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MATHEMATICAL LOGIC: CONSTRUCTIVE 

A N D NON-CONSTRUCTIVE OPERATIONS 

By S. G. K L E E N E 

1 . Mathematical logic 

Early in the century, especially in connection with Hubert 's treatment 
of geometry (1899), it was being said tha t the theorems of an axiomatic 
theory express truths about whatever systems of objects make the 
axioms true. 

In the simplest case, a system S consists of a non-empty set D (the 
domain), in which there are distinguished certain individuals, and over 
which there are defined certain %-place functions (or operations) taking 
values in D, and certain w-plaee predicates (or properties and relations), 
i.e. functions taking propositions as values. 

The elementary (or first-order) predicate calculus provides a language 
for discussing such systems. To a preassigned list of (non-logical) 
constants for the distinguished individuals, functions and predicates, 
we add the propositional connectives -> ('implies' or ' if . . . t hen . . . ' ) , 
& ( 'and') , v ( 'or'), —« ( 'not ') , the universal quantifier {a) ('for all a (in 
D) ' ) , and the existential quantifier {Ea) ('(there) exists (an) a (in D 
such that) ' ) . 

For example, when 8 is the arithmetic of the natural numbers 0, 1, 2, 
..., with 0, 1, + , - , = , > in their usual senses, 

(a) a = b+1, (ß) {Eb){a = 6 + 1), (y) a > 0, 

{8) a > 0 -> (Eb) (a = 6 + 1), (e) (a) [a > 0 -> {Eb) {a = 6 + 1)], 

are formulas. Formula (a) (containing a, 6, free) expresses a 2-place 
predicate (relation), {ß)-(8) (containing a free) express 1-place predicates 
(properties), and (e) (containing no variable free, i.e. a sentence) expresses 
a proposition. 

When {a, 6) are (3,2), (a) is true. Hence when a A-+B 
is 3, (ß) is true, also (y); and hence by the t ru th A\B True False 
table for -» (right), {d) is true. Similarly, for any True 
other a, (S) is true. Hence (e) is true. Truth False 
tables, which in principle go back to Peirce (1885) 
and Frege (1891), were first fully exploited by 
Lukasiewicz (1921) and Post (1921), and t ru th definitions generally by 
Tarski (1933). 

True 

True 

False 

True 
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We need one elementary technical result of logic. In any formula, 
the quantifiers can be advanced (step by step) to the front, preserving 
the truth or falsity of the proposition, or of any value of the predicate, 
expressed. (For example, 

[(a)A(a)]->(a)B(a) 

is equivalent to (Ea) (6) [A(a) -> B(b)].) 

The resulting formula we call a prenexform of the original. 

a sentence Ais } p 

AAA • £rae of a 
sentences A0, Al9 A2,... are J 

true of a system S± with countable 

I. If-Löwenheim (1915) 
Skolem(1920). 

given system 8, then -I , 77 

* * {they are all 
domain Dv 

Proof. Say a prenex form of A is 
(Eb) (c) (Ed) (e) (/) (Eg)A(b, c, d, e, f, g) (i) 

(all quantifiers shown). This being true of S with domain D, there are 
an individual ß and (by the axiom of choice) functions S(c) and y(c, e, f) 
such that (c) (e) ( / M ( A cd{cl e> / ; r ( C ; e> / } ) ( ü ) 

is true. Now (ii), and hence (i), will remain true if we cut down the 
domain (without otherwise altering the functions and predicates) from 
D to its least subset Dx containing ß (and the distinguished individuals 
of 8) and closed under S, y (and the functions of 8). The new domain 
Dx is countable; indeed all its members have names in the list t0, tl912,..., 
of the distinct terms without variables formable using ß, d, y and the 
symbols for the distinguished individuals and functions of 8. (We can 
always arrange to have at least one individual, and one function, symbol.) 
For the version with AQ, Al9 A2,..., we use different symbols in the role 
of ß, S, y with each prenex form. 

Continuing the example, (i) will be true of a system $x with domain Dx 

whose members are named by tQ9tl9t29...9 if each of the expressions 
A(ß, tc, S(tc), te, tf, y(tc, te, tf)) (c, e, f = 0,1,2,...) is true; enumerate these 
(or for AQ,A1}A2,..., the expressions arising similarly from the various 
prenex forms) as A0, A1, A2,.... 

For the next theorem we simply try in all possible ways to make 
A0, A1, A2,... simultaneously true. We obtain the greatest freedom to do 
this by interpreting each term ti as representing a different individual, 
say i. Thereby we can choose the value of each expression P(tCi, ...>£Cw) 
(P an n-place predicate symbol) as true or false independently of the 
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others. Enumerate these (without repetitions) as Q0, Ql9 Q2,.... Choosing 
their values successively can be correlated to following a path (indicated 
by arrows) in the tree (right) ; e.g. if we choose QQ true, Qx false, Q2 false,..., 
we follow the path W0V01V01l.... As soon as 
the values already chosen make any one of <r"^r Vn 

< i ^"*Ss—^ 1/ 

^ ir • • • 

false, we are defeated for that sequence of ^ vQ0 

choices, and terminate the path. 
Now by König's Unendhchkeitslemma (1926) (= a classical version 

of Brouwer's fan theorem, 1924), if (Case 1) arbitrarily long finite paths 
exist, there is an infinite path. (We follow such a path by choosing each 
time an arrow belonging to arbitrarily long finite paths.) Thereby we 
obtain the first alternative of: 

II. Either (1) all of A0,A1,A2,... (and hence l n * A A A )) 
\ {all of AQ,A1,A2, ...j/ 

are true of some system 8± with the domain Dt = {0,1,2,...}, or else (2) 
some 'Herbrand conjunction ' Ah & ... & A*™ 

(and hence I > I 

\someAki&...&AkJJ 
is false of every system 8. 

If (Case 2) there is a finite upper bound 6 + 2 to the lengths of paths, 
then for each of the 2b+1 ways of choosing the values of QQ,..., Qb some 
particular A* will be false. The conjunction Ah So ...&Ai™ (m < 2Ô+1) 
of these Aj,s will be false for all 26+1 ways, and thus of all systems 8. 
Likewise A itself (or the conjunction Aki & ... & Akn of those A0, Ax, A2,... 
from which A^9...,A

j™ arise); for were A true of an S, we would be led 
as under I to values of Q0,..., Qh making Ah,..., A^ all true. (Here we 
need S and y for only finitely many arguments, symbolized by terms 
occurring in Aji & ... & A*™, so I is reproved without using the axiom 
of choice.) 

I I includes as much of Gödel's completeness theorem for the pre
dicate calculus (1930), and of Herbrand's theorem (1930), as we can 
state in model theory. The theory of models concerns 'mutual relations 
between sentences of formalized theories and mathematical systems 
[models] in which these sentences hold' (Tarski, 1954-5). 

Gödel's completeness theorem (IIG) has (2G) { . . 0 _ . . 
G'\some-n(Aki&...&Akn) 

is provable in the predicate calculus in place of (2), and Herbrand's 
theorem (!!#) gives the equivalence of (2G) to (2). 
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However, if we agree here that a c proof ' of a sentence should be a 
finite linguistic construction, recognizable as being made in accordance 
with preassigned rules and whose existence assures the ' truth' of 
the sentence in the appropriate sense, we already have (II ), since 
the verification of (2) for a given Ah&mm.&A*m is such a con
struction. 

What usual proofs of Gödel's completeness theorem add is that the 
proof of —iA (or -^(Aki& ...&Akn)) for (2G) can be effected in a usual 
formal system of axioms and rules of inference for the predicate calculus 
as given in proof theory. 

Proof theory is a modern version of the axiomatic-deductive method, 
which goes back to Pythagoras (reputedly), Aristotle and Euclid. Since 
Frege (1879), it has been emphasized that, in order to exclude hidden 
assumptions, the axioms and rules of inference should be specified by 
referring only to the form of the linguistic expressions (i.e. not to the 
interpretations or models); hence the term 'formal system'. 

With Hilbert since 1904 appeared the idea of proving in a metatheory 
or metamathematics theorems about formal systems (cf. Hübert-Bernays, 
1934, 1939; Kleene, 1952). Thus we can talk of proving (metamathe-
matically) that in (2G) there is a (formal) proof of —*A. 

In Hilberths metamathematics it was intended that only safe ('con
structive' or 'finitary') methods should be used. That certain methods 
outrun intuition and even consistency, the mathematical public was 
forced to recognize by the paradoxes in which Cantor's set theory cul
minated in 1895. Hilbert hoped to save ' classical mathematics ' (including 
the usual arithmetic and analysis and a suitably restricted axiomatized 
set theory), which he acknowledged to outrun intuition, by codifying it 
as a formal system, and proving this system consistent (i.e. that no 
' contradictory ' pair of sentences G and —i G are provable in it) by finitary 
metamathematics. Kronecker earlier (in the 1880's), and others later, 
proposed rather a direct redevelopment of mathematics on a less or 
more wide constructive basis, such as the intuitionistic (Brouwer, 1908; 
Heyting, 1956) or the operative (Lorenzen, 1950, 1955). 

In a model 8X as constructed above for II, = may not express equality 
(identity). (For I, it will if it does for 8.) But ifA0, Ax, A2,... include the 
usual axioms for equality, then the relation {x = y is true of the above S^ 
will be an equivalence relation under which the equivalence classes will 
constitute the domain (countably infinite or finite) of a new model 8X 

with — as equality (Godei, 1930). For our applications, we may take II 
to be thus strengthened. 
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A p p l y i n g ( I I o ) w i t h ^ ^ o ^ K } as the ( ^ ^ ^ J : TO. 

r j£Ae predicate calculus Ì 
\̂ eorie«5 formalized by the predicate calculus with axioms B0, Bv B2,... | ' 

eacA sentence C which is true of 

(every system S Ì 
[every system S which makes B0, Bv B2,... true) 

is provable as a theorem. This confirms that the predicate calculus fully 
accomplishes (for 'elementary theories') what we started out by con
sidering as the role of logic. But what is combined with this in Gödel's 
completeness theorem (including Löwenheim's theorem) is more than 
was sought, and makes the theorem as much an incompleteness theorem 
for axiom systems as it is a completeness theorem for logic. 

Thus the Löwenheim-Skolem theorem I shows that the axioms of an 
axiomatic set theory have a countable model (if they have any model 
at all), despite Cantor's theorem holding in the theory (the Skolem 
'paradox', 1922-3). 

Furthermore, I I entails: (II") / / the sentences of each finite subset 
Ak 9 ...,Akn of A^,AX,A2,... are true of a respective system 8, then there 
is a system 8l9 with countable domain, of which A0, Al9 A2,... are all true. 
This gives the following theorem, found by Skolem (1933, 1934) using 
another method (and partially anticipated by Tarski, 1927-8). 

III. Say the constants include 0, + 1 , = , and suppose B0, Bl9 B2,... are 
true of the system S0 of the natural numbers. Then there is a system Sl9 

with countable domain, not isomorphic to SQ of which BQ, Bl9 B2,... are 
also true. 

Proof. hetA0,A1,A2,...beB0,B1,B2,...,—10 = n,—^l = n, —i2 = n,... 
where n is a new individual symbol. Each Aki, ...,Akn is true of an 8 
obtained from SQ by interpreting n as a natural number different from 
each n for which —m = n is among Akl,..., Akn. 

Applications of Gödel's completeness theorem to algebra were noted 
about 1946-7 by Tarski, Henkin and A. Robinson, and have been culti
vated since. We have been supposing the number of symbols at most 
countably infinite, as must be the case of any language in actual use. 
However, Malcev (1936) extended the completeness theorem to languages 
with arbitrarily (possibly uncountably) many constants, and Henkin 
(1947) used such languages to represent the complete addition and 
multiplication tables, etc., of algebraic systems in the set of formulas for 
application of the extensions of I-II. 



142 S. C. KLEENE 

Returning to countable languages, we may consider ones with more 
than one type of variables, e.g. a second-order predicate calculus with 
variables ranging over a domain D of individuals and also variables 
ranging over a collection M of subsets of D. A standard model for a set 
of sentences AQ, Av A2,... is one with M = {the set 2D of all subsets of D}. 
The above results do not extend when only standard models are used, 
in view of the categoricity of Peano's axioms for the natural numbers 
(using a variable over 2D to express induction). However, Henkin 
(1947, 1950) introduced the notion of a general model in which M may 
be an appropriate subset of 2D, and with which he obtained an exten
sion of Gödel's completeness theorem. Thus we are still unable to 
characterize the natural numbers, except by reading into the axioms the 
notion of all possible subsets, which is hardly simpler. 

We have given the foregoing model theory as part of the familiar 
classical mathematics, and for the classical 'two-valued' form of the 
predicate calculus. The negative results obtain all the more from the 
constructive standpoints. The axiomatic method cannot provide an 
autonomous foundation for mathematics. The rules of the language of 
the axioms must (at some level) be understood, and not merely described 
by more axioms; and this amounts to presupposing the natural numbers 
intuitively. 

2 . Cons t ruc t ive and non-cons t ruc t ive opera t ions 

The awareness that some mathematical operations are 'constructive', 
and others are not (at least directly) such, must go far back in mathe
matical history; witness the word 'algorithm'. A computer cannot 
tabulate the t ruth or falsity of (Ex)B(a,x), where the variables range 
over the natural numbers, unless for the particular B he has some theory 
which gives him an equivalent 'constructive' definition oî (Ex)B(a,x). 
Say triples bQ, bl9 b2 are mapped constructively into single numbers b, 
with constructive inverses (6)0, (6)1? (b)2. Such a theory is known for 
B(a,x) = (a)0(x)0 + (a)1(x)1 = (a)2, using Euclid's algorithm; but not 
today for B(a,x) = ((x)0+ 1)^3+ ( ( ^ + 1 ) ^ 3 = ((x)2+ l)«*>s do (x)z>a, 
where the value just for a = 2 would 'decide' Fermat's 'last theorem'. 

In 1936 the claim was made, by Church first and independently by 
Turing and by Post, tha t a certain class of functions definable mathe
matically (in one of several equivalent ways) includes all that are 
'computable' or 'effectively calculable' or 'constructively defined' 
(Church's thesis), and conversely that all the functions of this class are 
'computable' (Converse of Church's thesis). 
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The definition of this class of functions is not itself constructive. I t 
consists in specifying constructively a type of computation procedure. 
But a given such procedure may or may not terminate for all arguments, 
so as to compute a (completely defined) function. (Otherwise, by Cantor's 
diagonal method one could get constructively outside the class, so 
Church's thesis could not hold.) 

The converse of Church's thesis constructively interpreted means that , 
whenever one has a constructive proof that the computation procedure 
always terminates, the function is computable. I t is hardly debatable 
then. A possibility for skepticism remains to one who wishes com-
putability to include constructive provability that the computation 
procedure always terminates, while allowing the condition tha t it 
always terminate to be understood classically; he may imagine that there 
might be cases when the procedure does always terminate but without 
there being any constructive proof of that fact. 

Much work has been done, especially by Péter since 1932, on special 
classes of computable functions, for which classes proofs are known 
that all the computation procedures always terminate. 

To Church's thesis itself, the only suggested counterexamples involve 
'computation procedures' in which the computer is to perform steps 
depending on some unpredictable future state of his mind, or in which 
the 'procedure' is somehow to vary with the argument of the function. 
But for the thesis, ' computation ' is intended to mean of a predetermined 
function independent of the computer, by only preassigned rules 
independent of the argument. 

We shall now present (essentially) Turing's definition of the class of 
the 'computable' functions. (Among the equivalents that appear in 
the literature are the Church-Kleene À-definable functions, 1933-5, the 
Herbrand-Gödel general recursive functions, 1934, and definitions using 
Post's canonical systems, 1943, and Markov's algorithms, 1951.) 

Instead of a human computer subjected to preassigned instructions, 
we can speak of a machine. Turing's theory is about ideal (digital) 
computing machines, unhampered by finiteness of storage space or 
fallibility of functioning. More recently the notion of an automaton 
has been used, by von Neumann (1951); the automaton should not be 
finite (Kleene, 1956), but potentially infinite (Church, 1957). We want 
a fixed finite amount of structure (or information) to establish the com
putation procedure for a function <j)(a), while an unbounded amount of 
space and time must be available to accomodate the argument a and the 
computation. 
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The machine or automaton shall accordingly consists of ^ 0 cells, each 
adjacent to at most a given finite number of other cells; but only a finite 
diversity of structure shall be built into it, the rest of the infinity con
sisting of identical repetition. Here we use the idea from information 
theory that information is conveyed only when the signal is not pre
dictable. In order to simplify our brief discussion, we can specialize to 
the case when the cells are c0, cl9 c2,..., in the order type of the natural 
numbers, each ci (except c0) being adjacent to exactly two others ci_1 

and ci+1. The general defense of the Church-Turing thesis then requires 
arguing that no other arrangement of the cells (with only a finite diver
sity of structure) would make a function computable that is not com
putable in this space. 

Discrete moments of time 0,1,2,... are distinguished. States sQ, ...,si 
are given, in one of which each cell shall be at each moment. At moment 
0, all but a finite number of the cells shall be in the passive state sQ. 
A table is given which determines the state of each cell ci at moment t + 1 
from its state and the states of the adjacent cells (for i = 0, sQ replacing 
the state of ĉ _x) at moment t; the output of this table shall differ from 
sQ only when an input does. 

To set the problem, say of computing <j>(a) for a as argument, we can 
take the states at t = 0 of the cells c0, cv c2,... to be 

s0 Si . . . s1 s2 SQ S0 SQ . . . . 

a times 

The answer shall be receivable by the states being 

SQ SX . . . S1S1SQ SX . . . 5 X S3 SQ SQ SQ . . . 

a times ^ (a) times 

at a later moment t — x when sz first occurs. (The fundamental repre
sentation of a natural number b is by b successive marks, so it can be 
argued that a computation problem is solved only when it is possible to 
present the solution in this representation.) 

One may for example imagine the cells c09cl9c29... as representing 
sheets of paper, each admitting one of finitely many symbols on each of 
finitely many squares, and one of them carrying as part of its state a 
human computer in one of finitely many states of mind (cf. Kleene, 1952). 

Machines can be used similarly to compute w-place functions 
<f>(av ...,an); and they can be used to 'decide' predicates P(ax, ...,an) 
by computing 0 to represent truth and 1 falsity. 
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The behavior of a machine is completely described by its table, which 
can be written in code form as a natural number, its index. 

Let T(i, a, x) = {i is the index of a Turing machine Mi9 which, when 
applied to compute for a as argument, first at moment x has computed 
a value ç^(a)}. 

Here <j>i(a) is an incompletely defined function of i and a, its condition 
of definition being (Ex) T(i, a,x). 

We can constructively decide whether a given i is the index of a 
machine Mi9 and if so given also a and x imitate M/s behavior for a as 
argument at moments 0, ...,x successively. Thus, given i, a, x, we can 
decide whether T(i, a, x) is true or false. (So there is by Church's thesis, 
and in a detailed treatment of the subject we would actually construct, 
a machine that decides T(i, a,x).) 

IV. The function 
Ma(a) + 1 if (Ex)T(a,a,x), 

f(a) = \ (A) 
[0 otherwise 

is uncomputable. 
Proof. Were fr(a) computable, it would be computed by a machine 

Mq; so for each a, (B) i/r(a) = $a(a) and (C) (Ex)T(q,a,x). Substituting 
q for a in (C) and using (A), i/r(q) = <pa(q) + 1, which contradicts (B) with 
q substituted for a. 

V. The predicate (Ex) T(a, a, x) is undecidable. 
Proof. Were (Ex) T(a, a, x) decidable, we could compute i/r(a) by first 

deciding (Ex) T(a, a, x), and according to the answer, either imitating 
machine Ma applied to a as argument to compute <f>a(a) and adding 1, or 
writing 0. This is Church's theorem 1936, but with a different example 
of an absolutely undecidable predicate. 

In a standard formal system N of arithmetic (or 'number theory'), 
each decidable predicate, such as T(i, a, x), can be expressed; hence also 
(Ex)T(a,a,x), by a sentence Ca (constructively obtainable from a). 
Now, for particular a, (Ex) T(a, a, x) when true can be 'proved ' by doing 
the computation that shows T(a, a, x) to be true for the appropriate x. 
This intuitive proof is available formally in a standard N. Thus 

(Ex) T(a, a, x) -> {Ca is provable}. (a) 

Also we are assuming of N that only true formulas are provable in it, so 

{Ca is provable} -> (Ex) T(a, a, x). (b) 
Now V gives: 

VI. There is no procedure for deciding whether a given sentence is 
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provable in a formal system N of arithmetic; briefly, N is 'undecidable' 
(Church 1936). 

Continuing, could we in N also prove —>Ca whenever (Ex) T(a, a, x) 
is false, besides only then so 

{—>Oa is provable} -> —> (Ex) T(a, a, x), (c) 

we would be able, by searching for Ca or —*Ca among the provable 
sentences, to decide (Ex) T(a, a, x). So, again from V: 

VII. In a formal system N of arithmetic, there is a sentence Cq such that 
Cq and —iCq are both unprovable, though —>Cq is true (i.e. —i(Ex) T(q, q, x)). 

This gives Gödel's famous incompleteness theorem (1931), generalized 
to apply to all formal systems N satisfying very general conditions, and 
with the 'formally undecidable' sentence Cq expressing the value, for 
an argument q depending on the system, of a preassigned predicate 
(Ex)T(a,a,x). The above proof is indirect, the existence of q being 
inferred from the absurdity that —*Ca is provable for all a for which it is 
true. But we can make it direct, by taking as q the index of a machine 
Mq which, given a, searches through the proofs in N for one of —><7a, and 
if one is found writes 0 (but otherwise never computes a value), so 

(Ex) T(q, a, x) = {-n(7a is provable}. (d) 

Substituting q for a in (b)-(d), the three conclusions of VII follow. 
Here we have used the feature of formal systems, essential for the 

purpose which they are intended to serve, that a proof of a sentence can 
be constructively recognized as being such (and also that Ca can be con
structively found from a). Without this feature, we would have a trivial 
counterexample to VII by taking all the true sentences as the axioms 
of N. With it, by Church's thesis we conclude the existence of an Mq to 
any such system. Here the computability notion can be applied directly 
to the linguistic symbolism, or the latter can be converted to natural 
numbers as we have already done with machine tables (by a 'Godei 
numbering'). 

The application of Church's thesis by which we obtain VII for all 
systems N can be avoided for a particular system by actually con
structing the Mq for it. This in effect Godei did in proving his theorem for 
a particular system before Church's thesis had appeared. 

In retrospect, Skolem's theorem III on the existence of unintended 
models 8X of systems of sentences BQ, Bl9 B2,... intended to describe the 
natural numbers suggests Gödel's theorem VII. (Compare the example 
of Euclid's fifth postulate.) Indeed, for an N based on the elementary 
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predicate calculus, (II#) shows that Cq is false of such an Sv However, 
I II applies even when BQ, Bv B2,... are all the true sentences, unlike VII. 

I do not consider that VII means we must give up the emphasis on 
formal systems. The reasons which make a formal system the only 
accurate way of saying explicitly what assumptions go into a proof are 
still cogent. Rather VII indicates that, contrary to Hubert's program, 
the path of mathematical conquest (even within the already fixed 
territory of arithmetic) shall not consist solely in discovering new proofs 
from given axioms by given rules of inference, but also in adducing new 
axioms or rules. There remains the question whether mathematicians 
can agree on the validity of the new methods. 

In VII, no sooner are we aware that —>Cq is unprovable than we also 
know that —>(7ff is true, so we can extend N by adding —*Gq as a new 
axiom. This process can be repeated, finitely often, and indeed trans-
finitely often within the limits of structural constructiveness. 

It is illuminating to consider wherein the intuitive proof of —*Cq 

transcends N. We only conclude the truth of —>Og when we accept (c). 
By (a), (c) reduces to the consistency of N, which is expressible in N via 
Godei numbering by a sentence 'Consis'. The rest of the reasoning that 
—*Cq is true is elementary, though tedious when executed in full detail; 
so we may expect (as has been confirmed by Hilbert and Bernays (1939) 
for the usual systems as N) that it can be formalized in N. So Consis 
cannot be provable in N, or —»Ca would be, contrary to VII. Thus: 

VIII. In a usual formal system N of arithmetic, the sentence Consis 
expressing the consistency of N is unprovable (Gödel's second incom
pleteness theorem, 1931). 

Thus a system N formalizing classical mathematics cannot be proved 
consistent, as Hilbert hoped, by a ' subset ' of the methods formalized in N. 

Gentzen (1936, 1Ö38) gave a proof of the consistency of a system iV" of 
arithmetic, in which the method transcending N is a form of transfinite 
induction over the ordinal numbers < Cantor's first epsilon-number e0; 
and other such proofs have appeared since. It is a rather subjective 
matter whether this should make us feel safer about N than we already 
feel on the basis of its axioms being true, and its rules of inference pre
serving truth, under an interpretation ('truth definition') that as 
classical mathematicians we presumably accept. By a reduction of 
classical to intuitionistic logic given by Kolmogorov (1925), Godei 
(1932-3), Gentzen (1936) and Bernays, the consistency proof by a truth 
definition can even be managed intuitionistieally. 

Kreisel (1951-2, 1958) finds the significance of the consistency proofs 



148 S. C. KLEENE 

using e0-induetion in by-products. When a sentence (a)(Eb)B(a,b) 
(B decidable) is proved, then (a) B(a, ß(a)) will be true for certain func
tions /?, including ß(a) = {the least b such that B(a, b) is true}, which is 
computable. It is clear that in a given system N only a subclass of the 
computable functions can thus be proved to exist; indeed Kleene (1936) 
gave a proof of Gödel's incompleteness theorem from this idea. Kreisel, 
however, extracts from Ackermann's consistency proof (1940) a different 
characterization (not directly from N) of this subclass of the computable 
functions. The possibility thus appears that some true formula 
(a) (Eb) B(a, b) might be shown to be unprovable in N because no ß 
for it is in this subclass. 

From Church's theorem other undeeidability results follow. The 
theory of (Ex) T(a, a, x) can be formalized in a system Nx consisting of 
finitely many axioms Bl9 ...,Bk adjoined to the (elementary) predicate 
calculus. So (Ex) T(a, a, x) = {Ga is provable in JVJ = {Bx & ... & Bk -» Ca 

is provable in the predicate calculus}. Thence from V: 
IX. The elementary predicate calculus is undecidable (Church, 1936a; 

Turing, 1936-7). 
Various formal systems obtained by adjoining axioms for algebraic 

systems to the predicate calculus have been shown undecidable by 
Tarski and others using a method of Tarski (1949) (cf. Tarski et al. 1953). 

Negative solutions to the problems of the existence of various algebraic 
algorithms have been obtained by Post (1947), Markov since 1947, and 
others; in particular, Novikov (1952, 1955) showed the word problem 
for groups unsolvable. 

Turing (1939) introduced the notion of a function ç5(a) computable from 
another function i]r(a) (or predicate Q(a)). A simple plan under the above 
treatment is to print the values of ^ into the space, in this respect alone 
violating the demand that only a finite amount of information be in
corporated, by accenting successions of ^(0)+1,^(1)+ 1,^(2)+ 1,... 
cells, preceded and separated by single unaccented cells. In effect, we 
double the number of states from s0,..., sz to sQ,..., sl9 s'Q,..., sz. 

When the theory is thus relativized to a given predicate Q(a), the 
decidable predicate T(i,a,x) becomes a predicate TQ(i,a,x) decidable 
from Q, and IV, V assume relativized versions IV*, V*. 

X. / / BQ(a, x) is decidable from Q, there is a computable function 6(a) 
such that (Ex)B®(a,x) = (Ex)T^(6(a),6(a),x). 

Proof. Given a, let Me(a) be a machine which tries to compute from Q 
the constant function whose value is the least x such that BQ(a,x), by 
testing successively x = 0,x = l,x = 2,.... 
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Thus (Ex) BQ(a, x) is decidable from (Ex) TQ(a, a, x) by first computing 
6(a). In particular (taking BQ(a,x) = Q(a)&x = x), Q(a) is decidable 
from (Ex)TQ(a,a,x); but by V*, not conversely. This Post (1948) 
expressed by saying (Ex)TQ(a,a,x) is of 'higher degree (of unsocia
bility)' than Q(a). Predicates and functions are of the 'same degree' 
when each is decidable (or computable) from the other. A decidable 
predicate is of the lowest degree ('solvability'). Starting from say 
H(Q)(a) = a = a, and for each n defining Hn+1(a) = (Ex)THw(a,a,x), 
we obtain predicates H(n)(a) (n = 0,1,2,...) of ascending degrees. These 
predicates, together with those decidable from them, turn out to be 
exactly the predicates (called arithmetical by Godei, 1931) expressible 
in the usual system of arithmetic. Thus the arithmetical predicates fall 
into a hierarchy, first described by Kleene (1943) and Mostowski (1946) 
in terms of the numbers of quantifiers necessary to define them in 
prenex form from decidable predicates. 

The hierarchy can be extended into the transfinite (Davis, Kleene, 
Mostowski, Post, about 1950; cf. Mostowski, 1951; Kleene, 1955). One 
method is to consider H(n)(a) as a predicate H(n,a) of both variables; 
this is of higher degree than each H(n)(a), and thus is non-arithmetical. 
'Contracting' H(n,a) to a one-place predicate H((a)1,(a)0), which we 
write H((û)(a), we can proceed as before to HiûJ+1)(a),Hiù)+2)(a),.... In 
general, at a limit ordinal £ of Cantor's second number class approached 
through an increasing sequence {^}, we consider H^n)(a) as a predicate 
of n, a, and contract. 

However, we have no uniform method, or justification, for picking 
a particular increasing sequence {gj- for £. So a diversity of predicates 
H(g arise, for each transfinite £, depending on the selections of increasing 
sequences. Worse than this, even for £ = co, the use of arbitrary increasing 
sequences {£J- with limw £n = £ (above we used £w = n) will give pre
dicates of arbitrarily high degree. This suggests restricting the sequences 
{£J- to be computable, after rendering ordinals accessible to the above 
notion of eomputability by representing them in a suitable system of 
notations, which can be natural numbers (Church-Kleene, 1936; Kleene, 
1938). This being done, the diversity in predicates at a given transfinite 
level £, which remains due to the possibility of using different computable 
increasing sequences, was shown by Spector (1955) to be confined always 
within a degree. The predicates thus definable corresponding to con
structive ordinals, together with all predicates decidable (and functions 
computable) from them, we call hyperarithmetical (Kleene, 1955 a). 

It was noticed, about 1957, by Addison, Buchi, Grzegorczyk, Kleene, 
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Kuznecov and Myhill (cf. Grzegorczyk et al. 1958) that the hyperarith-
metical predicates are exactly the predicates expressible unambiguously 
by a formula of the elementary predicate calculus, when the domain is 
the natural numbers. 

Kleene (1957) formulated eomputability from higher-type objects, 
such as from the existential quantifier (Ex) considered as a functional 
E which operates on a predicate to produce a truth value (or on a func
tion ijr to produce the number 0 if (Ex) (^r(x) = 0) and 1 otherwise). The 
hyperarithmetical functions <j)(al9 ...,an) are exactly those computable 
from E; thus, operating constructively, except for using a number 
quantifier, we obtain not merely the usual predicates of arithmetic but 
the hyperarithmetical predicates. 

R E F E R E N C E S 
Ackermann, W. 

1940. Zur Widerspruehsfreiheit der Zahlentheorie. Math. Ann. 117, 162-194. 

Brouwer, L. E. J . 
1908. De onbetrouwbaarheid der logische principes. (The untrustworthiness 

of the principles of logic.) Tijdschrift voor wijsbegeerte, 2, 152-158. 
1924. Beweis, dass jede volle Funktion gleichmässig stetig ist. Proc. Akad. 

Wet. Amst. 27, 189-193. 
Church, A. 

1933. A set of postulates for the foundation of logic (second paper). Ann. 
Math. (2), 34, 839-864. 

1936. An unsolvable problem of elementary number theory. Amer. J. Math. 
58, 345-363. 

1936 a. A note on the Entscheidungsproblem. J. Symb. Logic, 1, 40-41. 
Correction, ibid. 101-102. 

1941. The Calculi of Lambda-Conversion. Ann. of Math. Studies, no. 6. 
Princeton University Press, Princeton, N.J . 

1957. Application of recursive arithmetic to the problem of circuit synthesis. 
Summaries of Talks Presented at the Summer Institute of Symbolic 
Logic in 1957 at Cornell University (mimeographed), 1, 3-50; 3, 429. 

Church, A. and Kleene, S. C. 
1933-5. See Church (1933), Kleene (1935), Church (1941). 
1936. Formal definitions in the theory of ordinal numbers. Fundam. Math. 

28, 11-21. 
Frege, G. 

1879. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des 
reinen Denkens. Nebert, Halle. 

1891. Funktion und Begriff. Jena. 

Gentzen, G. 
1936. Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann. 112, 

493-565. 



MATHEMATICAL LOGIC 151 

1938. Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlen
theorie. Forschungen zur Logik und zur Grundlegung der exakten 
Wissenschaften, N.S., no. 4, 19-44. Hirzel, Leipzig. 

Godei, K. 
1930. Die Vollständingkeit der Axiome des logischen Funktionenkalküls. 

Monatsh. Math. Phys. 37, 349-360. 
1931. Über formal unentscheidbare Sätze der Principia Mathematica und 

verwandter Systeme. I . Monatsh. Math. Phys. 38, 173-198. 
1932-3. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebn. math. 

Kollog. Heft 4, 34-38 (for 1931-2, pubi. 1933). 
1934. On Undecidable Propositions of Formal Mathematical Systems (mimeo

graphed). Princeton, N.J . 

Grzegorczyk, A., Mostowski, A. and Ryll-Nardzewski, C. 
1958. The classical and the co-complete arithmetic. J. Symb. Logic, 23,188-206. 

Henkin, L. 
1947. The Completeness of Formal Systems. Princeton University Ph.D. 

Thesis, Princeton, N.J. 
1950. Completeness in the theory of types. J. Symb. Logic, 15, 81-91. 

Herbrand, J . 
1930. Recherches sur la théorie de la démonstration. Travaux de la Société des 

Sciences et des Lettres de Varsovie, Classe I I I , sciences mathé
matiques et physiques, no. 33. 

Herbrand, J . and Godei, K. 
1934. See Godei (1934), Kleene (1936, 1952). 

Heyting, A. 
1956. Intuitionism, An Introduction. North Holland Pubi. Co., Amsterdam. 

Hilbert, D. 
1899. Grundlagen der Geometrie, 7th ed. (1930), Teubner, Leipzig and Berlin. 
1904. Über die Grundlagen der Logik und der Arithmetik. Verhand. Dritten 

Int. Math.-Kong. Heidelberg 1904, 247-261 (pubi. Leipzig 1905). 

Hilbert, D. and Bernays, P . 
1934. Grundlagen der Mathematik, vol. 1. Springer, Berlin. 
1939. Grundlagen der Mathematik, vol. 2. Springer, Berlin. 

Kleene, S. C. 
1935. A theory of positive integers in formal logic. Amer. J. Math. 57, 

153-173, 219-244. 
1936. General recursive functions of natural numbers. Math. Ann. 112, 

727-742. 
1938. On notation for ordinal numbers. J. Symb. Logic, 3, 150-155. 
1943. Recursive predicates and quantifiers. Trans. Amer. Math. Soc. 53, 41-73. 
1952. Introduction to Metamathematics. North Holland Pubi. Co. (Amsterdam), 

Noordhoff (Groningen), Van Nostrand (New York and Toronto). 
1955. Arithmetical predicates and function quantifiers. Trans. Amer. Math. 

Soc. 79, 312-340. 
1955 a. Hierarchies of number-theoretic predicates. Bull. Amer. Math. Soc. 

61, 193-213. 
1956. Representation of events in nerve nets and finite automata. Automata 

Studies. Ann. of Math. Studies, no. 34, 3-41. Princeton University 
Press, Princeton, N.J . 



152 S. C. KLEENE 

Kleene, S. C. 
1957. Recursive functionals of higher finite types. Summaries of Talks 

Presented at the Summer Institute of Symbolic Logic in 1957 at Cornell 
University (mimeographed), 1, 148-154. Errata, 3, 429, 

Kolmogorov, A. 
1925. Sur le principe de tertium non datur. Ree. Math., Moscou, 32, 646-667. 

König, D. 
1926. Sur les correspondences multivoques des ensembles. Fundam. Math. 

8, 114-134. 
Kreisel, G. 

1951-2. On the interpretation of non-finitist proofs. J. Symb. Logic, 16, 
241-267; 17, 43-58. 

1958. Mathematical significance of consistency proofs. J. Symb. Logic, 23, 
155-182. 

Lorenzen, P . 
1950. Konstruktive Begründung der Mathematik. Math. Z. 53, 162-202. 
1955. Einführung in die operative Logik und Mathematik. Springer, Berlin, 

Göttingen and Heidelberg. 

Löwenheim, L. 
1915. Über Möglichkeiten im Relativkalkül. Math. Ann. 76, 447-470. 

Lukasiewicz, Jan 
1921. Logika dwuwartosciowa. (Two-valued logic.) Przeglqd Filozoficzny, 

23, 189-205. 
Malcev, A. 

1936. Untersuchungen aus dem Gebiete der mathematischen Logik. Mat. 
Sbornik, 1 (43), 323-336. 

Markov, A. A. 
1947. Névozmoznost nékotoryh algorifmov v téorii associativnyh sistém. (On 

the impossibility of certain algorithms in the theory of associative 
systems.) Dokl. Akad. Nauk, SSSR, N.S., 55, 587-590. 

1951. Teoria algorifmov. (The theory of algorithms.) Trudy Matématicé-
skogo Instituta imèni V. A. Steklova, 38, 176-189. 

Mostowski, A. 
1946. On definable sets of positive integers. Fundam. Math. 34, 81-112. 
1951. A classification of logical systems. Studia Philosophica, 4, 237-274. 

Novikov, P . S. 
1952. Ob algoritmiceskoj nérazréSimosti problémy to2déstva. (On algorithmic 

unsolvability of the word problem.) Dokl. Akad. Nauk, SSSR, N.S., 
85, 709-712. 

1955. Ob algoritmiiceékoj nérazrésimosti problémy to^déstva slov v téorii 
grupp. (On the falgorithmic unsolvability of the word problem in 
group theory.) Trudy Mat. Inst. im. Steklov, no. 44. Izdat. Akad. 
Nauk, SSSR. Moscow. 

Peirce, C. S. 
1885. On the algebra of logic: A contribution to the philosophy of notation. 

Amer. J. Math. 7, 180-202. 
Péter, R. 

1951. Rekursive Funktionen. Akadémiai Kiadó (Akademischer Verlag), 
Budapest. 



MATHEMATICAL LOGIC 153 

Post, E. 
1921. Introduction to a general theory of elementary propositions. Amer. J. 

Math. 43, 163-185. 
1936. Finite combinatory processes—formulation. I . J. Symb. Logic, 1, 

103-105. 
1943. Formal reductions of the general combinatorial decision problem. 

Amer. J. Math. 65, 197-215. 
1947. Recursive unsolvabihty of a problem of Thue. J. Symb. Logic, 12, 1-11. 
1948. Degrees of recursive unsolvability (abstract). Bull. Amer. Math. Soc. 

54, 641-642. 
Robinson, A. 

1951. On the Metamathematics of Algebra. North Holland Pubi. Co., Am
sterdam. 

Skolem, T. 
1920. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder 

Beweisbarkeit mathematischer Sätze nebst einem Theoreme über 
dichte Mengen. Skrifter utgit av Videnskapsselskapet i Kristiania, I . 
Mathematisk-naturvidenskabelig Masse, no. 4. 

1922-3. Einige Bemerkungen zur axiomatischenBegründung der Mengenlehre. 
Wissenschaftliche Vorträge gehalten auf dem Fünften Kongress der 
Skandinavischen Mathematiker in Helsingfors vom 4. bis 7. Juli 1922 
(pubi. Helsingfors, 1923), 217-232. 

1933. Über die Unmöglichkeit einer vollständigen Charakterisierung der 
Zahlenreihe mittels eines endlichen Axiomensystems. Norsk, mat. 
Foren. Skr. ser. 2, no. 10, 73-82. 

1934. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich 
oder abzählbar unendlich vieler Aussagen mit ausschliesslich 
Zahlenvariablen. Fundam. Math. 23, 150-161. 

Spector, C. 
1955. Recursive well-orderings. J. Symb. Logic, 20, 151-163. 

Tarski, A. 
1927-8. See the Bemerkung der Redaktion in Skolem, 1934, p. 161. 
1933. Der Wahrheitsbegriff in den formalisierten Sprachen. Studia philo-

sophica, 1 (1936, tr. from Polish original, 1933). Engl. tr. in A. Tarski, 
Logic, Semantics, Metamathematics, Oxford University Press, Oxford, 
1956. 

1954-5. Contributions to the theory of models. Proc. Akad. Wet. Amst., 
ser. A, 57, 572-578; 58, 56-64. 

Tarski, A., Mostowski, A. and Robinson, R. M. 
1953. Undecidable Theories. North Holland Pubi. Co., Amsterdam. 

Turing, A. M. 
1936-7. On computable numbers, with an application to the Entscheidungs

problem. Proc. Lond. Math. Soc. (2), 42, 230-265. A correction, 
ibid. 43, 544-546. 

1939. Systems of logic based on ordinals. Proc. Lond. Math. Soc. (2), 45, 
161-228. 

von Neumann, J . 
1951. The general and logical theory of automata. Cerebral Mechanisms in 

Behavior, The Hixon Symposium, pp. 1-31 (editor, Jeffress, Lloyd A.). 
Wiley, New York. 


