
STATISTICAL MECHANICS 
COMPREHENSIVE VIEW OF PREDICTION THEORY1 

N O R B E R T W I E N E R 

Some years ago a paper appeared2 by Kolmogoroff in C. R. Acad. Sci. Paris 
on extrapolation and interpolation. From the point of view in which we are in
terested, the main contribution of this paper was a discussion of the greatest 
lower bound of the error of mean square prediction when applied to time series, 
and when the rnethod of prediction was to be linear in the past. This paper led 
to a couple of papers in Russia with which KolmogorofFs own name and that of 
M. Krein are jointly associated. 

About ?a year after the first Kolmogoroff paper, the present author independ
ently started a series of investigations in the same direction. His motivation was 
the problem of predicting the future position of an airplane on the basis of a 
general statistical knowledge of its mode of flight and of a more concrete knowl
edge of its immediate past. Thus there were from the beginning two points in 
which his emphasis was different from that of Kolmogoroff. Also at least one of 
these was actually covered in KolmogorofFs work. The first difference is that 
while KolmogorofFs explicit work is primarily concerned with the irreducible 
minimum error of prediction, the author's own work is concerned with the actuaL 
method of securing 3, prediction with this irreducible error, or at least prediction 
with error as near to this as we wish. 

Next, KolmogorofFs work is primarily concerned with a time consisting of 
discrete instants, whereas my work is concerned with the continuous^ time in 
which the flight of an airplane takes place. Associated with this is the fact that 
my work, unlike the explicitly published work of Kolmogoroff, concerns the-
instrumentation which is necessary to realize the theory of prediction in auto
matic apparatus for shooting ahead of an airplane. This engineering bias leads 
me to emphasize more than does Kolmogoroff the problem of prediction in terms 
of linear operators in the scale of frequency, rather than in similar operators on 
the scale of time. s 

This same engineering standpoint led me from the prediction problem to the 
related problem of filtering. In this problem a message, a noise, and their re
lations to one another are known statistically as well as the sum of the message 
and the noise, from minus infinity to a given point in time. The problem is to 
disentangle from this combination the message alone, or more generally, the 
message under lead or lag in time. 

Since the harmonic analysis of a signal is not complete within any finite time,, 
this separation must always involve the prediction of the future of the message 

1 This address was listed on the printed program under the title The statistical mechanics 
in communication. 

2 A. Kolmogoroff, Interpolation und Extrapolation von stationären zufälligen Folgen, 
Bull. Acad. Sci. URSS Sér. Math. vol. 5 (1941) pp. 3-14. 
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and noise, and so cannot be isolated from prediction theory in general. It turns 
out that the technique for the design of filters with a minimum mean square 
error is precisely parallel to that for the design of predictors. 

In one point both Kolmogoroff and his school and I myself have developed the 
theory of prediction along similar lines. This point is that of multiple prediction, 
in which not merely one quantity varies with time, but a number of quantitites—• 
even an infinite number of quantities. This is an extremely important problem 
for the meterorologists and in general for the statisticians. Until recently its 
theory has not been implemented by a corresponding communicable tool. 

Both the Russian school and my own have published what is a fairly extensive 
literature concerning prediction. What is missing is a definitive paper to take up 
all the threads of the argument and to close them off in a single comprehensive 
discussion in which as many theorems as possible are given necessary and suf
ficient conditions. It is the purpose of the present paper to fill exactly this gap. 

Let me first take up the simplest prediction problem, which is that concerning 
prediction in a simple discrete time series. All that follows this will consist in 
an extension or development of methods here given. 

In the first place, we shall consider a time series to be, not a single sequence of 
of numbers, but a sequence of numbers with a parameter of distribution. Thus 
a appears merely for purposes of integration, and a may therefore be mapped 
on the segment of a line between 0 and 1, since the main properties of integration 
are independent of dimensionality. Let us then consider a function f(a) defined 
on (0, 1) and belonging to the Lebesgue parameter class L2. Since the particular 
time series with which we are concerned are not attached to any particular point 
in time, let us introduce the transformation Ta, which preserves measure or 
probability, and which moves each instant of time into the next one ahead. 
Then f(Tva) represents our time series. Here v runs between — «5 and oo, if v 

is positive, Tv represents the transformation T iterated v times. T~VOL represents 
the inverse transformation T~l iterated v times; and again v is positive. We then 
shall see that/(T"û;), where v runs over all negative and positive integral values 
including 0, is a time series in statistical equilibrium. 

The functions f(T~va), where v > 0, are a denumerable set of functions of 
class L2 , and as such have a linear extension, containing all functions of L2 

which can be approximated in the L2 sense by polynomials in the given functions. 
This set of functions will be known as the past. The present consists only of 
linear multiples of f(a) itself; while the future is the linear extension of all func
tions of the form f(Tva), where v is positive. 

The problem of prediction is that of the projection of a function belonging to 
the present or future on the past. Every function belonging to L2 consists of the 
sum of a function belonging to the past and a function orthogonal to every 
function belonging to the past. The first is called the projection on the past of a 
given function; whereas the mean square of the second with respect to a is the 
mean square error of prediction. In order to carry out this process, it is useful 
to orthogonalize the set of functions f(T~va). 
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Let us first take/(2^~1a). There are two cases possible. Either this is equivalent 
to 0 or it is. not1. If it is equivalent to zero, f(a) may be expressed in terms of 
f(T~ a), and hence of the past; Similarly, f(Ta) may be expressed in terms of 
f(a) and thus in terms of /(T"1«)»' or again in terms of the past. Thus the whole 
present and future may be expressed in terms of the past and the prediction 
problem may be solved with- 0 mean square error. < « l . 

On'the other .handelet us suppose that /(T-1^) is not equivalent to 0. If it is 
,not equivalent .to zero, it can be normalized by the multiplication of an ap
propriate factor», so thatthe integral of the square of its modulus is one.. Let us 
call this normalized function gi(o>). Now let us consider./(T~2a). Either thtà is 
equivalent-to* a-multiple of/(T-1«); in which case a perfect prediction is possible; 
or it is not so equivalent. In the second case, we shall have the formula 

f(T'2a) - gi(a) jf f(T-2ß)gS) dß + (/(T~2a) - gt(a) j£ f(T~2ß)g^ß)dßS} 

where the term 

ftr*«) - fc(«) ff(T-2ß)gi(ß) dß 
Jo 

is not equivalent to 0. This term again may be normalized; and we shall call the 
result of this normalization 02(a). We repeat the process and ,express /(T~3a) 
in terms of gi(a) and (72(a), with the remainder 

f(T~*a) - 9l(a) f f(T-*ß)g^0)dß -,fc(«) [ fiT* ß)jfä dß. 
Jo Jo 

Either this remainder is equivalent to 0 or it .is not. If it is equivalent to zero, we 
again can express f(T~*a) in terms of its past; and if we cannot, we may introduce 
a third function g^(a) by normalizing the remainder. This process can be con
tinued until we have either orthogonalized the entire past of f(a) or until there 
are no more terms left to orthogonalize. If the process terminates at,any stage, 
a perfect prediction is possible. In all other cases, we have a normal or orthogonal 
set 0i(a), 02(a), • • • , in terms of which we can express the past of f(a). 

Now let us form the function h(a), in accordance with the formula 

« A 
h(a) = /(«) - E gn(a) \ j(ß)gn(ß) dß. 

1 Jo 

If this function h(a) should prove equivalent to 0, this means that f(a) can be 
expressed linearly in terms of its past, without any error whatever of prediction. 
If not, then the function h(a) can itself be normalized, and we obtain a function 
H (a), in accordance with the formula 

rtf x M*) 
H(a) = 7—j w72. Q*\h(ß)\2dßj 
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The function H (a) is linearly dependent on the present and past of / and 
orthogonal to that past. It is accordingly orthogonal to every function H(T~va) ; 
and since the transformation T is measure preserving, then the set H(Tva)} 

where v varies from — oo to oo f is a normal orthogonal set. There are now two cases 
possible. 

Either f(a) can be represented in terms of this set according to the formula 

/(«) = Z W « ) ff(ß)H(T-'ß)dß, 
0 Jo 

or there is a remainder 

f2(a) = f(a) - ZH(T~va) f f(ß)H(T~'ß) dß 
o Jo 

not equivalent to 0. In the second case we may write 

/(a)=/x(a)H-/2(«) 

where fi(a) may be shown to generate the same function H(a) as does /(a). 
On the other hand, Ma) will be completely determined by its own past from 
any period of time back. In other words, /2(a) Will be linearly dependent on the 
set f(T~va), f(T~v~la), • • • no matter how large v may be. The complete present, 
past, and future of fi(a) is orthogonal to the complete present, past, and future 
of Ma)< fi and /2 have already been given in terms of / alone. We have thus 
reduced every case of the prediction problem to the perfectly predictable case 
on the one hand, and the case where the function H(a) exists and / can be ex
pressed in terms of H and its past, on the other. 

It is the second case with which we are chiefly concerned. Let us notice that 

f f(Tva)f(dda= E ff(ß)H(Tv~lß)dß\lmH(T-»ß)dß. 
JO n>o JQ JQ 

H—v^0 

Let us also notice that 
2 

< <*>. £ I ff(ß)H(T~nß)dß 
0 I Jo 

Thus the sum of the squares of the moduli of the coefficients of 

£eina fj(ß)H(T-nß)dß = ¥(«) 
0 Jo 

converges and the function belongs to L2. *(w), the square of the modulus of 
this, will belong to L, and will have the Fourier coefficients 

/ 
Jo 

H(Tna)H(a) da. 
f0 
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This suggests that with suitable hypotheses, we may proceed directly from the 
auto-correlation coefficients 

f H(Tna)H(c?) da 
JQ 

and their related harmonic analysis function #(w) to the coefficients 

1 [ f(ß)H(T-»ß) dß, 
Jo 

by means of which we express f(a) in a series in terms of the functions H(T~va). 
The conditions under which this is possible may be proved to be 

(1) j |log$(co) \da> <oo. 

To see this, we express (1/2) log <3?(w) by the corresponding series 

We then form the corresponding series 

E An sgn n e%na
) 

which may be shown to determine a pure imaginary function by Cesàro sum
mation. Let this function be F (a). Then if we put 

(# (« ) ) 1 / V M = ¥(«), 

we shall find that the Fourier series of M>(w) will contain no negative frequencies. 
Another function closely related to ^(œ) is 

* i W = TT / ^^ 15 • 
i 27T Jo ew — z 

It can be shown that as r tends to 0 from 1, 

lim f | ¥(«) - Mreia) |2 dco = 0; 
r-»l Jo 

that ^(co) is analytic within the unit circle; and what is more, it can be proved 
to have no zeros within the unit circle. 

Let us now suppose that $(«) is any real function of class L whose logarithm 
fulfills our critical condition (1). I t is then possible, by the use of ideas from 
Brownian motion theory, to give time series f(a) and a measure preserving func
tion T such that 

*(«)~êe*" f f(Tva)f(a) da. 

I t is also possible to prove that f(a) cannot be expressed completely in terms of 
its own past, and that it is orthogonal to its remote past, in the sense that the 
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projection of f(a) on the set MT"~la), f(T~v~2a), • • • tends to 0 as v becomes 
infinite. We thus have a complete set of conditions for the factoring of $(u), 
and we have the basis for a theory of simple discrete prediction. 

All the essential ideas in this theory of prediction may be extended to multiple 
prediction. Let us first take up the case of finite multiple prediction. Here we 
start with a set of functions fn(T

va), where n ranges from 1 to N. The past consists 
of the linear extension of the functions fn(T

va), where n ranges from 1 to N 
and v is negative. T is, of course, as before, a measure preserving transformation. 
We now can proceed as before to determine the parts of fi(a) to/„(a) which are 
orthogonal to the complete past of all the f's. We carry this out by a procedure 
of orthogonalization exactly like that which we have already used. If this pro
cedure of orthogonalization terminates before it gives N functions Hn(a) which 
are normal and orthogonal to one another and to the past, but linearly de
pendent on the past and present, then some one at least of the functions fn(ot) 
is completely determined by its own past and the past of the other functions. 
If that is not the case, we obtain a set of normal and orthogonal functions 
Hn(T

va). 
Either all the functions fk(a) may be completely developed in terms of these, 

or there are remainders in the development which are not equivalent to 0. 
In the second case, just as in the corresponding simple case, we can separate a 
multiple time series into the sum of two multiple time series, such that the past, 
present, and future of one will be completely orthogonal to the past, present, 
and future of the other. One of these time series will be perfectly predictible, and 
the other will be expressible in terms of its own H functions. We now go through 
procedures exactly analogous to those through which we have gone in the 
simple case. Let us notice that 

(2) Ma) ~ £ E Hn(T~va) [ f%(ß)Hn(T~vß) dß. 
v=0 Tl=l JO 

Let us also notice that 

ffi(r«)fi(p)da= E E ffi(ß)Hn(T>-*ß)dß [fMH^T-'-ßidß. 
JO p>Q n JO J0 

li—V^O 

Then we obtain a matrix of functions 

*<y(«) = £*** [ f<(ß)H,{T->ß) dß, 
j»=o Jo 

belonging to L2. We shall have 

* ( w ) = W(ù))-W(œ), 

where the matrix <I>(co) has the Fourier coefficients 

Jo 
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As.before, -it,,is interesting to know what condition on the matrix 

&(<*)) (— 7T â 6) ^ T) 

will'make the' existence of the set of functions Hn(Ta) and their closure with 
respect to the corresponding / functions possible.. Without going into proofs, it 
may bè said th'at the condition is that $iy(a>) all belong to L2 , and that 

| Determinant <&(co) \\ d<a < oo. j f i ^ i 
If this Condition is fulfilled" for an Hermitian matrix of positive' definite Her-
mitian type, 'then this matrix may always be obtained as indicated'from a;'set 
of functionkMra):" '' ' ' • l * ' 

In the simple prediction casé, we have already given an algorithm which will 
enable'üs tò carry out the computational work of the resolution of $(co) in the 
form ' ' 

$(<o) =* | *(w) | 2 . 

The similar resolution of the matrix 4>(a>) in the form 

®(œ) = W(CO)'W(ù>) 

is complicated by the fact that matrix multiplication is not commutative, and 
therefore there is no easy use of the logarithm. However, there is a computational 
process which is not too difficult. This is a generalized form of the alternating 
process known in potential theory. 

Let us suppose that we have two linear subspaces of Hilbert space, say Si 
and S2, and that we have a vector in that space. This vector is to be projected 
on the smallest linear space containing these two subspaces Si and S2. We then 
project the vector on Si. The remainder we project on S2. The remainder after 
this second projection we project on the space Si, etc. We then add all the 
projections that we have obtained on the two spaces. It may be shown that this 
process is a convergent one, at least in the mean sense, which is the only relevant 
sense here, and that it ultimately yields the projection of the vector on the 
smallest linear extension of the two spaces. 

For the moment let us consider only a prediction process of multiplicity 2. The 
problem which we are facing is to take some vector not necessarily exclusively 
belonging to the past and to project it on a past which represents the smallest 
linear extension of the space combining the past of one component with the 
past of the other. It is then possible to do this by a procedure of successive 
projections, which will turn out to have a computable algorithm. 

While this method of carrying out thç alternating process for purposes of 
prediction is available in the perfectly general multiple case, we shall illustrate 
it here in the case of multiplicity 2. Actually the best computational procedure 
for a case of higher multiplicity consists in a step by step use of a very similar 
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process, to embrace each time one new variable, after the process has already 
been completed for a number of variables. 

To go to the case n = 2, let us start with two functions, fi(a) and /2(a). Using 
each of these functions alone we form the orthogonal set of functions Hi(Tva) 
and H2(T

va) as before. We shall assume that /1 can be completely expressed in 
terms of the orthogonal set belonging to Hi and that f2 can|be completely ex
pressed in terms of the orthogonal set belonging to H2. This,' as we have seen, is 
no great restriction for practical computation. Now we take Hi(a), and develop 
it in terms of the past of the orthogonal set belonging to the H2$ in the following 
form. 

Hi(a) = E H%{T-a) j Hi(ß)H*(T~*ß) dß + n(a)\ 
0 Jo 

We now develop n(a) in the form, 

n(«) = E HX(T-Va) ï n(ß)Hi(T->ß) dß + r2(a) 
0 Jo 

- *(«) - E tfiCr-"«) E f Hs(T-"ß)m(T^ß) dß 
y«0 JO 

X [ Ht<ß)Ht{T-*ß) dß. 
Jo 

This process can be continued indefinitely, and rn(a) will converge in the mean 
to a function orthogonal both to the past of Hi(a) and to that of H2(a). What will 
be left apart from this remainder will be 

Hi(«) = ÌH2(T~va) [ HtäHAT-'ß) dß 
0 Jo 

- E E Hi(T-va) [ H2(T-"ß)Hi(T-"ß) dß 
v—O f«—0 Jo 

X f HMH2(T-"fi) dß + E E E H^T'OL) [ miT-'ß^T-'ß) dß 
Ji) »=0 n-0 x-o Jo 

X [ £r»(3Txj8)jy1(r-»j8) dß \ HMWF^ß) dß- • •. 
Jo Jo 

I t has been shown tha t this sum converges in thefmean, and it is perfectly 
possible t o show tha t it is expressible in terms of H\(a) and the pas ts of fi(a) 
ma Ma). 

Similarly, 

*•(«) = ì,Hi(T~va) [ HifäHiiT-'ß) dß 
0 Jo 

- E E Ht{T-a) [ HxVr*ß)H7x=fß) dß f HMHÄT=iß) dß+ ••• 
i.«0 /u==0 Jo Jo 
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converges in the mean, and may be expressed in terms of H2(a) and the past of 
the / ' s . If 771 (a) and v\2(a) are not linearly independent, then either H\(a) may be 
expressed in terms of H2(a) and its past, or H2(a) may be expressed in terms of 
Hi(a) and its past. In other words, only one of the two variables Hi(a) and H2(a) 
really occurs in the fundamental prediction problem. Otherwise, we may orthog-
onalize rji(a) and i}2(a) by the formulae: 

IT ( \ qi(<*) 
JLi\a) = / 1 \i/2, 

x2(«) = 

(jf Ui03)i2^y 

Vii«) - Ma) [ vz(ß)XM dß 
JQ 

Ü
1 I A | 2 \ 1/2 -

\V2(ß)\2dß-^]Q m(ß)X1(ß)dß^J We shall then have as a normal and orthogonal set: 

XiCTa); X2(T
va). 

These will take the place of the Hi(Tva) and H2(T
va) of formula (2). 

In the problem of continuous prediction, we are now up against the fact that the 
set of orthogonal functions H(Tva) which occurs in the problem of discrete pre
diction, and the similar set which occurs in the set of discrete multiple pre
diction, are replaced by functions which are no longer of the Lebesgue class L2. 
This is not a finally forbidding difficulty, as it is possible to introduce the Hilbert 
theory of spectra to take the place of a theory of orthogonal functions. Still, the 
theory of spectra is much more detailed and inconvenient than that of orthogonal 
functions, and we must consider ourselves fortunate that there is a method to 
avoid introducing it directly. This depends on the fact that in the prediction 
theory which we have already developed, which makes use of measure-pre
serving point transformations, we may completely replace these measure-pre
serving point transformations by a unitary functional transformation. That is, 
wherever f(Tva) appears, we may introduce an expression Tvf(a), where Tvf(a) 
is a linear transformation of Hilbert space into itself, and preserves all lengths 
and distances in Hilbert space. 

Now, although there is a continuous group of measure-preserving functional 
transformations which plays the same role in continuous prediction theory that 
the discrete group of powers of a single measure-preserving transformation does 
in discrete prediction theory, and it is impossible to map out a continuous group 
on any such discrete group, there is a discrete group of functional transformations 
whose future is the same as the future of the continuous group. In order to in
troduce these functional transformations, let me introduce the Laguerre poly
nomials. 

If I consider the expression e%(av which occurs in prediction theory, there is 
closely related to it the expression 

(1 + *>/2y 
Vl - ÏÛ/2J • 
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Similarly, if I replace eim(do))112 by 

(1 + w w\ 
(i - ;#/2)n + 1 

I shall have found a way to transform the interval from — % to ir into the inter
val from — oo to oo, if only I put •& = 2 tan (w/2). If now I examine the functions 

1 (1 + ÎÛ/2Y 
(27!-)1'2 (1 - i&/2)*+1' 

they will clearly prove to be a normal and orthogonal set if n runs through all 
integral values from — oo to oo. We shall have 

i r(1 + f) e-m 
2TT I . / _ ^ \ n + 1 

d& 

V 

- E Btke~u 

0 

I = o (* < 0), 

where p(i) is an appropriate polynomial of the nth degree. Similarly if n is 0 
or negative, we shall have 

1 \ ±L »-««, 
2TT 1» / ^ Y + 1 e-*"dd-

ob n - 1 

/
oo n—i E 
oo 0 

Aft o - ^ y + 1 e~m de \ 
= E C/e2' 

= ?(f)e
2( (t < 0) 

= 0 (t > 0). 

In other words the Fourier transforms of 

0 + ff 
o-ir 

differ from 0 only on the positive half line, and those of 

( n > 0) 

(n ^ 0) 
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differ from 0 only on the negative half line. The functions -

Vn(t)e~2t (t> 0); 0(t < 0 ) 

gn(t)e
2t (*<0) ; 0 (t > 0) 

are known, with proper normalization with1 respect to dependent and inde
pendent variables, as the Laguerre functions. The transformation of each 
Laguerre function into the next later function is »a unitary transformation whose 
powers, positive and negative, constitute a discrete group of all translations 
along the line. I repeat that up to the present we have used in our prediction 
theory no properties of our transformations which involve their being used as 
point transformations rather than general unitary valuations. Thus on the fre
quency scale, the change from e™* to 

( i l l 

is one which involves no difficulty. 
In view of this transformation we are now in a position to factor functions -*-

frequency running from — oo to oo, whether they are scalar or matrix functions, 
into a product in which one term is the transform of functions vanishing only 
for past time and the other is the transform of functions vanishing only for future 
time. The previous conditions of factorizability 

$(w) 6 L ( —TT _? w . j ir) 

and 

[ | logico) | d< 
J—* 

lot < oo 

are clearly replaced by the equivalent conditions 

$*(<p) £ L, — 00 < Ç5 < 00 

and 

f^r^rj2\log$*(&)\d&< oo, 
+ 

if only 

$(co) = $(#); 

a = 2 tan - . 

Similar results and equivalences hold in the case of matrix factorization. If 

**(#) « *(«), 
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we have 

* * ( * ) = | tf*(co) |2, 

and the Fourier transforms of the L2 functions *&*($) will contain no negative 
frequencies. 

We now come to the actual mechanism of prediction. We have not time to 
take this up in more than the simplest case; namely, that of a one-dimensional 
discrete prediction, but the methods are valid with the most obvious changes 
both for the continuous and the multiple case. Let then 

ZAnf(T~na) 

be any polynomial in the past which we desire to study as an approximation 
to f(T"a). The mean square error of prediction will then be 

f\i:Anf(T-na) -f(Ta)\2da. 
Jo 

As we now wish to write this in terms of frequency rather than time, it will 
become 

£• f |E^u*(«>yBW - *(w)6-"uI 'd» = E E&.-»- , - fmI2. 

It will then be seen that we have to reduce at the same time 

E A» $m 

as near to 0 as we can for m < v and as near to \f/m as we can for n __ v. If we 
have at our disposal not merely polynomials, but arbitrary combintations of the 
past, this will give us 

îe^CAf»-^)= E ê''"" 
w*0 v 

or, where ^m represents the Fourier coefficients of ^(w), 
00 

ypne 
\ " ^ A -*"nw ~*vw 

e = e 

0 

However, it is not difficult to prove that even if we have only polynomials at 
our disposal, we may reduce 

f lE^/cr"«) -/cr«) |2 da = É [ An |2 

Jo 0 

as near its absolute minimum as we wish. 
We thus have solved the problem of prediction as nearly as we wish to optimum 

prediction in the case where the prediction is not perfect. Where the least mean 
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square error of prediction is 0, while there is in general no single optimum 
prediction, it is possible to approximate as nearly as we wish to perfect pre
diction by the following means: 

In the first place, we blur the spectrum of the function which we wish to 
predict by taking its convolution with a narrow Gaussian distribution of unit 
area. Then we obtain the optimum prediction on the strength of this blurred 
spectrum. It may be shown that as the Gaussian distribution gets narrower and 
narrower the optimum prediction becomes more and more perfect. 

To return to the case where there is not a perfect prediction, and in wrrich the 
function 

E «*" f f(T»a)f(a) da, 
o Jo 

can be factored. Let us note that formally, from the point of view of frequency 
rather than time, the optimum prediction operator for a lead /. amounts to 
multiplication by 

I £ 6-<" f *(u)e-
ivu eifiU du, 

ZT V=Q J—TT 2T] 

and that the mean square error of prediction is 

è l i /%(«)«-*"** i 
y=0 -57T J—ir 
y=0 

From the original Kolmororoff point of view, this frequency treatment is not 
important, but from our point of view the frequency representation of operators is 
important just because it is the standard representation of alternating current 
engineering. It is in this form that we strive to realize operators through a net
work of coils, resistances, and condensers, and in fact the prediction operators 
which we have just obtained are very generally suitable for realization. This 
leads us to the problem of filtering. 

I shall describe this in terms of the continuous case rather than the discrete, 
because filtering is commonly an electrical engineering operation, although 
indeed its precise analogue is useful in the statistical laboratory. 

We start then with a message/i(a) and a noise f2(a) and we put formally 

011 (t) = f fi(Tla) Mäj da; f(a) = fx(a) + f2(a); 
Jo 

q(t) = jf MT'a) f(a) da; 0(0 - jf f(Tla) f(äj da; 

/

OO ^ «00 

4nxit)eita dt; $(w) ~ / .̂(Öe™' dt; 
GO • '—00 

He) ~ f KitW"' dt; #(«) = | *<«) I2 

Jo 
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•as before. The problem which we have is to minimize 

jf | fi (T~"a) - j f f(T^a)K(r) dr |2 da. 

Formally, this leads to the process of minimizing 
«OO »00 „00 

• 0 i i ( O ) - 2 R e / q ( r - \ ) K ( r ) d r + / K ( r ) d r / KÇT)<I>(<T - r ) d o -

J o J ö J o 

• ' — o i 

$(w)e- îXw . . , . I2 , 
VT-T- - fc(o))^(co) T + const. 
w(œ) 

Thus again, formally, the optimum prediction is given by the frequency operator 

fc(<°) = o T / \ / e d t / e T 7 T e~*udu. 
2ir^(œ) Jo J-oo y(u) 

Let us notice that the technique of prediction may be carried over to multiple 
time series. From an engineering point of view this means that we have a number 
of messages linearly jumbled, but we can put them through an apparatus so that 
•each message will come out of it in as pure a form as possible. 

As I have said before this allows us to use interference to eliminate a message 
as well as simple attenuation available in the ordinary filter. 

There are a number of other topics for which I have no more time available 
than enough simply to mention them. In the first place, the methods of multiple 
prediction make it possible to analyze the direction of causality in complicated 
situations. In the second place, the whole theory of prediction as given up to 
this point involves a perfect knowledge of statistical parameters of the past. 
This knowledge is in fact never available. I t must be supplemented by some 
theory of extenuation from which we can obtain not merely the most probably 
values of our spectra, but also our distribution. We have made some headway 
in the problem of extenuation of parameters in the case where time series rep
resents the impact on a resonator of a large number of randomly distributed 
phenomena. However, not even in this case have we brought the estimated theory 
to a point where it is yet suitable for practical computation, and secondly this 
is by no means the only significant case of linear time series. 

MASSACHUSETTS INSTITUTE OP TECHNOLOGY, 

CAMBRIDGE, MASS., U. S. A. 


