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I am extremely grateful to the Committee to select hour speakers for the great 
honor they have bestowed on me, and above all for this opportunity to address 
the mathematicians of the whole world from the city of my birth. The city has changed 
a great deal since my childhood, but I still get a thrill each time I return to this place 
that holds so many memories for me. I assure you that today is even a more special 
event for me. 

I have interpreted the invitation as a mandate to report on the state of knowledge 
in the fields most directly dominated by the theory and methods of quasiconformal 
mappings. I was privileged to speak on the same topic once before, at the Congress 
in Stockholm 1962, and it has been suggested that I could perhaps limit myself 
to the developments after that date. But I feel that this talk should be directed to 
a much wider audience. I shall therefore speak strictly to the non-specialists and let 
the experts converse among themselves at other occasions. 

The whole field has grown so rapidly in the last years that I could not possibly 
do justice to all recent achievements. A mere list of the results would be very dull 
and would not convey any sense of perspective. What I shall try to do, in the limited 
time at my disposal, is to draw your attention to the rather dramatic changes that 
have taken place in the theory of functions as a direct result of the inception and 
development of quasiconformal mappings. I should also like to make it clear that 
I am not reporting on my own work; I have done my share in the early stages, and 
I shall refer to it only when needed for background. 

* This work has been supported by the National Science Foundation of the United Slates under 
Grant number MCS77 07782 
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1. Historical remarks. In classical analysis the theory of analytic functions of 
complex variables, and more particularly functions of one variable, have played 
a dominant role ever since the middle of the nineteenth century. There was an obvious 
peak around the turn of the century, centering about names like Poincaré, Klein, 
Picard, Borei, Hadamard. Another blossoming took place in the 1920s with the 
arrival of Nevanlinna theory. The next decade seemed at the time as a slackening 
of the pace, but this was deceptive; many of the ideas that were later to be fruitful 
were conceived at that time. 

The war and the first post-war years were of course periods of stagnation. The 
first areas of mathematics to pick up momentum after the war were topology and 
functions of several complex; variables. Big strides were taken in these fields, and 
under the leadership of Henri Cartan, Behnke, and many others, the more-dimen
sional theory of analytic functions and manifolds acquired an almost entirely new 
structure affiliated with algebra and topology. As a result of this development the 
gap between the conservative analysts who were still doing conformai mapping 
and the more radical ones involved with sheaf-theory became even wider, and for 
some time it looked as if the one-dimensional theory had lost out and was in danger 
of becoming a rehash of old ideas. The gap is still there, but I shall try to convince 
you that in the long run the old-fashioned theory has recovered and is doing quite well. 

The theory of quasiconformal mappings is almost exactly fifty yeais old. They 
were introduced in 1928 by Herbert Grötzsch in order to formulate and prove a 
generalization of Picard's theorem. More important is his paper of 1932 in which 
he discusses the most elementary but at the same time most typical cases of extremal 
quasiconformal mappings, for instance the most nearly conformai mapping of one 
doubly connected region on another. Grötzsch's contribution is twofold: (1) to have 
been the first to introduce non-conformal mappings in a discipline that was so 
exclusively dominated by analytic functions, (2) to have recognized the importance 
of measuring the degree of quasiconformality by the maximum of the dilatation 
rather than by some integral mean (this was recently pointed out by Lipman Bers). 

Grötzsch's papers remained practically unnoticed for a long time. In 1935 essentially 
the same class of mappings was introduced by M. A. Lavrentiev in the Soviet Union 
whose work was connected more closely with partial diflFerential equations than 
with function theory proper. In any case, the theory of quasiconformal mappings, 
which at that time had also acquired its name, slowly gained recognition, originally 
as a useful and flexible tool, but inevitably also as an interesting piece of mathe
matics in its own right. 

Nevertheless, quasiconformal mappings might have remained a rather obscure 
and peripheral object of study if it had not been for Oswald Teichmüller, an ex
ceptionally gifted and intense young mathematician and political fanatic, who 
suddenly made a fascinating and unexpected discovery. At that time, many special 
extremal problems in quasiconformal mapping had already been solved, but these 
were isolated results without a connecting general idea. In 1939 he presented to the 
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Prussian Academy a now famous paper which marks the rebirth of quasiconformal 
mappings as a new discipline which completely overshadows the rather modest 
beginnings of the theory. With remarkable intuition he made a synthesis of what 
was known and proceeded to announce a bold outline of a new program which he 
presents, rather dramatically, as the result of a sudden revelation that occurred 
to him at night. His main discovery was that the extremal problem of quasiconformal 
mapping, when applied to Riemann surfaces, leads automatically to an intimate 
connection with the holomorphic quadratic differentials on the surface. With this 
connection the whole theory takes on a completely different complexion : A problem 
concerned with non-conformal mappings turns out to have a solution which is 
expressed in terms of holomorphic differentials, so that in reality the problem 
belongs to classical function theory. Even if some of the proofs were only heuristic, 
it was clear from the start that this paper would have a tremendous impact, although 
actually its influence was delayed due to the poor communications during the war. 
In the same paper Teichmüller lays the foundations for what later has become 
known as the theory of Teichmüller spaces. 

2. Beltrami coefficients. It is time to become more specific, and I shall start by 
recalling the definition and main properties of quasiconformal (q.c.) mappings. 
To begin with I shall talk only about the two-dimensional case. There is a correspond
ing theory in several dimensions, necessarily less developed, but full of interesting 
problems. One of the reasons for considering q.c. mappings, although not the most 
compelling one, is precisely that the theory does not fall apart when passing to 
more than two dimensions. I shall return to this at the end of the talk. 

Today it can be assumed that even a non-specialist knows roughly what is meant 
by a q.c. mapping. Intuitively, a homeomorphism is q.c. if small circles are carried 
into small ellipses with a bounded ratio of the axes; more precisely, it is K-q.c. 
if the ratio is < K. For a diffeomorphism / this means that the complex derivatives 
fMifx-tfy) a n d fz=T(fx+ify) satisfy |/ f |-c*|/J with k=(K-\)l(K+l). 

Already at an early stage it became clear that it would not do to consider only 
diffeomorphisms, for the class of diffeomorphisms lacks compactness. In the begin
ning rather arbitrary restrictions were introduced, but in time they narrowed down 
to two conditions, one geometric and one analytic, which eventually were found 
to be equivalent. The easiest to formulate is the analytic condition which says 
that / is K-q.c. if it is a weak L2-solution of a Beltrami equation 

(1) /* = tf, 

where p=fjtf, known as a Beltrami coefficient, is a complex-valued measurable 
function with ||ju|L</c. 

The equation is classical for smooth /J, but there is in fact a remarkably strong 
existence and uniqueness theorem without additional conditions. If p is defined 
in the whole complex plane, with \p\^k-<l a.e., then (1) has a homeomorphic 
solution which maps the plane on itself, and the*solution is unique up to conformai 
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mappings. Simple uniform estimates, depending only on fc, show that the class 
of K-q.c. mappings is compact. 

It must be clear that I am condensing years of research into minutes. The fact 
is that the post-Teichmüller era of quasiconformal mappings did not start seriously 
until 1954. In 1957 I. N. Vekua in the Soviet Union proved the existence and uni
queness theorem for the Beltrami equation, and in the same year L. Bers discovered 
that the theorem had been proved already in 1938 by C. Morrey. The great difference 
in language and emphasis had obscured the relevance of Morrey's paper for the 
theory of q.c. mappings. The simplest version of the proof is due to B. V. Boyarski 
who made it a fairly straightforward application of the Calderón-Zygmund 
theory of singular integral transforms. 

As a consequence of the chain rule the Beltrami coefficients obey a simple 
composition law: 

The interesting thing about this formula is that for any fixed z and / the dependence 
on pg(z) is complex analytic, and a conformai mapping of the unit disk on itself. 
This simple fact turns out to be crucial for the study of Teichmüller space. 

3. Extremal length. The geometric definition is conceptually even more important 
than the analytic definition. It makes important use of the theory of extremal length, 
first developed by A. Beurling for conformai mappings. Let me recall this concept 
very briefly. If L is a set of locally rectifiable arcs in R2, then a Borei measurable 
function Q: R2-+R+ is said to be admissible for L if jyqds^l for all y£L. The 
module MÇL) is defined as inf fg2dx for all admissible Q; its reciprocal is the 
extremal length of L. It is connected with q.c. mappings in the following way: 
If / is a .K-q.c. mapping (according to the analytic definition), then M(fL)^ 
KM(L). Conversely, this property may be used as a geometric definition of 
K-q.c. mappings, and it is sufficient that the inequality hold for a rather restrictive 
class of families L that can be chosen in various ways. This definition has the 
advantage of having an obvious generalization to several dimensions. 

Inasmuch as extremal length was first introduced for conformai mappings, its 
connection with q.c. mappings, even in more than two dimensions, is another 
indication of the close relationship between q.c. mappings and classical function 
theory. 

4. TeichmüUer's theorem. The problem of extremal q. c. mappings has dominated 
the subject from the start. Given a family of homeomorphisms, usually defined by 
some specific geometric or topological conditions, it is required to find a mapping 
/ in the family such that the maximal dilatation, and hence the norm HfylL is 
a minimum. Because of compactness the existence is usually no problem, but the 
solution may or may not be unique, and if it is there remains the problem of describing 
and analyzing the solution. 
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It is quite obvious that the notion of q.c. mappings generalizes at once to mappings 
from one Riemann surface to another, each with its own conformai structure, and 
that the problem of extremal mapping continues to make sense. The Beltrami 
coefficient becomes a Beltrami differential \x(z)dz\dz of type (—1,1). Note that 
p(z) does not depend on the local parameter on the target surface. 

Teichmüller considers topological maps f:SQ-+S from one compact Riemann 
surface to another. In addition he requires / to belong to a prescribed homotopy 
class, and he wishes to solve the extremal problem separately for each such class. 
Teichmüller asserted that there is always an extremal mapping, and that it is unique. 
Moreover, either there is a unique conformai mapping in the given homotopy class, 
or there is a constant /c, 0</c<l, and a holomorphic quadratic differential <p(z)dz2 

on S0 such that the Beltrami coefficient of the extremal mapping is pf=k<pl\(p\. 
It is thus a mapping with constant dilatation K=(l+k)/(l—k). The inverse 
f"1 is simultaneously extremal for the mappings S-+S0, and it determines an 
associated quadratic differential \//(w)dw2 on S. In local coordinates the mapping 
can be expressed through 

Jty(w) dw = y<p (z) dz + k ffß(z) dz. 

Naturally, there are singularities at the zeros of <p, which are mapped on zeros 
of \jß of the same order, but these singularities are of a simple explicit nature. The 
integral curves along which j/ç> dz is respectively real or purely imaginary are 
called horizontal and vertical trajectories, and the extremal mapping maps the 
horizontal and vertical trajectories on S0 on corresponding trajectories on S. 
At each point the stretching is maximal in the direction of the horizontal trajectory 
and minimal along the vertical trajectory. 

This is a beautiful and absolutely fundamental result which, as I have already 
tried to emphasize, throws a completely new light on the theory of q.c. mappings. 
In his 1939 paper Teichmüller gives a complete proof of the uniqueness part of 
his theorem, and it is still essentially the only known proof. His existence proof, 
which appeared later, is not so transparent, but it was put in good shape by Bers; 
the result itself was never in doubt. Today, the existence can be proved more 
quickly than the uniqueness, thanks to a fruitful idea of Hamilton. Unfortunately, 
time does not permit me to indicate how and why these proofs work, except for 
saying that the proofs are variational and make strong use of the chain rule for 
Beltrami coefficients. 

5. Teichmüller spaces. Teichmüller goes on to consider the slightly more general 
case of compact surfaces with a finite number of punctures. Specifically, we say 
that S is of finite type (/?, m) if it is an oriented topological surface of genus p 
with m points removed. It becomes a Riemann surface by giving it a conformai 
structure. Following Bers we shall define a conformai structure as a sense-preserving 
topological mapping a on a Riemann surface. Two conformai structures G1 and 
<72 are equivalent if there is a conformai mapping g of c±(S) on v2(S) such 
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that G2
1ogoG1 is homotopic to the identity. The equivalence classes [G] are 

the points of the Teichmüller space T(p, m), and the distance between [G±] and 
[<T2] is defined to be 

d<brJ,[*D = loginf K(f) 

where K(f) is the maximal dilatation of / , and / ranges over all mappings homo-
topic to G2OG^1. It is readily seen that the infimum is actually a minimum, and 
that the extremal mapping from GX(S) to G2(S) is as previously described, except 
that the quadratic differentials are now allowed to have simple poles at the punctures. 

With this metric T(p, m) is a complete metric space, and already Teichmüller 
showed that it is homeomorphic to R*p-Q+2m (provided that 2p—2+m>0). 

Let / be a self-mapping of S. It defines an isometry / of T(jp, m) which takes 
[G] to [GO/]. This isometry depends only on the homotopy class o f / a n d is regarded 
as an element of the modular group Mod (/?, m). It follows from the definition that 
two Riemann surfaces G±(S) and G2(S) are conformally equivalent if and only 
if [G2] is the image of [oj under an element of the modular group. The quotient 
space T(p, m)/Mod (p, m) is the Riemann space of algebraic curves or moduli. 
The Riemann surfaces that allow conformai self-mappings are branch-points of 
the covering. 

6. Fuchsian and quasifuchsian groups. The universal covering of any Riemann 
surface 5, with a few obvious exceptions, is conformally equivalent to the unit 
disk U. The self-mappings of the covering surface correspond to a group G of 
fractional linear transformations, also referred to as Möbius transformations, which 
map U conformally on itself. More generally one can allow coverings with a signa
ture, that is to say regular covering surfaces which are branched to a prescribed 
order over certain isolated points. In this case G includes elliptic transformations 
of finite order. It is always discrete. 

Any discrete group of Möbius transformations that preserves a disk or a half-
plane, for instance Î7, is called a Fuchsian group. It is a recent theorem, due to 
J0rgensen, that a nonelementary group which maps U on itself is discrete, and 
hence Fuchsian, if and only if every elliptic transformation in the group is of finite 
order. As soon as this condition is fulfilled the quotient U/G is a Riemann surface S, 
and U appears as a covering of S with a signature determined by the orders of 
the elliptic transformations. The group acts simultaneously on the exterior U* of 
U, and iS*=C/*/G is a mirror image of S. G is determined by S up to conjugation. 

A point is a limit point if it is an accumulation point of an orbit. For Fuchsian 
groups all limit points are on the unit circle; the set of limit points will be referred 
to as the limit set A (G). Except for some trivial cases there are only two alternatives : 
either A is the whole unit circle, or it is a perfect nowhere dense subset. With 
an unimaginative, but classical, terminology Fuchsian groups are accordingly 
classified as being of the first kind or second kind. 

If S is of finite type, then G is always of the first kind; what is more, G has 
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a fundamental region with finite noneuclidean area. Consider a q.c. mapping 
/ : S0^S with corresponding groups GQ and G. Then / lifts to a mapping 
/ : U-+U (which we continue to denote by the same letter), and if g0£G0 there is 
a g£G such that fog0=gof. This defines an isomorphism G: G0-+G which is 
uniquely determined, up to conjugation, by the homotopy class of/. Moreover, 
/extends to a homeomorphism of the closed disks, and the boundary correspondence 
is again determined uniquely up to normalization. The Teichmüller problem becomes 
that of finding / with given boundary correspondence and smallest maximal 
dilatation. The extremal mapping has a Beltrami coefficient fi = k(p/\<p\ where 
cp is an invariant quadratic differential with respect to G0. 

Incidentally, the problem of extremal q.c. mappings with given boundary values 
makes sense even when there is no group, but the solution need not be unique. 
The questions that arise in this connection have been very successfully treated by 
Hamilton, K. Strebel, and E. Reich. 

For a more general situation, let \idz\dz be any Beltrami differential, defined 
in the whole plane and invariant under G0 in the sense that {liog^gJgQ=ix a.e. 
for all gQ£G. Suppose / is a solution of the Beltrami equation f^—\ifz. It follows 
from the chain rule that fog0 is another solution of the same equation. Therefore 
/og0o/_ 1 is conformai everywhere, and hence a Möbius transformation g. In this 
way \i determines an isomorphic mapping of G0 on another group G, but this 
time G will in general not leave U invariant. For this reason G is a Kleinian 
group rather than a Fuchsian group. It has two invariant regions f(U) and /(£/*), 
separated by a Jordan curve f(5U). The surfaces f(U)/G and /(C/*)/G are in 
general not conformai mirror images. 

The group G—fG^f~x is said to be obtained from G0 by q.c. deformation, 
and it is called a quasifuchsian group. Evidently, quasifuchsian groups have much 
the same structure as fuchsian groups, except for the lack of symmetry. The curve 
that separates the invariant Jordan regions is the image of the unit circle under 
a q.c. homeomorphism of the whole plane. Such curves are called quasicircles. 
It follows by a well-known property of q.c. mappings that every quasicircle has 
zero area, and consequently the limit set A(G) has zero two-dimensional measure. 

Strangely enough, quasicircles have a very simple geometric characterization: 
A Jordan curve is a quasicircle if and only if for any two points on the curve at* 
least one of the subarcs between them has a diameter at most equal to a fixed mul
tiple of the distance between the points. It means, among other things, that there 
are no cusps. 

7. The Bers representation. There are two special cases of the construction that 
I have described: (1) If \i satisfies the symmetry condition ii(l/z)z2/z2=fl(z), 
then G is again a Fuchsian group and / preserves symmetry with respect to the 
unit circle. (2) If \i is identically zero in U and arbitrary in U*9 except for being 
invariant with respect to (70, then / is conformai in £7, and f(U)/G is conformally 
equivalent to S= U/G, while /(£/*)/G is a q.c. mirror image of S. 

file:///idz/dz
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I shall refer to the second construction as the Bers mapping. Two Beltrami 
differentials /xa and p2 will lead to the same group G and to homotopic maps 
fl9f2 if and only if f±=f2 on dU (up to normalizations). When that is the case 
we say that px and \i2 are equivalent, and that they represent the same point in the 
Teichmüller space T(G0) based on the Fuchsian group G0. 

In other words the equivalence classes are determined by the values of / on the 
unit circle. These values obviously determine /(£/), and hence / , at least up ta 
a normalization. One obtains strict uniqueness by passing to the Schwarzian 
derivative <p = Sf defined in U (recall that Sf={f"lf)'-\{f"lfy). From the 
properties of the Schwarzian it follows that <p(gz)g'(z)2=(p(z) for all g€<j0- Further
more, by a theorem of Nehari |<p(z)|(l — |z|2)2 is bounded (actually ^6). Thus 
<p belongs to the Bers class B(G0) of bounded quadratic differentials with respect 
to the group G0. The Bers map is an injection T(G^)-*B(GQ). 

It is known that the image of T(G0) under the Bers map is open, and as a vector 
space JB(<J0) has a natural complex structure. The mapping identifies T(G0) with 
a certain open subset of B(G0) which in turn endows T(GQ) with its own complex 
structure. If S is of type (/?, m) the complex dimension is 3p — 3+m. The nature 
of the subset that represents T(p,m) in c3p""3+m is not well known. For instancel 
it seems to be an open problem whether T(l,l) is a Jordan region in C. 

The case where G=I, the identity group, is ot special interest because it is so 
closely connected with classical problems in function theory. An analytic function <p, 
defined on U, will belong to T(I) if and only if it is the Schwarzian Sf of a schlicht 
(injective) function on U with a q.c. extension to the whole plane. The study of 
such functions has added new interest to the classical problems of schlicht functions. 

To illustrate the point I would like to take a minute to tell about a recent beautiful 
result due to F. Gehring. Let S denote the space of all cp = Sf, f analytic and 
schlicht in £/, with the norm ||çj||=sup (l-|z|2)a|r/)(z)|, and let T=T(I) be the 
subset for which / has a q.c. extension. Gehring has shown (i) that T=IntS, 
(ii) the closure of T is a proper subset of S. To prove the second point, which 
gives a negative answer to a question raised by Bers maybe a dozen years ago, 
he constructs, quite explicitly, a region with the property that no small deformation, 
measured by the norm of the Schwarzian, changes it to a Jordan region, much less 
to one whose boundary is a quasicircle. I mention this particular result because 
it is recent and because it is typical for the way q.c. mappings are giving new impulses 
to the classical theory of conformai mappings. 

In the finite dimensional case T(p, m) has a compact boundary in B(G0). It 
is an interesting and difficult problem to find out what exactly happens when cp 
approaches the boundary. The pioneering research was carried out by Bers and 
Maskit. They showed, first of all, that when cp approaches a boundary point the 
holomorphic function / will tend to a limit which is still schlicht, and the groups 
G tend to a limit group which is Kleinian with a single, simply connected invariant 
region. Such groups were called jff-groups (B stands either for Bers or for boundary) 
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in the belief that any such group can be obtained in this manner. It can happen 
that the invariant simply connected region is the whole set of discontinuity ; such 
groups are said to be degenerate. Classically, degenerate groups were not known, 
but Bers proved that they must exist, and more recently J0rgensen has been able 
to construct many explicit examples of such groups. 

Intuitively, it is clear what should happen when q> goes to the boundary. We 
are interested to follow the q.c. images /(£/*). In the degenerate case the image 
disappears completely. In the nondegenerate case the fact that one approaches 
the boundary must be visible in some way, and the obvious guess is that one or 
more of the closed geodesies on the surface is being pinched to a point. In the limit 
f(S*) would either be of lower genus or would disintegrate to several pieces, and 
one would end up with a more general configuration consisting of a "surface with 
nodes", each pinching giving rise to two nodes. 

A lot of research has been going on with the intent of making all this completely 
rigorous, and if I am correctly informed these attempts have been successful, but 
much remains to be done. This is the general trend of much of the recent investiga
tions of Bers, Maskit, Kra, Marden, Earle, J0rgensen, Abikoff and others; I hope 
they will understand that I cannot report in any detail on these theories which are 
still in status nascendi. 

In a slightly different direction the theory of Teichmüller spaces has been extended 
to a study of the so-called universal Teichmüller curve, which for every type (/?, m) 
is a fiber-space whose fibers are the Riemann surfaces ofthat type. A special problem 
is the existence, or rather non-existence, of holomorphic sections. 

The Bers mapping is not concerned with extremal q.c. mappings, and it is rather 
curious that one again ends up with holomorphic quadratic differentials. The Bers 
model has a Kählerian structure obtained from an invariant metric, the Petersson-
Weil metric, on the space of quadratic differentials. The relation between the 
Petersson-Weil metric and the Teichmüller metric has not been fully explored 
and is still rather mystifying. 

8. Kleinian groups. I would have preferred to speak about Kleinian groups in 
a section all by itself, but they are so intimately tied up with Teichmüller spaces that 
I was forced to introduce Kleinian groups somewhat prematurely. I shall now 
go back and clear up some of the terminology. 

It was Poincaré who made the distinction between Fuchsian and Kleinian groups 
and who also coined the names, much to the displeasure of Klein. He also pointed 
out that the action of any Möbius transformation extends to the upper half space, 
or, equivalently, to the unit ball in three-space. Any discrete group of Möbius 
transformations is discontinuous on the open ball. Limit points are defined as in 
the Fuchsian case ; they are all on the unit sphere, and the limit set A may be regarded 
either as a set on the Riemann sphere or in the complex plane. The elementary 
groups with at most two limit points are usually excluded, and in modern terminology 
a Kleinian group is one whose limit set is nowhere dense and perfect. A Kleinian 
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group may be looked upon as a Fuchsian group of the second kind in three dimensions. 
As such it cannot have a fundamental set with finite non-euclidean volume. Therefore, 
the relatively well developed methods of Lie group theory which require finite Haar 
measure are mostly not available for Kleinian groups. However, the important 
method of Poincaré series continues to make sense. 

Let G be a Kleinian group, A its limit set, and Q the set of discontinuity, that 
is to say the complement of A in the plane or on the sphere. The quotient manifold 
Q/G inherits the complex structure of the plane and is thus a disjoint union of 
Riemann surfaces. It forms the boundary of a three-dimensional manifold M(G) = 
=B(l)uQ/G. 

What is the role of q.c. mappings for Kleinian groups? For one thing one would 
like to classify all Kleinian groups. It is evident that two groups that are conjugate 
to each other in the full group of Möbius transformations should be regarded as 
essentially the same. But as in the case of quasifuchsian groups two groups can also 
be conjugate in the sense of q.c. mappings, namely if G / =/G/" 1 for some q.c. 
mapping of the sphere. In that case G' is a q.c. deformation of G, and such groups 
should be in the same class. 

But this is not enough to explain the sudden blossoming of the theory under the 
influence of q.c. mappings. As usual, linearization pays off, and it has turned out 
that infinitesimal q.c. mappings are relatively easy to handle. An infinitesimal q.c. 
mapping is a solution of f2=v where the right-hand member is a function of class L°°. 
This is a non-homogeneous Cauchy-Riemann equation, and it can be solved quite 
explicitly by the Pompeiu formula, which is nothing else than a generalized Cauchy 
integral formula. In order that / induce a deformation of the group v must be 
a Beltrami differential, v€BelG, this time with arbitrary finite bound. There is 
a subclass N of trivial differentials that induce only a conformai conjugation of G, 
and the main theorem asserts that the dual space of Bel G/N can be identified 
with the space of quadratic differentials on Q(G)/G which are of class L1. 

This technique is particularly successful if one looks only at finitely generated 
groups. In that case the deformation space is finite dimensional, so that there are 
only a finite number of linearly independent integrable quadratic differentials. 
This result led me to announce, somewhat prematurely, the so-called finiteness 
theorem: If G is finitely generated, then S=Q(G)fG is a finite union of Riemann 
surfaces of finite type. I had overlooked the fact that a triply punctured square 
carries no quadratic differentials. Fortunately, the gap was later filled by L. Green-
berg, and again by L. Bers who extended the original method to include differentials 
of higher order. With this method Bers obtained not only an upper bound for the 
number of surfaces in terms of the number of generators, but even a bound on the 
total Poincaré area of S. 

It was not unreasonable to expect that finitely generated Kleinian groups would 
have other simple properties. For instance, since a finitely generated Fuchsian 
group has a fundamental polygon with a finite number of sides one could hope that 
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every finitely generated Kleinian group would have a finite fundamental polyhedron. 
All such hopes were shattered when L. Greenberg proved that a degenerate group 
in the sense of Bers and Maskit can never have a finite fundamental polyhedron. 
Groups with a finite fundamental polyhedron are called geometrically finite, and 
it has been suggested that one should perhaps be content to study only geometrically 
finite groups. With his constructive methods that go back to Klein, Maskit has been 
able to give a complete classification of all geometrically finite groups, and Marden 
has used three-dimensional topology to study the geometry of the three-manifold. 
These are very farreaching and complicated results, and it would be impossible for 
me to try to summarize them even if I had the competence to do so. 

9. The zero area problem. An interesting problem that remains unsolved is the 
following: Is it true that every finitely generated Kleinian group has a limit set with 
twodimensional measure zero? 

The most immediate reason for raising the question is that it is easy to prove the 
corresponding property for Fuchsian groups of the second kind, two-dimensional 
measure being replaced by one-dimensional. How does one prove it? If the limit 
set of a Fuchsian group has positive measure one can use the Poisson integral to 
construct a harmonic function on the unit disk with boundary values 1 a.e. on the 
limit set and 0 elsewhere. If the group is finitely generated the surface must have 
a finitely generated fundamental group, and it is therefore of finite genus and connec
tivity. The ideal boundary components are then representable as points or curves. 
If they are all points the group would be of the first kind, and if there is at least one 
curve the existence of a nonconstant harmonic function which is zero on the boundary 
violates the maxium principle. Therefore the limit set must have zero linear measure. 
The proof is thus quite trivial, but it is trivial only because one has a complete 
classification of surfaces with finitely generated fundamental group. 

For Kleinian groups it is easy enough to imitate the construction of the harmonic 
function, which this time has to be harmonic with respect to the hyperbolic metric 
of the unit ball. If the group is geometrically finite this leads rather easily to a proof 
of measure zero. For the general case it seems that one would need a better topolo
gical classification of three-manifolds with constant negative curvature. It is therefore 
not suprising that the problem has come to the attention of the topologists, and 
I am happy to report that at least two leading topologists are actively engaged in 
research on this problem. I believe that this pooling of resources will be very fruitful, 
and it would of course not be the first time that analysis inspires topology, and vice 
versa. 

Some time ago W. Thurston became interested in a topological problem concerning 
foliations of surfaces, and he proved a theorem which is closely related to Teichmüller 
theory. I have not seen Thurston's work, but I have seen Bers' interpretation of 
it as a new extremal problem for self-mappings of a surface. It is fascinating, and 
I could and perhaps should have talked about it in connection with the Teichmüller 
extremal problem, but I am a little hesitant to speak about things that are not yet 
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in print, and therefore not quite in the public domain. Nevertheless, since many 
exciting things have happened quite recently in this particular subject, I am taking 
upon myself to report very informally on some of the newest developments, including 
some where I have to rely on faith rather than proofs. 

Thurston has now begun to apply his remarkable geometric and topological 
intuition and skill to the problem of zero measure. I certainly do not want to preempt 
him in case he is planning to talk about it in his own lecture, and I have seen only 
glimpses of his reasoning, but it would seem that he can prove zero area for all 
groups that are limits, in one sense or another, of geometrically finite groups. This 
would be highly significant, for it would show that all groups on the boundary of 
Teichmüller space have limit sets with zero measure. It would neither prove nor 
disprove the original conjecture, but it would be a very big step. Personally, I feel 
that a definitive solution is almost imminent. 

Very recently there was a highly specialized conference on Riemann surfaces in 
the United States, and there was an air of excitement caused not only by what Thurston 
had done and was doing, but also by the presence of D. Sullivan who had equally 
fascinating stories to tell. Sullivan, too, has worked hard on the area problem, and 
he has come up With a by-product that does not solve the problem, but is extremely 
interesting in itself. He applies the powerful tool of what has been called topological 
dynamics. If a Lransfuimatiuii gioup acts on a measure space, the space splits into 
two parts, a dissipative part with a measurable fundamental set, and a recurrent 
part whose every measurable subset meets infinitely many of its images in a set of 
positive measure. This powerful theorem, which goes back to E. Hopf, does not 
seem to have been familiar to those who have approached Kleinian group from the 
point of view of q.c. mappings. The dissipative part of a finitely generated group is 
the set of discontinuity, and nothing more; this is a known theorem. The recurrent 
part is the limit set, and it is of interest only if it has positive measure. But even if 
the area conjecture is true Sullivan's work remains significant for groups whose 
limit set .is the whole sphere. 

Sullivan has several theorems, but the one that has captured my special interest 
because I understand it best asserts that there is no invariant vector field supported on 
the limit set. If the limit set is the whole sphere there is no invariant vector field, period. 
In an equivalent formulation, the limit set carries no Beltrami differential. It was 
known before that there are only a finite number of linearly independent Beltrami 
differentials on the limit set of a finitely generated Kleinian group, but that there are 
none was a surprise to me, and Sullivan's approach gives results even for groups that 
are not finitely generated. Sullivan's results, taken as a whole, give a new outlook on 
the ergodic theory of Kleinian groups. They are related to, but go beyond the results 
of E. Hopf which were already considered deep and difficult, and as a corollary 
Sullivan obtains a strengthening of Mostow's rigidity theorem. I cannot explain 
the proofs beyond saying that they are very clever and show that Sullivan is not only 
a leading topologist, but also a strong analyst. 
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10. Several dimensions. In the remaining time I shall speak briefly about the gene
ralizations to more than two dimensions. There are two aspects: q.c. mappings 
per se, and Kleinian groups in several dimensions. 

The foundations for q.c. mappings in space are essentially due to Gehring and 
J. Väisälä, but very important work has also been done in the Soviet Union and 
Roumania. I have already mentioned, in passing, that correct definitions can be 
based on modules of curve families, and the modules give the only known workable 
technique. Otherwise, the difficulties are enormous. It is reasonably clear that the 
Beltrami coefficient should be replaced by a matrix-valued function, but this function 
is subject to conditions that were known already to H. Weyl, but which are so 
complicated that nobody has been able to put them to any use. Very little is known 
about when a region in «-space is q.c. equivalent to a ball, and there is not even an 
educated guess what Teichmiiller's theorem should be replaced by. On the positive 
side one knows a little bit about boundary correspondence. 

In two dimensions there is not much use for mappings that are locally q.c. but 
not homeomorphic, for by passing to Riemann surfaces they can be replaced by 
homeomorphisms. In several dimensions the situation is quite different, and there 
has been rapid growth of the theory of so-called quasiregular mappings from one 
77-dimensional space to another. It has been developed mostly in the Soviet Union 
and Finland, and this is perhaps a good opportunity to congratulate the young 
Finnish mathematicians to their success in this area. In the spirit of Rolf Nevanlinna 
they have even been able to carry over parts of the value distribution theory to 
quasiregular functions. In fact, less than a month ago I learned that Rickman 
has succeeded in proving a generalization of Picard's theorem that I know they 
have been looking for for a long time. It is so simple that I cannot resist quoting the 
result: There exists q = q(n,K) such that any K-q.c. mapping f:Rn-+Rn — 
{al9 ..., aq) is constant. (They believe that the theorem is true with q=2.) 

As for Kleinian groups, they generalize trivially to any number of dimensions, 
and the distinction between Fuchsian and Kleinian groups disappears. Some pro
perties that depend purely on hyperbolic geometry will carry over, but they are not 
the ones that use q.c. mappings. However, infinitesimal q.c. mappings have an 
interesting counterpart for several variables. There is a linear differential operator 
that takes the place of /- , namely Sf=\{Df+Df) — (\ln) tr Df> 1„ which is a sym
metric matrix with zero trace. It has the right invariance, and the conditions under 
which the Beltrami equation Sf=v has a solution can be expressed as a linear 
integral equation. The formal theory is there, but it will take time before it leads 
to tangible results. 

My survey ends here. I regret that there are so many topics that I could not even 
mention, and that my report has been so conspicuously insufficient as far as research 
in the Soviet Union is concerned. I know that I have not given a full picture, but 
I hope that I have given you an idea of the extent to which q.c. mappings have 
penetrated function theory. 
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