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EXTREMUM PROBLEMS A N D VARIATIONAL 
METHODS IN CONFORMAL MAPPING 

By MENAHEM SCHIFFER 

1. Introduction 

One fundamental problem in the classical theory of conformai map­
ping was the study of the various types of canonical domains upon which 
any domain, arbitrarily given in the complex plane, can be mapped 
conformally. The first question to be settled was, therefore, the existence 
of various types of canonical mapping functions. From the beginning, 
methods of the calculus of variations were applied in order to establish 
the necessary existence theorems. The role of the Dirichlet principle in 
the attempted proof of Biemann's mapping theorem for simply con­
nected domains is well known and also the influence of its initial failure 
upon the critical period of the calculus of variations and upon the 
development of the powerful modern direct methods in this important 
branch of analysis. The existence proofs for canonical conformai map­
pings by means of extremum problems like the Dirichlet principle are 
so difficult because they characterize the sought mapping function, which 
is analytic and univalent, as the extremum function in a much wider 
class of admissible competing functions. The latter class is so large 
that the main labour in the proof is spent in establishing the existence 
of an extremum function of the variational problem considered. 

The theory of conformai mapping advanced considerably when one 
started a systematic study of the univalent analytic functions in a given 
domain; that is, the class of those functions which realize the various 
conformai mappings of that domain. The main result of this theory is 
that all univalent functions in a given domain form a normal family. 
This fact leads easily to the consequence that for each reasonable 
extremum problem within the family of univalent functions there exists 
at least one element of the family which attains the extremum con-
sidered[20l On the basis of this theory, very elegant proofs could be 
derived for the Riemann mapping theorem and for the existence of 
numerous other canonical mappings. The characteristic difficulty of 
the new approach, that is to study extremum problems within the family 
of univalent functions, lies in the fact that the univalent functions form 
no linear space; hence, it is not at all easy to characterize an extremum 
function by comparison with its competitors by infinitesimal variation. 

14-2 
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In each particular existence proof a special comparison method had to 
be devised and the essential step of the whole proof was the character­
ization of the extremum function by this particular variation. 

It is possible to develop a systematic infinitesimal calculus within the 
family of univalent functions. In 1923 Löwner gave a now classical 
partial differential equation which has as solutions one-parameter 
families of univalent functions which admit a very simple geometric 
interpretation1183. I showed in 1938 that the univalent extremum 
functions do satisfy in very many cases a first-order differential equation 
and gave a standard variational procedure for establishing these 
ordinary differential equations[26]. In the following years, Schaeffer and 
Spencer applied this variational procedure systematically to the coeffi­
cient problem for functions univalent in the unit circle and developed 
an extensive theory for it̂ 22»23»243. Golusin applied the same variational 
technique to numerous questions of geometric function theory [7'8]. 
The significance of extremum problems for the general theory of con-
formal mapping is evident. The great number of possible conformai 
mappings of a given domain precludes the study of all of them; how­
ever, important individual mappings can be singled out as solutions of 
extremum problems and can be described geometrically and analytically 
just because of their extremum property. The remaining amorphous 
mass of conformai mappings is subjected to all the inequalities which 
flow from the solutions of the various extremum problems and is, thus, 
at least partially characterized. 

In the present paper we shall try to give a brief survey of the basic 
methods of variation within the family of univalent functions. By 
discussing a few important extremum problems, we will show the 
flexibility of the technique. It will appear that the variational method 
provides very often an elegant and useful transformation of the extre­
mum problem but leads sometimes to functional equations whose 
solution is a deep problem again. It is clear that the field of research 
described is by no means completely explored and exhausted and that, 
because of its interest from the point of view of applied as well as of pure 
mathematics, it deserves the continued attention of mathematicians. 

2. Variation of the Green's function 

The simplest approach to the calculus of variations for univalent 
functions seems to lead through the theory of the Green's function of a 
domain and its variational formula. Let D be a domain in the complex 
z-plane whose boundary C consists of n closed analytic curves and let 
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g(z9 £) be its Green's function with the source point £. We consider the 
conformai transformation 

eza/)2 

z*(z)=z + —Z- (z0eD,p>0). (1) 
Z-ZQ 

This mapping is univalent in the domain \z — zQ\ > p; hence, for small 
enough p it will be univalent on G and transform it into a new set (7* 
of n closed analytic curves which bounds a new domain D*. We denote 
the Green's function of D* by g*(z, Q and wish to express it in terms of 
g(z,Q. We observe that y(z, Ç) = g*(z*(z), £*(£)) is a harmonic function 
in the domain Dp which is obtained from D by removal of the circle 
\z — z0\ < p. y(z, Q has a pole for z = £ and vanishes on the boundary 
curves G of Dp. We choose two fixed points £ and rj in Dp and apply 
Green's identity in the form 

2^ I >\jfog{*,y)y{z>Q-gb>y)^ (2) 

Here, c denotes the small circumference \z — zQ\ = p. Observe now that 
the integration takes place only over the circumference c since both g 
and y vanish on 0. 

In order to simplify (2), we introduce the analytic functions of z 
whose real parts are g(z, rj) and g*(z9 Q, respectively, and denote them by 
p(z, 7j) and p*(z9 £). These functions have logarithmic poles at rj or £ and 
have also imaginary periods when z circulates around a boundary con­
tinuum. It is now easy to express (2) in the form 

g*(£*, v*)- flf(& v) = Re {ajs §**(**> £ * ) d ^ 9)} • (3) 
This integral equation for g*(£*9 TJ*) in terms of g(Ç9 y) must now hold 

for the most general domain D which possesses a Green's function at all. 
Indeed, such a domain D may be approximated arbitrarily by domains 
Dv with analytic boundaries Gy for which the identity (3) is valid. If D 
and Dv go under the variation (1) into the domains D* and Z>*, then the 
D* will likewise approximate Z>*. Since (3) holds for all approximating 
domains and since at £, TJ and on c the Green's functions of Dv and D* 
converge uniformly to the Green's functions of D and D*, respectively, 
the formula (3) must remain valid in the limit and is thus generally 
proved[31]. 

We may apply Taylor's theorem in the form 
pioc/j2 

p*(z*, £*) = p*(z, P) +p*'(z, £*) — ^ + 0{p% (4) 
z — zn 
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where the residual term 0(p4) can be estimated equally for all domains 
D which contain a fixed subdomain A which, in turn, contains the point 
£ and the circle c. Thus, inserting (4) into (3) and using the residue theorem 
we obtain after an easy transformation 

g*(P,v*) = 9(^v)+^{^pY(^0pf(^v)}+0(p% (5) 

where again 0(p4) can be estimated equally as above. Finally, using 
Taylor's theorem again, we can reduce (5) to[27'28] 

g*& v) = 9(£, v)+Re {«v[V fc» Qp'izo, v) - ^ $ -^z^]}+°0°4)-
(6) 

In the preceding, we have restricted ourselves to the particular 
variation (1) for the sake of simple exposition. It is clear that a corre­
sponding formula can be established for each variation z* = z+p2v(z), 
where v(z) is analytic on the boundary G of the varied domain. On the 
other hand, such a general variation can be approximated arbitrarily 
by superposition of elementary variations of the type (1). Indeed, for 
most applications the formulas (1) and (6) are entirely sufficient. 

A remarkable transformation of (6) is possible if the boundary C of 
D is a set of smooth curves. Indeed, we may express (6) in the form 

g*(Z,v)-9&n) = Re [eiaP2Wilf{Z'z-zf
 V) dz)+°W- W 

We observe that the real part of p(z, £) is the Green's function g(z, K) 
and that it vanishes, therefore, on G. Let z' = dzjds denote the tangent 
vector to G at the point z(s); it is easy to see that 

and hence (7) may be given the real form 

with ^ « R e / i y ^ J ^ j . (9) 
\%z z — z0) 

Clearly, 8n denotes the shift along the interior normal of the boundary 
point zeC under the variation (1). 

By linear superposition of elementary variations (1), formula (8) can 
be proved for very general ^-variations of the boundary curves G. 
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This formula was first given by Hadamard in 1908C11] and has been very 
frequently used in applied mathematics because of the very intuitive 
and geometric significance of the normal displacement of the boundary 
points. We may mention, in particular, Lavrentieff's systematic use of 
boundary deformations in many problems of fluid dynamics and con-
formal mapping116»173. 

If D is a simply connected domain there exists a close relationship 
between the Green's function of D and the univalent function <fi(z) 
which maps the domain D onto the exterior of the unit circle. In fact, 
we have 

g(z, £) = log 
#0-fl£) 

(10) 

Julia used this interrelation in order to derive from the Hadamard 
formula (8) a variational formula for univalent functions[15]. This very 
intuitive and elegant formula, however, cannot be applied directly to 
the study of extremum problems in the theory of conformai mapping. 
In fact, one cannot assert a priori that the extremum domain D will 
possess a boundary G which is smooth enough to admit a variation of 
the Hadamard-Julia type. 

3. Infinitesimal variations and extremum problems 

We are now in a position to construct, by means of the fundamental 
formula (6), in any given domain D, univalent mappings which are 
arbitrarily close to the identity mapping. We have to assume only that 
the boundary G of D contains a non-degenerate continuum Y. Let D(Y) 
denote the domain of the z-plane which contains the domain D and the 
point at infinity and which is bounded by Y; let g(z9 £) denote now the 
Green's function of D(Y). We choose an arbitrary but fixed point z0 e D 
and subject D(Y) to a variation (1) which transforms it into the varied 
domain D(Y*) with the Green's function g*(z9 £). The relation between 
g*(z9 £) and g(z, £) is given by the variational formula (6). 

Let w = <j)(z) be univalent in D(Y)9 normalized at z = oo by the 
requirement ç5'(oo) = 1, and let it map D(Y) onto the domain \w\ > 1. 
Analogously, we define w = 0*(z) with respect to the domain D(Y*). 
By virtue of the relation (10), we have obviously 

g(z,œ) = log\<f>(z)\, g*(z,cQ)=lag\4*(z)\; (11) 

these relations permit us to connect çJ*(z) with $(z) by use of (6). 
The function , x ,* l r , , X1 /lftX 

v(z) = ^ [ ç K * ) ] (12) 



216 MENAHEM SCHIFFER 

is analytic and univalent in D(Y) and hence, a fortiori, in D. A simple 
calculation based on (6) and (11) shows that 

Lz-Zo îMz)çKzo)[0(z)-çKzo)]J 

+ e-V jjWflg_ + 0 ( / 94) . (13) 

Since p can be made arbitrarily small, we have in (13) the representation 
for a large class of univalent variations of the domain D considered. We 
will now show that this set of variations is general enough to charac­
terize the extremum domains for a large class of extremum problems 
relative to the family of univalent functions. 

We shall consider extremum problems of the following type. Let T 
be a domain in the complex Spiane which contains the point at infinity 
and which is analytically bounded. We denote by F the family of all 
analytic functions f(t) in T which are univalent there, have a simple pole 
at t = oo and which are normalized by the condition f'(co) = 1. Let 
$Ui be a real-valued functional defined for all analytic functions f(t) 
in T. We suppose that <j)[f\ is differentiable in the sense that for an arbi­
trary analytic function g(t) defined in T 

W+egl = m + K*{*ftf,g$ + 0<?) (14) 

holds, where ^ is a complex-valued functional of/ and g, linear in g. 
We suppose that the residual term 0(e2) can be estimated equally for 
all analytic functions g(t) which are equally bounded in a specified 
subdomain of T. Thus, we require for ç5[/] the existence of a Gâteaux 
differential with the above additional specifications. 

We assume also that ç5[/] has an upper bound within the family F. 
Then, in view of the normality of this family, it is easy to show that 
there must exist functions f(t) e T for which <f>[f] attains its maximum 
value within F. We can characterize each extremum function by sub­
jecting it to infinitesimal variations and comparing ç5[/] with the 
functional values of the varied univalent elements of the family. Indeed, 
by means of the functions (13) we can construct the competing functions 
mF r(t) = v[f(t)].vf(<x>)-\ (15) 

where z = f(t) maps the domain T onto the extremum domain D in the 
z-plane. An easy calculation yields 

0L/*] = $[f] + 'Re{ei«p*A + e-i«p*B} + 0(p% (16) 
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with 
A = I V _ 1 f(z0)

2<f>(z) "I 

^ L ' z - Z o P(*W*o)W*)-M*o)U 

" L ç4'(z) ç5(z0) [1 - <t>{z0) <f>(z)] 4>{z0f J J 

(*=/(*)•). (17) 

Since the extremum property of / requires ç5[/*] < ç5[/] and since p 
and e*a are at our disposal, we can easily conclude A + B = 0, that is 

H>^ä&- *$ - - ] 
+ 

, / j z ^ ) ^ o ) i . ^ r , ^(^)^fa)-1 i a8v 

Before discussing the consequences of (18), we introduce some more 
elementary variations in F which will allow us to simplify the result (18). 
We map the domain D(Y) onto \w\ > 1 by means of the function 
w = <f)(z)-9 we then turn this circle into itself by the linear mapping 
wx = eiew and return to the z-plane through 0_1(Wi). Thus, the function 

Vl(z) = e - ^ - V ^ z ) ] (19) 

is univalent in D(Y) and hence in D. For small e9 we have the series 
development in e rrh(\ 1 

Vl(z) = z + ie^L-zj+0(e*). (20) 

Since/*(£) = vx[f(t)] is an admissible competing function in F9 we deduce 
easily from the extremum property of f(t) and from the freedom in the 
choice of the real parameter e 

*$-] real. (21) 

Another possible infinitesimal variation is obtained by 

^ ) = (l + e)-1ç5-1[(l+e)ç5(z)] (e > 0). (22) 

In fact, we may map D(Y) onto \w\ > 1, magnify the unit circle by a 
factor (1 + e) and return through ijr^w) to the z-plane. The function 
f*(t) = v2[f(t)] lies also in F and from the extremum property of f(t) 
we deduce by use of (21) the inequality 
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We return now to formula (18) and observe that in view of (21) 

^Amwh^-^- (24> 
In order to simplify the discussion we shall assume that 

+bï^ï=W(zo) 

is a meromorphic function of zQ; this is, indeed, the case in most applica­
tions. We put z = t/r(w)9 where i/r is the inverse function of w = <fi(z)9 

and obtain from (24) the boundary relation 

Mm W[f{w)] w*i/r'(wf = real, (25) 

for the function i/r(w) which is analytic ia\w\ > 1 and maps this circular 
domain onto D(Y). By the Schwarz reflection principle, the function 
W[ifr(w)]w2ifr'(w)2 can then be continued analytically into the domain 
\w\ ^ 1. Thus, ijr(w) satisfies a first-order differential equation with 
analytic coefficients in the entire w-plane. This fact shows that Y is 
composed of analytic arcs and the same holds for the boundary G of 
the extremum domain D:C is composed of analytic arcs. 

In order to complete the argument we need a last elementary variation. 
We again map JD(Y) onto the domain \w\ > 1 by means of ç5(z). The 
function „,2 

w\ o)=p(w) = w + -^ (K| = l) W 
w 

maps the circular region \w\ > 1 onto the w-plane slit along the segment 
between the points — 2w0 and + 2w0. It is then easily seen that, for e > 0, 

w1=p-1[(l + e)p(w) + 2ew0] = w + eW^W^W°Ko(e2) (27) 

provides a mapping o£\w\ > 1 onto the same circular region from which 
a small radial segment issuing from the periphery point wQ has been 
removed. The function 

^>=(^>^ )+eT)%t)0>W)] 

is then normalized at infinity and univalent in D. Hence, f*(t) = v3[f(t)] 
is again a competing function in our extremum problem, whence 

Re tt-mm-i« 
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But observe that the left side of (29) coincides with the right-hand term 
of (18) since zQ e Y. Hence, we have proved 

*[mNFH$&*0 <2°£r)- (30) 

Since \<fi(z)\ = 1 for ze Y we have logç$(z) = imaginary on Y and, 
consequently, wé can write on each analytic arc of Y 

f </>'(%) . , dz /ft,v 
2 W) = i m a g m a i y ' Z=ds- (31> 

Thus, we may express (30) also in the form 

*[mû^(ÏÏ>0 on °- (32) 

In this final form the characterization of the extremum domain has 
become independent of the choice of the subcontinuum Y. The boundary 
arcs of G are determined by a first-order differential equation involving 
the meromorphic function W(z) defined above. 

Under our assumptions made regarding the functional $\z, l/(z — z0)] 
it is also easy to prove that the extremum domain cannot possess 
exterior points. For, suppose zQ were an exterior point of an extremum 
domain D. In this case, the mapping (1) itself would be an admissible 
univalent variation for p small enough and the extremum property of 
f(t) would imply 

Re(e-p2f ^ , _ _ J J + 0(p4) ^ o, (33) 

(34) whence easily ft z, = 0. 
L z ~" zoJ 

But if, as supposed, iff is a specific meromorphic function W(z0), not 
identically zero, this result is impossible since (34) would imply by 
analytic continuation that W(z0) = 0[19]. Thus, we have proved the 

Theorem. The extremum domain of the extremum problem <f>[f] = max 
within the family F is a slit domain bounded by analytic arcs. Each 
satisfies the differential equation: 

where r is a properly chosen real curve parameter. 
This theorem was proved originally[26] by means of rather deep 

theorems of measure theory. It can be derived in elementary manner 
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from the variational formula for the Green's function as shown here. 
I t permits now a systematic and unified treatment of numerous extre­
mum problems of conformai mapping. The extremum domain can be 
determined either by integrating the differential equation (35) for the 
boundary slits or by solving the differential equation implied by (25) 
for the functions ft(w) which map the circular domain \w\ > 1 onto the 
domains D(Y). The latter procedure is particularly convenient in the 
case that the original domain T is simply connected. 

4. The coefficient problem 

The best studied extremum problem in conformai mapping is without 
any doubt the coefficient problem for the functions univalent in the 
unit circle. We consider all power series 

f(z) = z + a2z
2 + ...+anz"+...9 (36) 

which converge for \z\ < 1 and which represent univalent functions. 
Bieberbach stated the conjecture 

Kl < n. (37) 
Since the 'Koebe function' 

7-l— = z + 2z2+...+nzn+... (38) 
(1 — zf 

is indeed such a univalent power series, this function would seem to be 
the solution of an infinity of extremum problems. Because of its simple 
formulation the conjecture (37) has attracted the attention of many 
analysts. Bieberbach himself proved (37) in 1916 for n = 2[2]; Löwner 
proved the case n = 3 in 1923[18] and Garabedian and Schiffer proved the 
case n = 4 in 1955[5]. These proofs are to be considered as tests for our 
technique in handling extremum problems of conformai mapping and 
the main significance of the coefficient problem is indeed that it raises 
a challenge to our various methods in this field. We want to give a brief 
survey of variational methods applied in this problem. 

We define a sequence of polynomials Pn(x) of degree (n— 1) by means 
of the generating function 

^ r r ^ K + ̂ W ] ^ (A(*) = 0). (39) 

We note down the first few polynomials 

P2(x) = x9 PQ(x) = 2a2x + x2
9 Pé(x) = (2a3 + a\)x + 3a2#

2 + xz. (39') 
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A simple application of the reasoning in the preceding section leads to 
the following result. Let f(z) be a univalent function which maximizes 
\an\ ; we can make the permissible assumption an > 0. Then/(z) satisfies 
the differential equation[27] 

z2/ '(z)2
p f ! 1 _ ! , 2a2 3^3 (n-^a^ 
nlf(z)J z^-^zn-f(z)2 nLf(z)j z71"1 zn~2 zn~* 

+ (n-l)an + (n-l) an_xz+... + 3ä3z™-3 + 2ä2z
n~2 + zn~x. (40) 

The right side as well as the polynomial Pn(x) depends on the coefficients 
of the unknown function f(z); hence, (40) represents a rather com­
plicated functional equation for the extremum function sought which 
has been solved until now only in the cases n < 4. 

We may attack the functional equation (40) as follows. It is easily 
shown in all cases n < 4 that the extremum function w = f(z) maps the 
domain \z\ < 1 onto the entire w-plane slit along a single analytic arc 
T which runs out to infinity. We consider then the analytic functions 

w=f(z9t) = et[z + a2(t)z
2+-..+an(t)z" +. . . ] , (41) 

which map \z\ < 1 onto the w-plane slit along infinite subarcs Yt of Y. 
We can read off from (40) that Y satisfies the differential equation 

and evidently the subarcs Yt satisfy precisely the same equation. Using 
next the Schwarz reflection principle, we can show that the functions 
f(z91) satisfy differential equations which are very similar to (40) ; namely 

%^P^J^r\- S1 Av(t)zv = q(z9t)9A_v(t)=ÄM. (43) 
/ ( M r L/(M)J y=-(n-i) 

We may transform (43) into 

Löwner has shown[18] that the functions/(z, t) which represent the unit 
circle on a family of slit domains with growing boundary slits Yt of the 
above type satisfy the partial differential equation 

m^ = zl+J^dfpt) mwmtàmouB,\K\-l). (45) 
dt l—K(t)z oz ' 
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Thus, differentiating (44) with respect to t and using (43) and (44) we find 

/r . ,.-\+KZ /r . X^I+KZ0 lCzdq(z,t) 1 dz /Jn. 

^ 8 ' ' ) ] ì=S-^^'WìZ^-2 j % ^7bfeOÌT- (46) 

Differentiating (46) again with respect to z, we find after simple re-

arrangement 1 + Kzdq{z,t) 4 « 
-äT" zi-/cZ 3Z

 + ( T ^ * ( M ) - <47> 

On the other hand, q(z, t) is a simple rational function of z as is seen from 
its definition (43). When we insert its expression into (47) and compare 
the coefficients of equal powers of z on both sides, we obtain 

A A (f\ v-l 

^fi = vAv(t) + 2 S ( 2 i ; - / O V - ' . (48) 
at / t = _( n _i ) 

In order that Av(t) = 0 for all v ^ n it is necessary and sufficient that 
n—1 n—1 

S ^ K - / * EE 0, S M/*/c~/4 s ° identically in £. (49) 
/t=— (n—1) /*=—(w—1) 

These conditions guarantee also that A_v = Avis fulfilled for all values of t. 
We observe that the equations (48) for v = — 1, — 2, ..., — (n — 1) give 

(n—l) differential equations for the corresponding functions Av(t); 
their coefficients depend in a very simple manner on K(t). The function 
K(t)9 in turn, can be determined from the Av(t) by means of the second 
equation (49), which can be written in the form 

Imf S / ^ / c - / 4 = 0. (50) 

Thus, A_1,A_%, ...,A_n_1 and A: satisfy a well-determined system of 
ordinary differential equations. 

Let us start with the case n = 3. The differential system to be con­
sidered is , A ... j A ... . 

*%«3~*U* ^ 8 - ^ ( 0 . (51) 
Im{2J._2/c

2 + ^_1/c} = 0. J 

We can integrate immediately and find 

A_2(t) = <%2 e~
2<, ^_x(£) = oct e-K (52) 

Since for t = 0 the function q(z9 0) coincides with the right side of (40) 
for n = 3, we determine the constants of integration as follows: a2 = 1, 
ax = 2a2. Thus, tc(t) satisfies the equation 
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From the general Löwner theory it is well-known that 

/•oo 

e~ldt. (54) 

We have to utilize now the inequality |a3 — a| | < 1 which follows from 
the elementary area theorem. Since we assume a3 ^ 3 we can assert 
Re {al} ^ 2 and see that the left side of (53) cannot vanish for 0 < t < oo. 

We wish to show next that af = real in consequence of (53) and (54). 
Indeed, if af were not real, equation (53) would exclude the possibility 
K = ± sgna2 and the expression Im{/c(£) a2} could never change its sign. 
Consequently ^ 

J Im{2^)a 2 }e-^Ä = - Im{ |a 2 | 2 } (55) 

could not be zero, which yields a contradiction. Thus, af = real and in 
consequence of the area theorem even a\> 2 holds; hence, we conclude 
a2 = real. From (53) follows then easily that K must be real throughout 
and it can be shown that a3 = 3. 

The above proof for \a3\ < 3 is more complicated than Löwner 's 
original proof which made use only of the formula (45). I t can, however, 
be generalized to the problem of a4 though it becomes in this case still 
more complicated. The differential system becomes now 

Im {3A_3K* + 2A_2K* + A_XK] = 0. 

(56) 

We find A_z = a3e~Bt and, since ^4_3(0) = 1, we have A_z = e~3t. We set 

UP A_2(t) = a2(e-<) e~2K A_x(t) = *i(e-*) <r*\ (57) 
inserting into (56) and putting cr = e~l, we arrive at the differential 
system doc (cr) doc ( ( r) ^ 

f f = 2K, —f^ = - 2K2(T (0 < <r < 1), 
da der I (58) 

Im {3/c3cr3 + 2<x2(or) K2CT2 + oc^cr) KO) = 0. d 

A simple calculation leads to the boundary conditions 

aa(0) = 3a2, a1(0) = 2a3 + a2,) 
\ (59) 

a2(l) = 2a2, a ^ l ) = 3a3. J 
Those for cr = 1, £ = 0 are obvious; those for cr = 0, t = oo follow by 
comparison of coefficients of powers of e~l in (43) and by passage to the 
limit t = oo. 
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The differential system (58), together with the boundary conditions 
(59), represents a typical Sturm-Liouville boundary value problem. 
We have to start integration of (58) with such initial values ax(0) and 
a2(0) that we end up at the other end of the interval considered with 

<*iU) = K«i(0) - WO)2], «,(1) = W«)- (6°) 

The difficulty of the problem lies in the non-linear character of the 
equations and of the boundary conditions. Each possible set ax(0), a2(0) 
determines a set of possible values a2, a3. Clearly, a2 = 2, a3 = 3 and 
K(CT) == — 1 is an admissible solution which leads to the Koebe function 
(38), the conjectured extremum function. 

The question arises now whether the corresponding special values 
ax(0), a2(0) connected with the conjectured extremum function might 
not be imbedded into a one-parameter family of initial values such that 
all of them lead to the boundary relations (60). For this purpose, we 
have to study the variational equations of the system (58) and of the 
boundary conditions (60). If we denote the derivatives of al9 a2 and K 
with respect to the parameter by ßl9 ß2 and iX, we find easily 

f = 4^0-, f - H A , A - ^ I m ^ A , } , 

AU) = |[A(0)-|A(0)], AU) = ÎA(0); PW) = s**- i2<r+6.J 

(61) 

We are thus led to a linear differential system with linear boundary 
conditions which can be treated by the standard Sturm-Liouville 
methods. 

It is immediately seen from (61) that À is real and that ß-^cr) and ß2(or) 
must be pure imaginary. When we introduce the new unknowns 

u(cr) = Im{ß1^2crß2}, v(a) = lm{ß2} 

the system (61) simplifies to 

du dv 1 

dï = ~2v' dï = p-(cr)U' ( 6 2 ) 

with the boundary conditions 

u(l)=iu(0)-^v(0), v(l) = f*(0). (63) 
From the differential system we derive by integration by parts the 
equality f l f l 

2 v2dcr=\ pv'2d(T + ̂ v(0)2; v(l) = fv(0). (64) 
Jo Jo 
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We may now apply the calculus of variations in order to estimate the 

[" f pv'2d<T + ^ ( 0 ) 2 1 . f" P t ^ & r T 1 = E[v] (65) 

under the given boundary condition on v(a). Even when we replace in 
(65) the polynomial p(cr) by a piecewise constant function which is 
nowhere larger than p(cr) the minimum value of the new ratio, which 
can now be computed explicitly, comes out to be larger than 2. Hence, 
a fortiori, we can assert that B[v] > 2 for all admissible v(cr) and that (64) 
is impossible. We have thus shown that the solution a2 = 2, a3 = 3, 
K(O") = — 1 cannot be imbedded into a one-parameter family of solutions 
which can be differentiated continuously with respect to this parameter. 

By a more careful analysis we may now treat differences of solution 
systems a1(cr), a2(cr), K(CT) instead of differentials. We can then delimit 
an entire neighborhood of ihe point a2 = 2, a3 = 3, K = — 1 in which no 
other solution point could be located. On the other hand, one can 
combine the area theorem with various relations between the coefficients 
of the extremum function which arise from the differential equation (40), 
in order to estimate the values |a2 — 2| and |a3 —3| in the extremum case. 
It can be seen by elementary if very tedious calculations that the point 
a& a3> KW niust He precisely in the neighborhood in which 2, 3, — 1 is the 
only solution point. This proves that the Koebe function (38) is, indeed, 
the extremum function and establishes the inequality |a4| < 4 for all 
univalent functions (36). 

The actual labor in the proof sketched here lies in the very extensive 
elementary estimations and could probably be reduced considerably 
by extending the uniqueness neighborhood through greater attention 
to the theory of the differential system (58), (59). 

It may be remarked, finally, that the Koebe function (38) satisfies the 
functional equation (40) which characterizes the extremum function 
for every n > 2. This fact tends, of course, to strengthen the evidence for 
the Bieberbach conjecture. The following fact should be mentioned, 
however, in order to caution against too great reliance on this evidence. 
One may consider the family of functions 

f{z) = z + b0 +
 b-±+^+...+b^+..., (66) 

which are univalent in the outside \z\ > 1 of the unit circle and one 
may ask for max|6w|. The same variational technique as above 
yields for the extremum functions fn(z) of this 'exterior' problem a 

15 TP 
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differential-functional equation which is analogous to (40). It is easy 
to show that the functions 

K(*) = [ 
1 -ll/(n+l) 2 1 

belong to the family considered and satisfy the extremum condition for 
the corresponding fn(z). For n = 1 and n = 2 these functions are, indeed, 
the extremum functions of the exterior coefficient problem. The estimate 
|&i| < 1 was discovered together with the area theorem[23 and |62| < § 
was established in 1938 by Golusin[6] and myself[25]. I t was conjectured 
that \bn\ ^ 2\(n +1) was the best possible estimate for the nth coefficient 
for all values of n. However, in 1955 Garabedian and Ie43 showed that the 
precise value of the maximum for |63| is not \ as expected but f + e~6. 
Thus, in spite of the fact that the function Fs(z), defined in (67), satisfies 
the rather restrictive extremum condition*, it is not the extremum 
function fs(z). Since e~6 is a small number, this example shows also how 
little empirical numerical evidence can be trusted in problems of this 
kind. Recently, Waadeland[36] has shown that quite generally 

max l&jfĉ l > ^ (1 + 2e-2Kfc+W-1>5), (67') 

while for n = 2k no counter example to the conjecture \bn\ < 2/(n+1) 
seems to be known. 

There are, of course, numerous cross-relations between the coefficient 
problem for univalent functions and the general theory of conformai 
mapping. Two examples may serve as illustrations. There is a well-
known problem in the theory of conformai mapping: given n points in 
the complex plane, to find a continuum which contains these points and 
has minimum capacity[10]. From the topology of the extremum con­
tinuum, one can derive by an elementary variation the coefficient in­
equality |62| < §[25]. Here, the general theory of conformai mapping 
helped to solve a coefficient problem. Conversely, de PosselI21] for­
mulated a simple extremum problem for the coefficients of univalent 
functions in a multiply-connected domain and showed that the extre­
mum functions mapped the domain onto a parallel slit domain. Since 
the existence of an extremum function is assured, an elegant existence 
proof for an important canonical mapping was thus established. 

5. Fredholm eigenvalues 
The problem of conformally mapping a given plane domain D can 

often be reduced to a boundary value problem for the functions harmonic 
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in D. If the boundary 0 of D is sufficiently smooth, the latter problem 
can be attacked through the Poincaré-Fredholm integral equation 

m ( Z ) = ^ ) + ^ J 0 ^ r ( l o g | ^ | ) ^ ) ^ (zeC). (68) 

In order to solve this fundamental integral equation of two-dimensional 
potential theory one has to consider the corresponding homogeneous 
integral equation 

^(2) = - J c 4 ( l 0 g R l ) M ^ {Z€C)' (69) 

its eigenfunctions <j)v(z) and its eigenvalues Xv. The eigenvalue A = 1 
occurs always and has as eigenfunctions a set of easily described functions 
on 0; we shall call this eigenvalue the trivial eigenvalue of the domain. 
The non-trivial eigenvalues A„ satisfy the inequality |A„| > 1. It is 
easily seen that with each non-trivial eigenvalue A„ also the value — Xy 

will occur as eigenvalue of (69) with the same multiplicity. We shall 
restrict ourselves, therefore, to the positive non-trivial eigenvalues A„ 
and assume them ordered in increasing magnitude. These eigenvalues 
A„ are called the Fredholm eigenvalues of the domain D and they are of 
importance for the potential theory and the function theory of the 
domain considered. 

I t is, for example, of great interest to obtain a lower bound for the 
first eigenvalue Ax of a given domain. Such information would enable us 
to estimate the speed of convergence of the Neumann-Liouville series 
which solves the basic equation (68). The larger Ax can be asserted to be, 
the easier the numerical work for the solution of the boundary value 
problems in the potential theory for D. Thus, the A„ seem to be a set of 
functionals of D which deserves a careful study. 

The Ay are also closely related to the theory of the Hilbert trans­
formation -— 

' " M) ""-;£ (e-*y 
.dr., (70) 

which carries each analytic function in D into a new analytic function 
in the same domain. There exists a set of eigenfunctions wv(z) which are 
analytic in D and which satisfy 

WÀZ) = ^\\nÌSkdri {K>1)- (71) 

15-2 
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The eigenvalues A„ are precisely the Fredholm eigenvalues defined above. 
We shall assume the wv(z) to be normalized by the usual convention 

£ wv(z)\2dr= 1. (72) 
D 

The eigenfunctions wv(z) form an orthonormal set of analytic functions 
in D and play an interesting role in the theory of the kernel function 

In order to establish a unified theory for the treatment of extremum 
problems for the functionals A„ of D it is necessary to determine the 
variation of each Av for a variation of the defining domain D. If we assume 
the variation to be of the special type (1) with z0eD and if A, is non-
degenerate, we have 

A* = A, + (1 - A2) ir Re {e™p2wv(z0)
2} + 0(p% (73) 

An analogous, though slightly more complicated, formula can be given 
for the variation of degenerate eigenvalues. 

When one wishes to apply the variational formula (73) to the solution 
of extremum problems, one runs immediately into a serious difficulty. 
The entire theory of the Fredholm eigenvalues has been established under 
certain smoothness conditions for the boundary and one has to be sure 
that the extremum domain does possess a boundary of this type. One 
has to introduce a class of domains which possess admissible boundaries 
and which is compact; within such a class the calculus of variations based 
on (73) and the theory of extremum problems become possible. 

For this purpose, we introduce the concept of uniformly analytic 
curves. A curve is called analytic if it can be obtained as the image of the 
unit circumference \z\ = 1 by means of a function t(z) which is analytic 
and univalent on \z\ = 1. A set of curves is said to be uniformly analytic 
with the modulus of uniformity (r, R) (where r < 1 < R) if all of them are 
obtained by means of mapping functions f(z) which are analytic and 
univalent in the fixed annulus r < \z\ < R. This concept of uniform 
analyticity seems to be quite useful in the variational theory of domain 
functionals. 

We can now formulate the theorem: 
/ / a simply connected domain is bounded by a curve which is analytic 

with the modulus (r9 R)9 then its lowest Fredholm eigenvalue Ax satisfies the 
inequality: 2 ™ 

This estimate is the best possible for every modulus (r9 R). 
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Frequently, the boundary curve G of a domain is given in a parametric 
representation from which the modulus (r9 R) can be readily deduced. 
Thus, the estimate (74) is often convenient to predict the convergence 
of the Neumann-Liouville series which solve the various boundary 
value problems in the domain. 

We may also connect with a given domain D the Fredholm deter­
minant °° / ^2\ 

mSAl~iè "6) 

of the integral equation (68) and consider, for fixed A, D(X) as a functional 
of the domain D. The following extremum problem suggests itself: Let 
DQ be a given multiply-connected domain ; consider all smoothly bounded 
domains D which are conformally equivalent to it and ask for those do­
mains in this equivalence class which yield the maximum value of D(X). 

This problem has been solved in the case A = 1. The main difficulty in 
the investigation was again the non-compactness of the class of domains 
considered. I t could be overcome by considering maximum sequences 
of domains and their limit domain; all domains of the sequence were 
subjected to the same variation (1) and from the fact that they formed a 
maximum sequence it could be shown that their limit domain is analytic­
ally bounded. Then, the existence of a maximum domain is easily 
established and it can be shown that it is bounded by circumferences. 
We obtain thus a new proof of Schottky's famous circular mapping 
theorem and also a characterization of this canonical mapping by an 
extremum property. Methodologically, the proof is of interest since the 
method of variation is not applied to the extremum domain, whose 
existence is not yet known, but to the extremum sequence. This pro­
cedure seems to be of very great applicability. 

The solution of the maximum problem for general D(X) is not yet 
known and well deserves additional study. 

The Fredholm eigenvalues represent an instructive example for the 
flexibility of the variational method in dealing with extremum problems 
for rather difficult types of domain functionals. The great formal 
elegance of the variational formula (73) enabled us to overcome the quite 
serious difficulties which arise from the fact that these functionals are 
defined only for a restricted and non-compact class of domains. 

6. Further applications 
We have restricted ourselves to a few fundamental problems in order 

to exhibit clearly the basic ideas of the variational method. It may, 
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however, be applied to much more general function-theoretic problems. 
It can be used in problems of mapping of domains on Riemann sur­
faces C29>33] and leads there to existence theorems for various canonical 
realizations of Riemann domains. It can be applied to the theory of 
multivalent functions in a given domain[27], their coefficient problems 
and distortion theorems. Some interest has been devoted to the problem 
of developing a calculus of variations within important subclasses of 
the family of univalent functions in the unit circle. Golusin191 described 
a method of variations for the subclass of star-like univalent mappings 
and Hummel [12'13] gave an even simpler method of this kind. Singh [34i 
gave a theory of variations for real univalent functions, for bounded 
univalent functions and other interesting subclasses. Finally, the role 
should be mentioned which the method of variations could play as a 
useful tool in the theory of quasi-conformal mappings and of extremal 
metrics[14]. 

The variational method is, of course, only one of many powerful 
methods in the theory of conformai mapping and complex function theory. 
There are many problems where other methods give the answer more 
easily and directly. It seems to me, however, that the method of varia­
tions is one of the most systematic and widely applicable methods which 
we possess in this field. 
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This lecture is embodied in a set of mimeographed notes entitled ' Coho­
mology operations and obstructions to extending continuous functions '. 
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