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Fifty years ago, at the International Congress in Bologna, Hermann Weyl gave 
a report on representations of compact groups and, in particular, of compact Lie 
groups. Most of the important results had just been proved by him and by others, 
and at the time of his lecture, in 1928, the representation theory of compact Lie 
groups had become a very appealing subject. To a large extent, Weyl's theory has 
served as model and inspiration for the work on representations of noncompact, 
noncommutative groups, which was carried out in the last thirty years. To put the 
subject of my survey into perspective, I shall begin with a discussion of compact 
groups. 

Initially, G will denote a compact topological group, and G its set of isomorphism 
classes of irreducible unitary representations. To avoid complicated notation, 
I shall not distinguish between an isomorphism class and its members: each ii^ô 
s to be thought of as a specific continuous1 homomorphism 

n:G^U(Hn) 

into the unitary group U(Hn) of a specific Hilbert space Hn. The irreducibility 
of 7i, i.e. the nonexistence of a proper, closed G-invariant subspace, implies that 
Hn is finite dimensional. According to the Peter-Weyl theorem [23], [30], there 
exists an isomorphism of Hilbert spaces 

(1) L2(G) ~ © Hn®H% (Hilbert space direct sum), 
T T é C 

1 Continuous with respect to the "weak topology" on U(Hn) — the weakest topology which 
makes the functions T\^- (Tu, v) continuous, for all u, v in H„. 
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which can be described explicitly, and which has the following crucial property: 
the action of G on L2(G) induced by left translation corresponds to the action 
on the left factors Hn9 whereas the right translation action corresponds to the 
dual action on the dual spaces H*. 

The statement of the Peter-Weyl theorem already points to the most fundamental 
reason for studying representation theory: to understand the representations of 
G is to understand L2(G)9 as a left and right G-module. The theorem, an early 
success of "soft analysis", makes only a rather abstract assertion, however; it does not 

(a) describe the set ó, 
(2) 

(b) give information about the structure of the irreducible representations. 

These two problems must be dealt with if the Peter-Weyl theorem is to answer 
concrete questions about L2(G). 

To get a grasp on the first problem, one associates to each finite dimensional 
representation % the function 
(3) xn: g —traceTr(g), 

the so-called character of n. As a formal consequence of the Peter-Weyl theorem, 
/„ determines n up to isomorphism. In particular, the passage from representations 
to their characters establishes a one-to-one correspondence 

(4) ô -<-* set of irreducible characters. 

It is usually easier to describe ô indirectly, via this correspondence: characters, 
as functions on G9 are less complicated objects than representations. 

For only one large and significant class of compact, noncommutative groups does 
one understand the two problems (2) reasonably well—namely compact, connected 
Lie groups. I shall now assume specifically that G belongs to this class. By a simple, 
but ingenious argument, which combines the Peter-Weyl theorem with basic pro
perties of compact Lie groups, Herman Weyl was able to compute the irreducible 
characters of any such G. - Implicitly the resulting Weyl character formula [27], [29] 
provides a parametrization of the set ô, and hence a solution of the problem (2a). 

As for the second problem, the most useful technique is to study representations 
of G by analyzing their restriction to a maximal torus TaG. Any two maximal 
tori are conjugate, and hence the particular choice of T does not matter. Viewed 
as representation of T9 each n^ô decomposes into a direct sum of one dimensional 
representations, which are called the weights of %. Among the weights, one is 
distinguished by being the "highest", in a certain definite sense; the highest weight 
occurs with multiplicity one and, most importantly, it characterizes % up to iso
morphism. This is the essence of Elie Cartan's theorem of the highest weight [26]. 
Virtually all general structural information about representations of compact Lie 
groups follows from it, at least indirectly. The theorem can be proved by infinitesimal 
methods, or alternatively, deduced from Weyl's character formula. 
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In a nutshell, the Peter-Weyl theorem, the Weyl character formula, and the theorem 
of the highest weight constitute the fundamentals of the representation theory of 
compact Lie groups. Taken together, they give a good grasp of L2(G)9 and hence 
also of L2(X)9 for any homogeneous space X on which G operates transitively. 
Indeed, every such homogeneous space X can be represented as a quotient X=G/U9 

with £/=isotropy subgroup at some point of X. Pulling back functions from G/U 
to G, one finds 

(5) L2(X) = space of right G-invariants in L2(G) =* © Hn®(HÌ)v; 
Tree 

here (H*)u denotes the subspace of all J7-invariant vectors in //*. The description 
(5) of L2(X) makes it a simple matter to determine the G-invariant subspaces of 
L2(X)\ they are of the form 

(6) © H%®WK9 

with suitably chosen subspaces Wna(H*)u\ conversely, every direct sum (6) is 
actually G-invariant. 

Let me now consider a linear differential operator D on X, G-invariant and, for 
simplicity, acting on scalar functions. One may extend D to an unbounded operator 
on L2(X), by taking its closure. The kernel of D then becomes an invariant 
subspace of L2(X)\ 

(7) K e r Z ) - © HK®WK. 
nee 

In our particular context, the Wn can be identified as the kernels of a family of 
linear transformations, 

H£ = Ker2>„ 
(8) 

D,:(Ä„T-W)D , 
which are derived from D in quite an explicit manner. Although D was assumed 
to be a scalar operator, these remarks apply—mutatis mutandis—also to invariant 
systems of differential equations. 

The preceding discussion, straightforward and formal as it is, should convey 
one salient point: the Peter-Weyl theorem and its companion statements make it 
possible, at least in principle, to solve invariant systems of differential equations 
on homogeneous spaces. Undoubtedly, this connection with the problem of solving 
invariant differential equations is one of the most important aspects of the repre
sentation theory of Lie groups. 

To give a concrete example, I shall mention the Borel-Weil-Bott theorem [4], [21]. 
As before, TczG denotes a maximal torus. One knows that the quotient G/T 
can be made into a homogeneous complex manifold—a complex manifold such that 
G acts, by left translation, as a group of holomorphic mappings. Moreover, each one 
dimensional representation 

a: T - C * 



198 Wilfried Schmid 

gives rise to a homogeneous holomorphic line bundle 

(9) se. -* GIT, 

i.e. a holomorphic line bundle to which the translation action of G lifts; it is uni
quely determined by the requirement that T should operate on the fibre at the 
identity coset via <r. Since G acts on the bundle (9), it also acts on the cohomology 
groups 
(10) Hk(G/T9 &(<?„)) 

of the sheaf of germs of holomorphic sections 6(£P^). The sheaf cohomology groups 
thus become finite dimensional representation spaces for G—finite dimensional 
because G/T is compact. The Hodge theorem identifies the cohomology group (10) 
with the kernel of the (G-invariant) Laplace-Beltrami operator, acting on the 
j£?ff-valued (0, /c)-forms. In particular, the present example fits into the framework 
of invariant differential equations. 

The Borel-Weil-Bott theorem describes the cohomology groups (10): they vanish 
identically for certain special choices of a; in all remaining cases, they are nonzero 
for exactly one integer k=k(&), and the representation of G on this one non-zero 
cohomology group is irreducible, with a highest weight whose dependence on 
G can be made explicit. Every irreducible representation of G arises in this fashion, 
even with k(a)=0; for fc=0, it should be noted, the group (10) is simply the 
space of holomorphic sections of the Une bundle i?ff. Most proofs reduce the Borel-
Weil-Bott theorem to the theorem of the highest weight, through arguments in the 
spirit of (7)-(8). The theorem serves at least two purposes. It provides a realization 
of every n£G, on a concrete vector space, with a concrete G-action—in contrast 
to the Weyl character formula or the theorem of the highest weight, which enumerate 
the irreducible representations, without giving such a realization. Secondly, it 
computes certain cohomology groups which are of interest in complex analysis, 
and which were not understood before the advent of the Borel-Weil-Bott theorem. 

The statement of the theorem also suggests another possible approach to the 
representation theory of compact Lie groups. One can use methods of differential 
geometry and complex analysis to prove the theorem directly, avoiding any reference 
to the Weyl character formula and the theorem of the highest weight. An application 
of the Atiyah-Bott fixed point formula then leads to the character formula, which 
thus becomes a consequence of the Borel-Weil-Bott theorem. This chain of 
arguments employs rather heavy machinery and may seem merely a curiosity. 
I mention it here because in the case of non-compact groups, analogous arguments 
turn out to be quite efficient. 

So much for compact groups ! The object of interest shall now be a locally compact 
group G, unimodular—i.e. the essentially unique left invariant measure is also right 
invariant— and of type I. The latter is a technical condition, satisfied by all the 
special classes of groups which are considered in this survey; it insures that G has 
a "reasonable" representation theory. Again ô stands for the set of isomorphism 
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classes of irreducible unitary representations. In general, these will be infinite dimen
sional, since G may not be compact. For the same reason, the Peter-Weyl theorem 
no longer applies; even the simplest noncompact examples show that L2(G) cannot 
be expressed as a direct sum of irreducibles. Its place is taken by the abstract 
Plancher el theorem [6], which essentially goes back to von Neumann: L2(G) de
composes into a Hilbert space direct integral, 

(11) L*(G)~ f Hn®HU,i(n), 

with respect to a measure \i on (J, the so-called Plancherel measure. 
Just as in the case of the Peter-Weyl theorem, the isomorphism makes the left 

and right actions of G correspond to the actions on the left and right factors of the 
integrand Hn<g>H*. The tensor product sign refers not to the algebraic tensor 
product, but rather to its completion. The notion of Hilbert space direct integral 
generalizes the notion of Hilbert space direct sum. For instance if G is compact 
after all, the measure ß becomes discrete, and the direct integral (11) reduces to 
the direct sum2 (1). The best known example of a direct integral, which is not 
actually a direct sum, is furnished by classical Fourier analysis on the real line: 
L2(R) may be viewed as a direct integral of a continuous family of one dimensional 
function spaces, namely those spanned by the unitary characters 

x^eixy, y£R. 

These function spaces do not occur in L2(R) discretely, as subspaces, but only 
"infinitesimally". 

Again, the description (11) of L2(G) raises some immediate questions: 

(a) what is the set G? 

(12) (b) what is the Plancherel measure fil 

(c) what can one say about the structure of the irreducible unitary 

representations? 

Reasonably complete answers exist for only two major classes of noncompact, 
noncommutative groups—on the one hand, nilpotent Lie groups, and to some 
extent also solvable groups; on the other, semisimple Lie groups. The techniques 
which are appropriate in these two cases diverge widely, for quite fundamental 
reasons. I shall therefore limit the discussion to the semisimple case. The classical 
matrix groups SI (//, R), SI (/?, C), SO (p, q), SO (//, C), SU (p9 q), Sp (//, R)9 ..., 
which are of special interest in geometry, number theory, and physics, all fall into 

2 The measure /i, which does not show up in (1), has been absorbed into the particular iso
morphism. hi fact, the isomorphism (11), and with it the measure /i, are not uniquely determined. 
Theie is one natural choice, however. 
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this class (as do compact Lie groups with finite center)—ample justification for 
studying semisimple Lie groups in particular detail. 

Let then G be a connected semisimple Lie group, and n an irreducible unitary 
representation of G, on a Hilbert space Hn. Typically^ is infinite dimensional. 
The definition of character, which proved so useful in the finite dimensional case, 
thus loses meaning, at least in its naive form (3) : as unitary operators acting on an 
infinite dimensional space, the operators n(g) do not have a trace in any obvious 
sense. 

There exists a way around this difficulty, first discovered by Gelfand and Naimark 
in their study of the complex classical groups, later fully developed and systematically 
exploited by Harish-Chandra [10]. It proceeds from the following observation: 
for every compactly supported C°° function / on G, the operator-valued integral 

(13) « ( / ) = ff(g)*(g)dg 
G 

is of trace class. In other words, if one represents %(f) by an infinite matrix, relative 
to any orthonormal basis of H%9 the sum of the diagonal matrix entries converges 
absolutely. It then follows that the sum does not depend on the particular choice 
of basis, and one calls this sum the trace. The linear mapping 

which assigns to every f€C°°(G)0 the trace of the operator n(f)9 turns out to be 
a distribution in the sense of L. Schwartz. It determines n up to isomorphism and 
is, by definition, the character of %. If % happens to be a finite dimensional repre
sentation, 0n is given by integration against the ordinary character. Thus Harish-
Chandra's definition of character embraces the usual one. 

Because of its definition in terms of a trace, 0n remains invariant under all inner 
automorphisms of G. A slightly more subtle argument, based on the irreducibility 
of n9 shows that every bi-invariant linear differential operator maps 0n to a mul
tiple of itself. In shorthand terminology, a distribution with these two properties 
is an invariant eigendistribution. 

Distributions are decidedly more complicated objects than functions—more 
complicated to write down, more complicated to manipulate. At first glance, this 
appears to be a serious shortcoming of the notion of character in the infinite dimen
sional case. Fortunately, there is a remedy, Harish-Chandra's regularity theorem 
for invariant eigendistributions [13]-[15], [2]: every invariant eigendistribution, 
and in particular every character, can be expressed as integration against a locally 
L1 function; this function is real-analytic on the complement of a real-analytic 
subvariety of G. Thus characters turn out to be functions, after all. The regularity 
theorem plays a crucial role in the representation theory of semisimple Lie groups; 
without it, the notion of character would be far less useful. 

Let rrie now turn to the problem óf describing G. As a first step, it is helpful to 
consider a certain subset. An irreducible unitary representation n is said to be 
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square-integrdble if the Plancherel measure assigns a positive mass to the single 
point rc£(j, i.e. if n contributes discretely to the Plancherel decomposition (11) 
of L2(G). The isomorphism classes of all such irreducible, square-integrable 
representations constitute a subset ôdsczô, the discrete series of G. 

To state Harish-Chandra's fundamental results on the discrete series [1], [16], 
I select a maximal compact subgroup KczG. Any two of them are conjugate, 
and this fact makes the particular choice of K unimportant. According to Harish-
Chandra's existence criterion, the discrete series of G is nonempty if, and only if, 
K has the same rank as G—equivalently, if any maximal torus TczK is its own 
centralizer in G, or in more technical language, if G contains a compact Cartan 
subgroup. Going back to the list of examples, one finds that SI (/7, J?) has a discrete 
series only for n = 29 SI (/?, C) never does, SO (/?, q) has one precisely when pq 
is even, and finally SU (/?, q) and Sp (n, R) always have a discrete series. 

In case G satisfies the criterion, and subject to a minor restriction which will 
be mentioned presently, Harish-Chandra's parametrization of the discrete series 
establishes a bijection 
(15) tf'-Grfs 

between a subset R' of Ê and the discrete series Gds. It assigns to the character 
X of a representation in R' a discrete series character 09 whose restriction to 
K is given by the formula 

06) 0K = ± £ ; 

here D denotes a universal denominator, independent of i, and itself a linear 
combination of irreducible characters of K. The Weyl character formula for K 
identifies K with a lattice, divided by the action of a finite linear group. In terms 
of this description, K' corresponds to the complement, in the lattice, of a finite 
number of hyperplanes. As was remarked already, the parametrization (15) does 
not apply to an arbitrary semisimple G; however, it does apply to some finite 
covering of any given G. This restriction is quite innocuous, since the discrete series 
for G may be viewed as a subset of the discrete series for the covering group. 

The discrete series provides a basic repertory of representations, from which 
others can be constructed. To be more concrete, I shall need the notion of Cartan 
subgroup. It is most easily defined for a linear semisimple group G: Cartan sub
groups are then Abelian, they consist of group elements that can be diagonalized 
over C, and are maximal subgroups with respest to these two properties. One can 
classify the conjugacy classes of Cartan subgroups [20], [28]; in particular, they are 
finite in number. 

To each conjugacy class, Harish-Chandra attaches a series of irreducible unitary 
representations [17]. If there exists a—necessarily unique—conjugacy class of 
compact Cartan subgroups, the corresponding series is the discrete series. The other 
series are obtained by an induced representation process, starting from discrete 
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series representations of subgroups of G. In this construction, distinct conjugacy 
classes of Cartan subgroups lead to non-overlapping series of representations. 
Although the terminology is by no means standard, I shall call a representation 
generic if it belongs to one of the series, and otherwise special. Both types actually 
occur, unless G is compact, in which case â=ôds. 

The crowning achievement of Harish-Chandra's program is a solution of problem 
(12b). Perhaps the explicit, somewhat complicated description of the Plancherel 
measure p. [17] matters less than the nature of the answer. To begin with, p has 
the set of generic representations as support. Each of the various series is para
metrized, roughly speaking, by the product of a lattice with a vector space, divided 
by the action of a finite linear group. It therefore carries a distinguished measure, 
namely the one derived from the invariant measures on the two factors. The restric
tion of p to the series in question is completely continuous with respect to this 
distinguished measure. The ratio of the two measures reflects the rate at which the 
matrix coefficients of the representations in the given series decay at infinity, a fact 
which is a crucial ingredient of the actual computation of the measure. 

Since the Plancherel measure completely disregards the special representations, 
these become irrelevant as far as the decomposition of L2(G) is concerned. They 
are quite important from other points of view, and I shall come back to them later. 
In any case, L2(G) is made up of generic representations, which are described, 
in Harish-Chandra's construction, in terms of their characters. Thus Harish-
Chandra's theory accomplishes for semisimple Lie groups what Weyl's theory did 
for compact Lie groups. I should point out, however, that the technical difficulties 
are immensely greater. In my very condensed summary, I have broken down Harish-
Chandra's program into three major components: the study of characters, the 
construction of the discrete series, and the determination of the Plancherel measure. 
Each of these is a large and elaborate edifice. 

A brief historical remark: the idea that various series of representations should be 
attached to the conjugacy classes of Cartan subgroups made its first appearance 
in the work of Gelfand and his collaborators on the complex classical groups and 
the real special linear group. In general, it was conjectured—and of course later 
worked out—by Harish-Chandra. His address at the 1954 Congress in Amsterdam 
already gives a glimpse, in very rough outline, of his entire program. 

To understand the structure of representations of compact Lie groups, one in
vestigates their restrictions to a maximal torus. In the context of semisimple groups, 
there is a similar device, namely to break up representations under the action ol 
a maximal compact subgroup KaG. When restricted to K9 every nÇ.ô becomes 
a direct sum of irreducibles, each occurring with finite multiplicity; in symbolic 
notation, 
(17) n\K= © nr(w).T. 

The analogy with the compact case, as well as examples of low dimensional non-
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compact groups [3], [5] suggest that the pattern of the multiplicities nr(n) is an 
important invariant of n. 

Generic representations either belong to the discrete series, or are constructed, 
by a well understood procedure, from discrete series representations of subgroups 
of G. Structural questions about generic representations therefore come down 
to questions about the discrete series. A conjecture of Blattner, now a theorem [18], 
describes the ^-multiplicities nx(n)9 for every discrete series representation n. 
According to the conjecture, of the various z^R which appear in the restriction 
n\K9 one is lowest, in an appropriate sense, and occurs with multiplicity one. The 
theorem of the lowest K-typet counterpart to the theorem of the highest weight, 
asserts that this feature characterizes the discrete series representation n uniquely, 
among all irreducible representp'ions [24]. It can be quite difficult, if not impossible, 
to check directly whether a representation is square-integrable. The theorem of the 
lowest .Tv-type provides a useful criterion, of an essentially algebraic nature. 

The problem of realizing discrete series representations concretely is closely 
related to the theorem of the lowest K-iype. If G has a discrete series, it contains 
a compact Cartan subgroup T9 which is in particular a maximal torus. Just as 
in the compact case, the quotient G/T can be turned into a homogeneous complex 
manifold, noncompact of course, unless G itself is compact. Every character 

a: T-+C* 

again determines a homogeneous holomorphic line bundle 

2* - GIT. 

By tianslation, G acts unitarily on yf(J?a), the Hilbert space of square-integrable, 
holomorphic sections. Long before the discrete series was fully understood, Harish-
Chandra showed that for certain characters 0,2^(3?^ is nonzero; the resulting 
representation is then necessarily irreducible and belongs to the discrete series [12]. 
Unfortunately this construction gives only a relatively small part of the discrete 
series, and for some groups G it even gives nothing at all. To produce a realization 
of every discrete series representation, one must turn elsewhere. 

The first explicit suggestion was made by Langlands: one should consider also 
the higher3 L2-cohomology groups Jf k(J5?ff), i.e. the spaces of harmonic, square-
integrable, J£?ff-valued (0, /c)-forms on G/T. If G/T happens to be compact, the 
Hodge theorem identifies Jt?k(£f0) with the /cth sheaf cohomology group of S£a. 
Such a simple connection between L2-cohomology and sheaf cohomology does not 
exist in general, for noncompact G, but in any case J^k(^a) is a Hilbert space, 
on which G operates as a group of unitary transformation. Guided by the analogy 
with the Borel-Weil-Bott theorem, and also by curvature computations of Griffiths, 
Langlands conjectured that all of the L2-cohomology groups should vanish for 

3 For k = 0, 2te*(Sea) coincides with 2/C{Se^. 
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special choices of o-; in the remaining cases, ^fc(JS?J was to be nonzero for exactly 
one integer k=k(a)9 and G was to act according to a representation of the discrete 
series. In this manner, one would be able to realize every discrete series representa
tion, but usually not with k(<j)=Q. The conjecture has in fact been proved, by an 
argument which reduces it to the theorem of the lowest K-typo [25], 

In order to verify the conjecture, one must somehow exhibit squareintegrable 
harmonic forms. The proof in [25] relies on Harish-Chandra's construction of the 
discrete series to overcome this analytic problem. Instead, one can also base a proof 
on Atiyah's LMndex theorem, in combination with the Atiyah-Singer index theorem. 
An argument, showing that Langlands' conjecture accounts for all of the discrete 
series, goes hand in hand with the existence proof. The outcome4 is an alternative, 
more geometrically oriented approach to the main results on the discrete series [1]. 

I shall conclude with some remarks about special representations. This will also 
give me an opportunity to touch on some important points which have been passed 
over so far. To describe what is known, one must look beyond the class of unitary 
representations. Indeed, techniques which are designed to deal with unitary repre
sentations very often lead naturally into questions about nonunitary representations. 

A representation n of G on a Banach space is said to be admissible if every 
T£Ê occurs at most finitely often in the restriction of n to K. Irreducible unitary 
lepieseiiLaüoiib auLoiuciuually Lave um» piupeiLy, it lcuiciim uiikiiuwii whether 
all irreducible Banach representations are admissible. To simplify the terminology, 
when I speak of an irreducible representation, I shall always mean an irreducible 
admissible representation on a Banach space. 

In the finite dimensional case, there exists a well understood, very useful relationship 
between representations of the group and those of the Lie algebra. Such a relationship 
exists also for infinite dimensional representations, but this involves some subtleties. 
Let n be an irreducible representation, on a Banach space B. The analytic vectors— 
those vectors v£B for which 

g*-+n(g)v 

is a real analytic mapping from G to B—form a dense subspace B^ciB. The Lie 
algebra g of G acts on Bœ by differentiation, but the resulting representation 
of g is "too large"; in particular, it fails to be irreducible. The most natural 
way to pick out an irreducible subrepresentation is to pass to the space of infinite 
vectors B0, i.e. to the linear span of all finite dimensional ^-stable subspaces 
of B. It is contained in Bm, dense in B, g-invariant, and algebraically irreducible 
as g-module. In this manner, one attaches to each irreducible representation of the 
group an irreducible representation of the Lie algebra [9]. 

A side remark is perhaps appropriate at this point. Hermann Weyl repeatedly 

4 For minor technical reasons, the construction in [1] works with harmonic spinors on GIK, 
rather than La-cohomology. 
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emphasized the fact that his methods were purely global; he studied representations 
of the group directly, without reference to the Lie algebra. My very brief account 
of Harish-Chandra's work may have fostered the impression that his approach is 
equally global. Quite to the contrary, infinitesimal arguments play an important 
role in many of his proofs. 

The definition of character (14) seems to depend on the Hilbert space structure 
of the representation space. However, with relatively minor modifications, it makes 
sense also for representations on Banach spaces: every irreducible representation 
n has a character 0n9 which is again an invariant eigendistribution. The characters 
of two irreducible representations %l9 TU2 coincide precisely when the corresponding 
Lie algebra representations are algebraically isomorphic [10]. In this case, n-^ and 
TT2 are said to be infinitesimally equivalent; loosely speaking, they look alike, except 
possibly for the topology on the representation spaces. 

In the case of unitary representations, infinitesimal equivalence implies that the 
representations in question are actually isomorphic [9]. An irreducible representation 
on a Banach space can thus be infinitesimally equivalent to at most one unitary repre
sentation. If it is, one calls the representation unitarizable. To classify the irreducible 
unitary representations—or what amounts to the same, the special representations, 
since one already knows the others—, it suffices to 

(a) classify the irreducible representations on Banach spaces, 

(18) up to infinitesimal equivalence, and 

(b) determine which are unitarizable. 

The first of these two problems has been solved by Langlands [22], and in somewhat 
different form also by Vogan [31]. Langlands classifies representations in terms of 
the growth behavior of their matrix coefficients. This has the effect of reducing the 
problem to the classification of a smaller class of representations, which was worked 
out by Knapp-Zuckerman [19]. Vogan's classification involves a very detailed 
study of how representations break up under the action of K. Each irreducible 
representation has a lowest -K-type, which occurs with multiplicity one. The meaning 
of "lowest", however, is weaker than in the context of the discrete series, and the 
lowest jRT-type alone does not suffice to characterize an arbitrary irreducible represen
tation uniquely. 

In principle, (18b) is a purely algebraic problem, but apparently a difficult one, 
and no solution is yet in sight. If a representation is to be unitarizable, it must 
satisfy certain fairly obvious necessary conditions. This gives at least a partial 
answer to (18b), and hence some information about special representations— 
virtually the only information that is known at present. 

Why is one interested in the special representations? The problem of decomposing 
function spaces on quotients of G reveals perhaps the best explanation. Every 
quotient G/U, by a closed unimodular subgroup UczG, carries an invariant 
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measure, and so G acts unitarily on L2(G/U). Whenever U is compact,-one can 
embed L*(G/U) into L*{G), 
(19) L*(G/U)^L*(G), 

by pulling back functions from G/U to G. In this way, the Plancherel decomposi
tion of L2(G) leads to a decomposition of L2(G/U). If U is non-compact, on 
the other hand, no inclusion (19) exists, and it becomes an entirely separate problem 
to express L2(G/U) as a direct integral of irreducible representations. In particular, 
special representations can and do contribute to the decomposition of L2(G/U). 

The most important case is that of a discrete subgroup f c G , such that G/T 
has finite volume; an arithmetic subgroup, for example. One can then use the 
Selberg trace formula to analyze L2(G/T). Although much work is being done in 
this direction, to understand L2(G/T) remains a distant goal. 
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