
GEOMETRY UPON AN ALGEBRAIC VARIETY 

BENIAMINO SEGRE 

I. Algebraic geometry — that is to say, the branch of geometry which 
deals with the properties of entities represented by algebraic equations — has in 
recent years developed in two distinct directions, which in a sense are opposed 
to one another. One of these directions is called abstract in as much as it is 
concerned with algebraic equations defined over commutative fields subject 
only to slight restrictions; here the means employed are purely algebraic, 
including in particular ideal theory and valuation theory. The other direction 
may properly be called geometrical) this usually deals with algebraic equations 
in the complex domain, and from time to time appeals to ideas and methods of 
analytic and projective geometry, topology, the theories of analytic functions 
and of differential forms. 

The dualism between these two disciplines has close relationship and affi
nity with that which, three centuries ago, arose between l'esprit géométrique of 
Descartes and l'esprit de finesse of Pascal, and which, in the past century, on 
the one hand divided the geometers into analysts of the school of Plücker and 
synthesists of the school of Steiner and, on the other, the algebraists into 
purists à la Dedekind and arithmetizers à la Kronecker. However, this dualism, 
instead of proving harmful t o geometry, offers undoubted advantages when 
the two lines of development, with their respective merits and possibilities, are 
regarded not as contrasting but as complementary. 

We cannot fail to recognise in the abstract method and its technique a 
peculiar elegance, an impeccable logical coherence, and to appreciate the im
portance of the results so far obtained by it, particularly in the study of the 
foundations of geometry and the difficult questions concerning the singularities 
of algebraic varieties. But equally we cannot fail to recognise that the geometr
ical approach, with its greater concreteness, lends itself better to the formula
tion and initial study of new concepts and problems; and that it presents an 
incomparable wealth and colour of its own, due to the interweaving of many 
diverse strands, to the subtle and perspicuous play of geometrical intuition, 
and to the possibility of readily constructing examples and investigating special 
cases. We may also point out that, in the geometrical discipline, corresponding 
to a more definite notion of algebraic variety, there is a much wider range of 
subjects and a far greater number of orientations and contacts with other 
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important branches of mathematics, which have found, and are finding, 
therein inspiration and extensions beyond the purely algebraic field. 

In the present address I shall leave aside altogether the abstract method, 
partly for lack of time and partly because exposisions of the subject have 
recently been given by Hodge {46} 1), Zariski [1] and Groebner {35}; for similar 
reasons I shall not speak of the relations between algebraic geometry and num
ber theory, for which I may refer to the discourse by André Weil {100} at the 
1950 Congress. Even so, the panorama, when thus delimited and restricted to 
the contributions of the last few years, would still be too vast, and the terrain 
too impenetrable, if I attempted to include significant but relatively particular 
results such as the recent researches of Conforto2), Weil {101 — 103}, Igusa 
{50—51}, Chow {19, 20}, Andreotti {3, 6} and Barsotti {13} on Abelian va
rieties; those of Severi {90, 94} and Conforto {87} on quasi-Abelian varieties; 
those of Roth {74—77} on elliptic, hyperelliptic and pseudo-Abelian varieties; 
the studies of Roth {67—73, 78}, Baldassarri {10—12} and Segre {86} on ques
tions of unirationality and birationality of algebraic varieties, with special 
regard to threefolds; the researches of Chisini {18} and his school on the theory 
of braids and branch curves of multiple planes; the results of Andreotti {4, 5, 
7—9} and of Conforto and Gherardelli {21} on the torsion of algebraic varieties, 
on the problem of uniformisation and the classification of the irregular surfaces; 
those of Godeaux {27—34} on multiple surfaces, of Gaeta {22—24} on families 
of space curves, of Scott {79, 80} and Todd {97} on correspondences between 
algebraic surfaces; and, finally, the investigation, by Severi {91, 92}, Néron 
{64, 65} and Segre {81, 83}, of various arithmetic questions which arise in alge
braic geometry. 

I propose instead to discuss, though only summarily, certain recent deve
lopments in the geometry on an algebraic variety, which (I hope) will be fairly 
clear even to non-specialists; and, at the same time, to glance at some of the 
still unsolved problems in the subject. 

II. Let M be an algebraic variety of dimension d ^ 1, defined over the 
complex field; a n d suppose that M is irreducible and non-singular (i.e. free 
from multiple points). By "geometry on M" we mean the study of relative 
invariant properties, that is, those properties which are unchanged by regular 
birational transformations of M; among these, special importance attaches to 
those which are absolutely invariant, that is, are unaltered by all possible bira-

x) The numbers in curly brackets refer to the bibliography at the end; those in square 
brackets are from t h e monograph {84} by B. Segre, which we do not reproduce here. 

2) Fabio Confortio, whose premature death we all deeply regret, was to have addressed 
the present Congress on the subject of singular Abelian varieties. For a detailed account of 
his work see B. S e g r e {87}. 
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tional transformations of M (including those with exceptional elements). In 

this study the first salient feature tha t presents itself is the aggregate of the 

algebraic sub varieties of M; a n y two of these — which we suppose to be pure 

and of dimensions a, b — define an intersection, also algebraic, each component 

of which has dimension ^ a + b — d. In general, bu t not always, the dimension 

of each component is exact ly a + b — d: we then say tha t the two varieties 

present the regular case. 

These notions can be ex tended to subvarieties which are impure, effective 

or virtual, namely to the aggregates 

(1) SM< 
formed by a finite number of subvarieties A{ of M, each taken with an assigned 

multiplicity OLì, where <xt- is a n integer (positive, zero or negative). The aggrega

tes (1) may be associated in an obvious manner by addit ion and subtraction, 

thereby determining an Abel ian group of infinite base. In this group we can 

define intrinsically, and in var ious ways, a subgroup of varieties which are to be 

considered as equivalent to zero , in such a manner t h a t for the corresponding 

lateral classes — called classes (or systems) of equivalence — there subsists a 

multiplication, commutat ive and associative, geometrically related to the 

intersection in the regular case ; this gives rise to an equivalence ring on M. 

The useful types of equivalence, introduced by Severi [4—7] 20 years 

ago, are essentially four in n u m b e r ; in non-increasing order of restriction these 

are: rational, algebraic, topological and enumerative equivalence. In the case of 

two hypersurfaces (varieties of dimension d — 1) of M, the first reduces to the 

classical linear equivalence, t h a t is, the relation which intercedes between two 

hypersurfaces of constant level for the same rational function of a variable point 

of M. In the case d > 1, h a v i n g fixed the type of equivalence, we can similarly 

consider an infinity of equivalence rings, one for each of the irreducible sub-

varieties of M, and hence a mult ipl icat ion law which (in addition to the classes 

determined by the factors of t h e product) depends on the particular sub variety 

of M on which the product i s taken. We may complete the picture by intro

ducing other operations of a less obvious character; it will suffice to say t h a t 

these correspond geometrically to the search for a residual intersection in the 

non-regular case. 

I I I . If A is a hypersur face of M, the successive powers 

A, -A2, . . ., ( - l)*A*-\ ( - l)d+1Ad, 

effected in the rational equivalence ring on M and taken with alternating signs, 

form a covariant succession of immersion of A in M, consisting of pure sub-

varieties of A having the respec t ive dimensions 

(2) k, k - 1 , . . ., 1,0, 
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where k = d — 1. In the case of a variety A of dimension k < d — 1, it is still 
possible to obtain an analogous succession by proceeding as follows (Cf. Segre 
{84, 85}). 

Suppose for simplicity that A is irreducible, non-singular and of dimension 
k, where 0 fg k ^ d — 2. Then at each point P of A the varieties M and A 
have (projective, complex) tangent spaces [d], [k] of respective dimensions d 
and &, and such that [d] contains [k]. The spaces [k + 1] of [d] passing through 
[k] can be mapped by "points" of a space of dimension d — k — 1, there being 
one such "point" for each mode of tending to P from a point of M not belonging 
to A. By substituting, in a suitable manner, these ood~fc_1 abstract points for 
P and repeating the operation for each of the oofc points of A, we may show that 
M can be transformed into a new algebraic variety M', defined by M and A to 
within a regular birational transformation, which we say is deduced from M by 
the dilatation of base A (Cf. Segre [6]). The varieties M and M' are thus related 
by a birational correspondence, 0 say, which has no fundamental points on M' 
and which admits A as locus of fundamental points on M; that is, 0 dilates A 
into a hypersurface A' of M', which is thus a fibred variety of base A, the fibres 
being the cofe spaces [d — k — 1] which are transforms of the points P of A. 

If we now consider the powers 

(3) A'd-k, A'd~^, . . ., A'*-1, A'd, 

effected in the rational equivalence ring on M', we see that they form a succes
sion of pure subvarieties of A', with the respective dimensions (2). Now take 
the varieties (3) in order with the signs 

( - l)*-*-1, ( - l)d~fc, . . . , ( - l)d, ( - l)d+1, 

and transform the varieties so obtained by the inverse 0~x of 0; we thereby 
obtain a succession of pure varieties of A, which we denote by 

W AM0, AM1, . . ., AMik_x, AMk 

with respective dimensions (2), and such that the first coincides with A. These 
are naturally defined to within an equivalence; we say that they form the cova
riant succession of immersion of A in M. 

A detailed analysis, into which I cannot enter here, shows that the diverse 
geometrical problems of intersection, regular or irregular, and various other 
questions in which varieties possessing multiple points can also occur, can all be 
solved by making use of covariant successions of immersion. Moreover, the 
latter are closely linked with the so-called canonical varieties, as I now propose 
to indicate. 

An algebraic variety M defines (to within a regular birational transforma
tion) the variety N = M x M of its ordered point-pairs, called the product of 
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M by itself; this is an algebraic variety of dimension 2d. M can then be iden
tified with the so-called diagonal variety of N, i.e. the locus of the points which 
map in N the coincident point-pairs of M. It is thus permissible to consider the 
covariant succession of immersion of M in N; this is a relative invariant of M; 
and, by simple algebraic operations within the rational equivalence ring of M, 
we can deduce from it the canonical succession 

(5) M*. M*. . . ., M*_x, M*. 

consisting of pure varieties of dimensions d, d — 1 , . . . , 1 ,0 (the first of which 
coincides with M) such that the corresponding classes of equivalence are in
variants of M. 

In a similar manner we define the canonical succession 

(6) A*,A*,...,At_1,At 

on any pure ^-dimensional subvariety A (possibly virtual) of M; and we may 
prove that the covariant varieties of immersion (4) are related to the canonical 
varieties by the formulae 

(7) A* = 2 ( - l)JAUiSM*_t (i = 0, 1, . . ., k). 
3=0 

These equations can be solved for AM- and hence, in any given problem, we 
can replace the covariant varieties of immersion by the canonical varieties. 
It follows that, in order to go deeply into the geometry upon an algebraic 
variety, it is essential to study the operation of canonisation, i.e. the association 
of the succession (6) with any subvariety A of M. 

To begin with, we shall describe some of the results already established in 
this connection, omitting (for lack of time) to speak of the relations between 
the canonical varieties and the Jacobian varieties of linear systems of hyper-
surfaces. We shall then indicate some of the important questions which still 
remain unanswered. 

In the case where A is a hypersurface of M, (7) reduces simply to 

A*= È A'+iM*_, (i = 0,l,...,d~l). 
3=0 

An analogous result holds for varieties which are complete intersections; thus, 
for example, if P = (AB)M is a regular and simple intersection of two 
hypersurfaces A, B oi M, we have 

P * = P 2 (A' + A'-W + . . . + AB3'-1 + Bj)M*_j (i = 0,l,...,d~ 2). ) * T> J ] IAS I A 3-in I \ ATèl'-l \ T23\l\/T* 

3 = 0 

Also, if A denotes any non-singular variety of M, the successive powers of 
A in the equivalence ring of M are expressible algebraically in terms of the 
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canonical varieties of A and M. Further, a knowledge of the latter enables us 
in many cases to determine the canonical varieties of the varieties A', M' which 
are deduced from A, M by applying a dilatation 0 of base A. Thus, denoting 
by [P]' an arbitrary point in the space [d — k — 1] of A' which corresponds to 
any point P of A by 0, we have the results (Segre {85}): 

< * i = ( - i ) d - * - W - ^ * ] ' , 

M'* = e (M*) + ( - iy-*[(d - k - i)A*y, 

where the meaning of each symbol in square brackets is deducible by addition. 
More generally, it would be exceedingly important to determine the trans

formation law for the canonical varieties (5) of M, under any non-regular bi-
rational transformation. Among other things, this would enable us to study the 
algebraic combinations of the canonical varieties which are absolutely invariant 
for such transformations. 

Among the algebraic combinations of (5), those which reduce to point^sets 
have a particular interest. These are obtained in the following manner. De
noting by ix, i2, . . .,il any partition of the number d, we see that the product 
M* M * . . . M* defines a set of points on M (determined to within an equi
valence); we represent this by the symbol (i±i2 • • • ÌI)M>

 ano^ m e number of 
points in the set b y [ilf i2 • • • HÌM- ^ with each partition (i) = ix, i2, . . ., ix of 
d we associate any integer whatever, say li . ., we may define on M an 
invariant series of equivalence, consisting of sets equivalent to 

( 8 ) S K ^ . - . i ^ i H - • - H ) M -

(i) 

The number of points in this set, namely 

(9) 2 a i V , . . . , [h*"2 . . .il]M, 
(0 

is a numerical invariant of M, depending on M in such a way as to reduce 
to zero if — and, for a generic M, only if — the numbers À are all zero. 

Presumably the only invariant point-sets of M are equivalent to a set of 
type (8); also any invariant variety on a generic M may presumably be ex
pressed algebraically in terms of the canonical varieties. This question has not 
yet been studied; it presents serious difficulties because, as we shall soon see, 
for d ^ 2 the situation with regard to the invariant numbers is quite different. 

V. On M, the effective hypersurfaces K equivalent to a canonical hyper-
surface Mf form a complete linear system \ K \, possibly empty, whose dimen
sion, augmented b y unity, we denote by gd = gd(M), writing gd = 0 when there 
is no effective K. The number gd, called the geometric genus of M, is an absolute 
invariant of M, equal to the number of linearly independent everywhere finite 
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d-ple integrals on M. Similar invariants, for d ^ 2, are the numbers gz- = gi(M) 
(i = 1, 2, . . ., d — 1) which give the numbers of analogous i-rAe integrals on M. 

For a generic M of dimension d ^ 2, none of these invariants can be ex
pressed in the form (9), while — as we shall see — the alternating sum 

(10) gd - gd-l + & , - ! - . . . + ( - 1 ) ^ 1 

can be so expressed. For a given M, the calculation of gt (i < d) in general 
presents difficulties which at the moment are insuperable. 

Something, however, is known about the geometric genus gd, owing to the 
fact that we can construct the canonical system | K | algebraically by referring 
to a model of M in space [d + 1]» endowed with the so-called ordinary singu
larities; in fact it is well known that | K | is cut on such a model — of order n, 
say — residually to the double hypersurface, by primais of order n — d — 2. 
We may thus attempt to determine the dimension of \K\, and hence gd, by 
using the classical postulation (or characteristic) formula: such a formula is, 
however, valid only for primais of sufficiently high order 3), and thus we cannot 
affirm that it is applicable for primais of order n — d — 2. It is therefore very 
curious that in this case t he formula should lead to an invariant of M, which 
moreover, for d ^ 2, is in general distinct from gd, this is called the arithmetic 
genus. The theory of the arithmetic genus was initiated, in the case d = 2, 
during the second half of t h e last century by Cayley, Zeuthen and Noether, and 
then completed by Italian and French geometers. The extension to varieties 
of higher dimension was first made by Severi [2] in a fundamental memoir of 
1909, where two definitions for the arithmetic genus are proposed, which may 
be presented in the following manner. 

Let A be any hypersurface (effective or virtual) of M, and consider two 
arbitrary hypersurfaces C, C of M, subject only to suitable conditions of 
generality (such as those satisfied by prime sections of M). Let òe(A) denote the 
effective dimension ( ̂  — 1 ) of the complete linear system | A | determined by 
A on M; then, by the postulation formula, we know that, if x and x' are suffi
ciently large integers, the expression 

ôe(A + xC + x'C) 

must be a polynomial of order din x and x', with integral coefficients. The con
stant term in this polynomial coincides with the constant terms in the poly
nomials (of orders d in x and x' respectively) expressing 

ôe(A+xC), ÒM+*'C) 

for sufficiently large values of x and x'. The equality of these two constant 

3) For the limits of va l id i ty of this formula, see Gaeta {25, 26} and Severi {93}. 
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terms shows that they furnish an integer, ôv(A ) say, depending only on A and M, 
which we call the virtual dimension of \ A \. 

The two arithmetic genera pa = pa(M) and Pa = Pa(M) are then ob
tained by assuming 

Pa = ( - l)ä<UO), Pa = ÔV(K) + 1 - ( - 1)-, 
where 0 denotes the zero of linear equivalence on M. Thus pa and Pa are relative 
invariants of M 4) ; and it is a very remarkable fact that they are always equal. 
This important property has been the subject of investigation by Severi [2, 9], 
Albanese {1}, Todd [3], Zariski {104}, Kodaira {53}, and Kodaira and Spencer 
{61}. It is to the last two authors that the first general and complete demon
stration of this result is due; they have obtained it by appealing to the recent 
theory (of Leray and H. Cartan) of analytic stacks. The same authors have also 
established the equality between pa and the alternating sum (10), previously 
conjectured by Seveii [2], thereby demonstrating the invariance of the arith
metic genus 5). Similar questions have been considered by Kodaira in a very 
recent and important work {60}, where other notable results are obtained, 
including the Riemann-Roch theorem, which expresses the effective dimension 
ôe(A) as a function of certain invariants of A and M, on the hypothesis that the 
system | A | is sufficiently ample (so as, among other things, to contain partially 
the canonical system \K |) 6). Kodaira also proves the theorem concerning 
the completeness of the (linear) characteristic system defined on the generic A 
by the complete continuous system which totally contains A1). 

VI. The theory of the arithmetic genus can be established on a quite 
different basis, as Todd [3] has shown, in a notable work of 1937. In this work 
Todd, inspired by an idea of Severi [2], seeks to establish the invariance of Pa 

by showing that the expression 

(ii) t(M) = pa(M) + (- iy, 
by an appropriate choice of the coefficients X in the rational field, can be written 
in the form (9): that is to say, that there exists a relation of the form 
(12) ju(d) . t(M) = S phU . . . (i). [ ^ . . . ,-,]„, 

ii) 
4) Cf. Severi [2, 9] , Albanese {2}. 
5) For the extension of this theory to analytic varieties, cf. Spencer {95}, Kodaira 

{57, 58}, and Kodaira and Spencer {62}. A tentative demonstration of the equality of Pu and 
the sum (10) is to be found in Kodaira {54}; see also Kodaira {59}. Concerning the relations 
between the postulation formula and the arithmetic genus, see Muhly and Zariski {63}, 
Groebner {36}. 

6) Besides the classical cases d = 1,2, the Riemann-Roch theorem, under more or less 
restrictive conditions, had previously been established for threefolds by Severi [2], Segre 
[3], Kodaira {53}. Fo r any value of d, see Hirzebruch {43}. 

7) F o r t h e case of threefolds , cf. Segre [3]. 
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where the coefficients [i and ju^ are relatively prime integers, the first of which 
is positive, and dependent only on the dimension d of M. 

It cannot, however, be said that this result has been then completely esta
blished, in as much as it has been obtained by appealing to a certain postulate8). 
Nevertheless, Todd must be given the credit for calculating the coefficients in 
(12) in the cases d ^ 6, and for verifying that, for a variety M of dimension 
d ^ 6, which is a product 

(13) M = A x B 

of two varieties A, B, we have the formula 

(14) t(M) = t(A) .t(B). 

An analogous formula for the arithmetic genus pa of the product of any number 
of given varieties has been actually obtained by Gaeta [1] in 1952. 

Recently Hirzebruch {40} has shown how the coefficients in (12) can be 
calculated explicitly for any value of d, on the hypothesis that (14) holds for the 
variety (13). A functional equation for t(M) is thus obtained, which admits one 
and only one solution reducing to (— l)d for any projective space of dimension 
d; this solution is found by using the multiplicative sequences, due to Hirze
bruch, in relation with the development in power series of — x(e~x — l ) - 1 . 
In this way, with any algebraic variety M there is associated a rational number 
T(M) = (— l)dt(M), given by (12), called the Todd genus: but it is not thereby 
clear whether such a number always satisfies (11), nor even whether it is ne
cessarily an integer. In this connection Hirzebruch {41, 42}, overcoming con
siderable difficulties, has in the first place shown that the product of t(M) by 
2d~1 is an integer; the same author then proceeds to obtain (11), which implies 
the integral character of t(M), using for this purpose the theory of analytic 
stacks, as appears from the preliminary note {43}. 

The above developments could be invested with a more geometrical 
character by the following procedure. With regard to (12), we can introduce 
the invariant series of equivalence \rj(M)\, defined by 

(is) n(M) = 2 f t i < i . . . , ( d ) . ( v« . • •» , )* • 

We should then have to show how to arrive at a direct definition of the sets 
(15), and to prove that the number [rj(M)] of points in such a set is equal to 

(16) [rj(M)] = p(d) . [Pa(M) + ( - 1)*]. 

By virtue of (12), this would be tantamount to establishing (11), giving at the 
same time a geometrico-functional interpretation of the result. 

8) In Kodaira {59}, with the use of harmonic integrals, the validity of this result is 
verified for varieties which are complete regular intersections of primais in any given space. 
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Now, in point of fact, this has already been accomplished in the particular 
cases d = 2, 3 (a circumstance which Hirzebruch seems to have overlooked) ; 
and it should also be feasible for d > 3. In the case d = 2, the sets (15) belong 
to the Enriques series (cf. Enriques [1] and Campedelli {16}): 

rj(M) = (2)M + (1,1)M, 

and (16) is none other than the classical relation of Noether {66}: 

(7 + 4) + (p™ - 1) = I2(pa + 1). 

For d = 3, (15) is given quite simply by 

r)(M)=(l,2)M, 
and (16) reduces to 

fo(M)] = 2 4 ( P a - l ) , 
both results being in a paper by Segre [1] (formulae (82), (60)) dating from 1934. 
We may add that the authors in question have given simple constructions for 
the sets TJ(M) and 2rj(M) in the respective cases d = 2, 3, by considering a net 
of hypersurfaces on M. It would be interesting to obtain an analogous construc
tion for d > 3; lacking this, we could endeavour to give a direct definition of 
the sets (15) by proceeding inductively in the following way. 

In the first place, using some of the results described in § IV, we can easily 
show that all the coefficients JLL in (15) must be taken to be zero if we require 
the result 

rj(M + N) =T](M) +rj(N) 

to hold for every pair M, N of hypersurfaces of a generic (d + 1)-dimensional 
variety V. We should then have to prove that, if P denotes the variety (MN)V, 
and if rj(P) has already been defined inductively, the coefficients [iU) in (15) 
can be determined (and, by what has been said, uniquely) so that, for every 
choice of V, M, N, we have 

V(M +N) =rj(M) +rj(N) + v(d) .rj(P), 

where v(d) is a positive integer which is prime to the / ^ / s . Since, as we know, 

Pa(M +N) = Pa(M) + Pa(N) + Pa(P), 

this implies that ju(d) must satisfy the relation 

(17) ^(d) =v(d) .jLi(d- 1) . 

From this method of introducing the series of equivalence | rj |, we could 
deduce geometrical forms for the relations of Severi [2] and Albanese [1] 9), 
between the arithmetic genera of the various powers K° = M, K1 = K, K2, . . ., 

9) Relations equ iva len t to Albanese'-s were afterwards obtained independently by Todd 
and Maxwell [1]. F o r the equivalence between the two sets of relations see Todd {98}. 
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Kd of a canonical hypersurface K on M. Thus, with regard to the Severi relation, 
we have the formula 

d UU\ 

(18) [ ( - 1)- - 1]V(M) = S ( - 1)' 7 ,(*<), 
i=i ii(d —%) 

which has already been established for the first few values of d10), and which 
it would be interesting to prove in general. 

VII. The preceding results have already led to extensions in various 
directions, and readily suggest others. To begin with, there is no difficulty in 
extending the concept of dilatation to compact complex varieties: this has alrea
dy been achieved by Hopf {49} by means of the so-called cr-process, in the spe
cial case where the base of the dilatation reduces to a point; of this, interesting 
applications have been made by Hopf, Behnke and Stein {14}, and Hirzebruch 
{39}. As regards the extension to the general case we have so far only a few 
results of local character (Segre {82}) and considerations of homology on dilated 
varieties (Guggenheimer {38}). It would be well worth while to carry these stu
dies further, specially in relation to the covariant varieties of immersion, the 
canonical varieties and intersection problems in the non-regular case, as a 
result of which — in view of recent work by Hodge [1], Chern {17}, Vesentini 
{99} and Guggenheimer {37} — it would be possible to introduce Chern's 
characteristic classes by a new and simpler method. 

It is known that there exist compact complex varieties which are not equi
valent to algebraic varieties (Cf. for example Calabi and Eckermann {15}), that 
an important category intermediate between these two types is given by the 
Kühler varieties (Cf. Hodge {48}), and that — with the use of harmonic inte
grals — various properties of algebraic varieties can be carried over to the last-
named. This has been brilliantly achieved by Kodaira {52, 55} and by Spencer 
{95}, as regards the Riemann-Roch theorem and the arithmetic genus. We 
may further point out that almost all the researches on the Todd genus have 
been conducted by Hirzebruch for varieties even more general than complex 
varieties (the so-called almost complex manifolds). This author {40} has also 
characterised the Todd genus by means of its invariance under Hopfs or-pro-
cess, and — for varieties of dimensions which are multiples of 4 — has exhibited 
a relation between the genus and the inertia index of certain quadratic forms 
{41, 42, 44}. A comparison with a known result of Hodge {45, p. 224} leads to the 
presumption that there exists, in the algebraic case, a relation (which it would 
be worth investigating) between these ideas and the notion of geometric genus. 

10) For d = 3 this is to be found in Segre [1] (formula (58)), observing tha t JLL{0) = 1, 
j*(l) = 2, JLI{2) = 12, ^(3) = 24 (Cf. formulae (50), (54) of Segre [1]). By virtue of (17), 
one could probably deduce from (18) tha t v(d) = 2 for all odd values of d. 
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Here too the algebraic case is revealed as a source of fruitful suggestions; 
and, moreover, it is not to be supposed that apparent extensions always have 
a greater significance. Thus it has been recently shown by Kodaira {56} that 
certain Kahler varieties, which Hodge {47} has called Kahler manifolds of 
restricted type, are always regularly equivalent to non-singular algebraic varie
ties. In addition, Kodaira {60} has found a notable case in which certain varie
ties which are "abstract' ' in the sense of Weil can be realised as algebraic 
varieties in the usual sense. 

Even if we limit ourselves to the study of algebraic varieties, there is no 
lack of interesting questions which remain to be examined; among them are the 
specially important problems which present themselves when the series and 
systems of equivalence are considered in the effective, instead of the virtual, 
field. And it may be noted that the only adequate weapons of attack which 
we possess for such a purpose to-day are algebro-geometric in character. 

In this order of ideas, we may first mention the problems concerning the 
dimensions of series and systems of equivalence; about these, absolutely nothing 
is known save in the classic case of linear systems of hypersurfaces and for an 
attempt made by Severi {89} to extend the Riemann-Roch theorem to series 
of equivalence on a surface. 

Another notable type of question is that which links the construction of 
the canonical varieties with the use of differential forms of the first species, in 
the manner originally indicated by Severi [3], Todd {96} and Eger [2, 3]; 
another question treats of series and systems of equivalence from the topologi
cal point of view and in relation to the theory of correspondences (Cf. Severi 
{88}, [6]). 

It would also be worth while to investigate the operation of canonisation 
in connection with the various compositions within the equivalence rings on a 
given algebraic variety, with particular regard to the iteration of this operation. 

Finally, we should not neglect the problems of classification, concerning 
which very little is known for varieties of three or more dimensions. In par
ticular there is Severi's conjecture — confirmed by him [6, chap. VI] solely in 
the case of surfaces — that the Abelian varieties of rank unity are the only 
algebraic varieties for which the various canonical systems of lower dimension 
all reduce to the zero of rational equivalence. 

All these questions are undoubtedly important and difficult, even if none 
of them has been mentioned by von Neumann in his memorable discourse on 
"Unsolved problems in mathematics". To the former, as to the latter, it will 
be the task of the future to provide an answer! 
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