
co-ordinates £, rj, where 

x + iy — \a2c2 = c2(i + irj)2. 

Then x = c2(£2 - r\2 + \a% y = 2c2£^, 

and the parabola rj = \a osculates the leading edge section 

y2 = a2c2x + 0(x2). 

Hence in parabolic co-ordinates the profile y = af(x) has an equation 
of the form * , „,«.. 

7/ = | a + aP(£) 

and the exact boundary condition becomes 

{ — 2UC2T/ cos a + 2E7c2£ sin a + a<f>v} 

= aP'(£) {2 i7c2£ cos a + 2 TJc2r\ sin a + açSJ. 

This condition is regular, and hence the problem admits a solution of 
o r m <}> = <f>Q(£>9T)) + a<}>1(£)97)) + .... 

8. The boundary layer on a flat plate 
Another problem which exemplifies the techniques of both Lighthill 

and Carrier is that of the steady flow of an incompressible, viscous fluid 
past a semi-infinite flat plate 

y = 0, x > 0, 

placed parallel to the main stream. The natural units of length, velocity 
and pressure are vjU, U and pU2

9 where v is the kinematic viscosity, 
TJ the main stream velocity and p the density. In terms of these units 
the Navier-Stokes equations for the pressure p and the components of 
fluid velocity are , , A 

J uux + vuy = -px + Au, 

uvx+vvy = -py + Av, 

where Au = uxx + uyy. 
The boundary conditions are 

u->l, v^>0 as x2 + y2->ao, 
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except on the flat plate y = 0, x ^ 0 where 

^ = 0, v = 0. 

There is no parameter in these equations or boundary conditions, but 
it is known from experiment that derivatives of u and v with respect to 
y are small compared with derivatives with respect to x, except at the 
leading edge, x = 0, y = 0, where presumably the dominant derivative 
is in the radial direction. These conditions are conveniently expressed 
in terms of parabolic co-ordinates £, TJ such that 

x + iy = (£ + M?)2, 

or £ = [£(r + x)]i, TJ = [ J(r - x)]i9 

where r = [x2 + y2]i. 

The stream function ft is defined by the equations 

u = fy9 v = - fx9 

xjr ~ y = 2^71 for large £2 + rj2 (TJ 4= 0 !), and itself satisfies the equation 

p2A2^ - 4(£A^ + yAfv - Af) 

= - P 2 ( ^ A ^ - ^ A ^ ) + 2 ( ^ - £ ^ ) A f , 
where p2 = £2 + ?/2. 

To identify the dominant terms we write 

TJ = erj, ft = e~xft9 

thus introducing a small parameter e and thus obtaining a regular equa
tion with parameter e. On retaining the terms of lowest order (i.e. those 
in e~5) we obtain the reduced equation 

£2 îv = _ £2(f£f»'--f'fl) - 2^f'ft'\ 

where accents indicate differentiation with respect to ?/. If we now write 

we find that by a remarkable and unexpected simplification the function 
/ satisfies the ordinary differential equation 

which integrates at once, in virtue of the boundary conditions at 
infinity, to *„ »»„ _ Q 

16-2 
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This is the well-known Blasius equation, with the boundary conditions 

/ ~ 2TJ for large TJ, 

/ = 0 , / ' = 0 at V = 0. 

The independent variable however is now 

y = risin J#, 

whereas in the classical Blasius problem it is 

yjxi = r% sin dj*J (coso). 

The preceding analysis is due to Carrier and LinE5] and there can be 
no doubt of the superiority of their solution of this problem over the 
classical solution given by Blasius[2]. A somewhat similar investigation, 
carried to the next order of approximation has been given by Kuo[11]. 

9. Accuracy of approximations 
The preceding brief accounts of some methods and problems of 

interest to applied mathematicians will doubtless suggest many questions 
for the analyst, but the question of outstanding importance is surely 
that of the accuracy of the approximations obtained. The existence 
theorems which have been invoked do little more than guarantee the 
existence of solutions in the form of power series in the perturbation 
parameter a. The following questions arise at once: 

(1) What is the radius of convergence of the power series ? 
(2) What is the rapidity of convergence? 
(3) Is it possible to prescribe an upper bound to the absolute magni

tude of the error which is involved in truncating the power series after 
N terms? And, in particular, can we do this for the 'basic solution' 
where *N = 1 ? 

A classical example of this problem is provided by the Blasius equation 
which is obtained as the 'reduced equation' from the Navier-Stokes 
equations for the flow of an incompressible, inviscid fluid past a semi-
infinite flat plate. In this case, as in so many other physical problems, 
even the reduced equation is not linear. 

The Blasius equation, as obtained in § 8, is 

primes indicating differentiation with respect to r), and a solution is 
required for the range 0 < TJ < oo, with the boundary conditions 

/ = 0 and / ' = 0 or rj = 0 
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and / ' - > 2 as TJ-^OO. 

There is a power series solution (obtained by Blasius[2]) in the form 

/(C7/)2 (CT,f ll(C7,f 

. 2! 5! 8! 

where c
3 = / " ( 0 ) . 

Weyl[20] showed that the radius of convergence R of this power series 
in TJ satisfies the inequalities 

18 < c*R* < 60, 

and Punnis[17] obtained the closer limits 

3-11 < cR < 3-18, 

by showing that the power series has a simple pole at T\ = — R. There is 
therefore a real problem for the analyst to determine the value of c so 
as to satisfy the condition / ' -> 2 as TJ -> oo, although the practical 
computer has little difficulty in obtaining the approximate value 

f"(0) = 1-328.... 

Quite another approach to this problem is provided by Weyl's trans
formation [20] of the differential equation into an integral equation of 

logFff(V) = Q(F') = -\^(r,-s)2Ff'(s)ds, 

where f(rj) = CF(CTJ), 

and, as before, c3 = / / / (0) . 

If an iteration process is specified by the conditions 

n = o, K+i = *(K), 

then F;<F'ì, F'[> F"%, !%<!%, etc. 

The sequence {F'^} converges and any two consecutive members form 
upper and lower bounds to the limit function. Moreover, 

•Fïfo) = <«p( - to») , 

is found to be an adequate approximation to the limit. 
The use of integral equations of Weyl's type has been successfully 

exploited by Meksyn[15] in numerous papers on boundary layer theory, 
although the convergence of the iteration process still requires 
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examination. As examples of other important investigations on approxi
mate solutions of partial differential equations we may cite papers by 
Westphal™ and Görtler«». 

10. Conclusion 

In the preceding paper the name of 'delinearization' has been given 
to the process whereby we endeavour to return from a linearized approxi
mation to the original non-linear equation. There is, however, another 
kind of delinearization, which, I venture to predict, will become in
creasingly important—namely a process whereby an exact linear 
equation is replaced by an exact non-linear equation. This apparently 
retrograde step is sometimes advantageous because good approximate 
solutions may be obtainable more easily for the non-linear equation 
than for the original linear equation. 

One example is provided by the so-called Wentzel-Kramers-Brillouin 
method of solving the Schrödinger wave equation 

e2ft"+f(x)ft = Q 

for small values of the parameter e. This method, due to Jeffreys [8»9], 
consists in writing , . . 

ft = exp lie*1 x^x\ > 

and thus obtaining the Biecati equation 

with the series solution 

X = Xo-ieXi+-~> Xo^ft* Xi = -ÌXolXo-

Another example is derived from the new theory of diffraction prob
lems, suggested by Birkhoff[1] and recently developed by Keller, Lewis 
and Seckler[10]. Here the wave equation for monochromatic light, 

div grad u + lc2u = 0, 
is solved in the form 

00 

u~ eik^^(ik)-nvn9 

where ft, v0, vx,... satisfy the non-linear equations 

(g rad^) 2 =l , 

2 grad vn. grad ft + vn div grad ft = — div grad vn_1 (v_x = 0 ! ). 
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These examples do suggest that the eras of linear equations and of 
linearized non-linear equations may be succeeded by the era of delinear-
ized linear equations. 
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