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Micro-Local Analysis 

Masaki Kashiwara 

We mean by micro-local analysis the analysis of functions and systems of dif­
ferential equations on the cotangent bundle. The role of cotangent bundles in 
analysis has been recognized for a long time, but the formulation which we treat 
here started from Sato's introduction of microfunctions around 1970. The book of 
Sato-Kawai-Kashiwara [10] concerned was the systematic work on micro-local 
analysis. One of the most remarkable results in that book is the discovery of three 
types of micro-differential equations: de Rham type du/dx1=09 Cauchy-Riemann 
type {ßldx1

Jti':-idldx2)u=Q and Lewy-Mizohata type (d/dx1 + f^lx1d/dx2)u=0. 
Any system of differential equations (or more generally micro-differential equations) 
is micro-locally equivalent to the mixture of these three types at a generic point. 

They also proved that the characteristic variety of any system of differential 
equations is involutive. (See also [9].) 

Let P(x, D)=2iaaa(x)Da be a differential operator defined on an open subset 
X ofC". Here, a=(a l5 ..., a„) is an «-tuple of non-negative integers, \<x.\=<x1+...+an 

and Da=dM/dx?l1...dxln. The largest m such that aa(x)^0 for some a with 
|a] = 777 is called the order of P(x9D). The function 2\a\=ma*(x)£a *s called the 
principal symbol of P{x9 D). Here, (x, £) = (xl9 ...9x„9 £l9 ..., £„) is the coordinate 
system of the cotangent bundle T*X of X and £a means ^J1, ..., £"». 

Let us consider a system of differential equations 

SW : P±(x9 D)u =...= PN(x, D)u = 0. 

The common zeroes of the principal symbols of linear combinations ^.AjPj with 
differential operators Aj as coefficients is called the characteristic variety of 9W. 
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Let c denote the codimension of the characteristic variety in the cotangent bundle. 
The characteristic variety being always involutive, the codimension c is equal 
to or greater than n. The number n—c indicates, roughly speaking, the number of 
variables on which solutions of SR depend. For example, in the case of the system 
of differential equations du/dx1= ... = du/dxc=Q9 a solution u(x) depends on the 
(n—c) variables xc+19 ...9xn. Hence, when n=c9 we can expect that the space 
of solutions of SR is of finite dimension. In fact, this is a case [3]. We say that 
SR is holonomic if c=n. This notion is a generalization of the notion of ordinary 
differential equations into several variables. As we succeeded to study the properties 
of functions with one variable through their ordinary differential equations, we 
can expect that the study of holonomic systems of differential equations gives many 
properties of their solutions. 

Let P be an ordinary differential operator of the form 2%oaj(f)(t(^MOj with 
0m (0)^0. In this case, t=0 is called the regular singularity of Pu=0. Then, any 
solution of Pu=0 has the form: 

u(t) = 2<pjtV(t)t*j(}ogty 

with holomorphic functions (pjtV(t) defined on a neighborhood of t=0. Moreover, 
A, are the solutions of the equation 

This phenomenon can be generalized to the case of holonomic systems of partial 
differential equations. 

First, we can introduce the notion of regular singularities for holonomic systems 
(see §4). Let SR: P^x, D)u=...=PN(x9D)u=0 be a holonomic system of 
differential equations with regular singularities. Then, we can find a nonzero poly­
nomial b(s) of degree m and a linear combination Q—^A3P} suchthat Q is 
written in the form b(x1D1)+x12j+]a^mgjta(x)(x1D1)

JD,<x
9 where a=(aa, ...,aM) 

is an («—l)-tuple of nonnegative integers, |a|=a2+...+«„ and D'a=d^ldx2^...dxfl
n
n. 

This implies that any solution of SR satisfies Qu=0. In the case of ordinary 
differential equation with regular singularities, 

?»><«(4)J=?«'<°>(4)' 
+<^I-(«J(0-%(O))(4J-

The hyperfunction solution u(x) of the system 3JI has an "asymptotic expansion" 

«(*)= 2 2 Ì*w(*0^+kGog*i)v. 
j=l v=0 ft=0 

Here, vJvk(x') are hyperfunctions on the variables x'=(x29 ..., JCJ. Àj satisfies 
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b(Xj)—0. Moreover, the hyperfunctions vJtVtk(x') satisfy holonomic systems 
of differential equations with regular singularities. 

1. Hyperfunctions and microfunctions [10]. Hyperfunctions are generalized functions 
obtained by sum of "ideal boundary values" of holomorphic functions, and micro-
functions are "singular parts" of hyperfunctions. First, we shall remember the 
definitions of hyperfunctions and microfunctions. 

1.1. Tangent cone. Let A and B be two subsets of a differential manifold X. 
For a point p of X9 choosing a local coordinate system around p9 we define the 
subset CP(A; B) of the tangent vector space TpX as the totality of liman(xn— yn)9 

where {xn} (resp. {y,,}) is a sequence of points in A (resp. B) which converges 
p and {an} is a sequence of positive numbers. 

We define C(A; B) as the union of CP(A; B). 
If B is a closed submanifold of X, then C(A\ B) is invariant by translations of 

tangent vectors of B; we denote by CB(A) the subset C(A; B)/TB of the normal 
bundle TBX of B. 

1.2. Let M be an open subset of JR" and let X be a neighborhood of M in C". 
The tangent bundle TX (resp. TM) of X (resp. M) is identified with XXC" 
(resp. MXÄ"), and the normal bundle TMX of M is identified with f^XTM= 
MXÌ^ÌR". The conormal bundle T^X of M is identified with l ^ ï r * M . 
We shall denote by T and n the projection from ]/— 1 !TAf and | /^T T*M onto Af, 
respectively. A subset Q of j / ^T TM (resp. j / — 1 jT*Af) is called convex or 
cone if ßnT_ 1(/?) (resp. Qnn"1^)) is convex or cone. An open set U of X is 
called an infinitesimal neighborhood of a subset Q of } ^ ï TM if CM(X— U)r^Q=Q. 

We denote by 3l(ß) the inductive limit of the space G{U) of holomorphic 
functions defined on U9 where U runs over the set of infinitesimal neighborhoods 
of Q. 

Let V be an open subset of M. Let #"(F) be the set of families {Qi9 <p.}.e/, 
where ß, is a convex open cone of ]^l TM suchthat z(Qj) = V9 cp, is an ele­
ment of il(Qt) and J is a finite index set. We say that two members {Qj9 <?,},• e / 

and {&'j,<Pj}j£j of tF{V) are equivalent if there are open convex cones Q.. 
and (pt j^(QitJ) (iÇ_I9jÇJ) satisfying the conditions : fl^ofl/Uß^^^^/^Jfl 

and 9>5=2/€/i>ul0r 
We denote by ^ ( F ) the set of equivalence classes of 3F{y)9 and the element 

of @Ì(V) is called a hyperfunction defined on V. For an open convex cone Q and 
(/>£9f(ß), the hyperfunction corresponding to {Q, cp} is denoted by bn(q>) (or, 
if (p is defined on an infinitesimal neighborhood U of Q9 denoted by bu((p)9 

or simply b(<p))9 and called the boundary value of (p. If bfì((p)=09 then r/>=0. 
^ ( F ) has clearly a structure of vector space, and the equivalence class of {Qi9 <p,}/6/ 

equals 2ibat(Vi)' 
1.3. Let (*o> | / - 1 £o) be a point of the conormal bundle ] / - l T*M=MX 

i— 1 K" of M, and let u be a hyperfunction defined in a neighborhood of x. 



142 Masaki Kashïvvara 

We say that u is micro-analytic if u can be expressed in the form: u=2ib
Q ((pi) 

with open convex cones Qt of j / ^ ÏTM and ^£91(0,) suchthat T~1(p)r\Qia 
{»c:îueT-10») = P Î J P ; (f^v9f^Q=-(v9ÇQ)>0}. We denote by SS(w) the 
set of points of Y—\T*M where z/ is not micro-analytic, and call it the 
singular spectrum of u. 

A real analytic function u defined on V is considered^as hyperfunction on V; 
in fact, u is a restriction of a holomorphic function <p defined on a neighborhood 
£/ of V. a corresponds to the hyperfunction bv((p). A hyperfunction u is real 
analytic if and only if SS (u) is contained in the zero section {(#, Y^ÏÇ)Ç. J^T T*M; 
£=0}. _ 
1.4. For any open subset W of ]/—1 r*M, we define 

«'(FT) = «(K)/{u6«(K); SS(w)n^= 0}, 

where F is an open subset of M which contains n(W). This definition does not 
depend on the choice of V. Let # be the sheaf on ]/—1 T*M associated with 
thepresheaf W^WiyV). If W is an open cone, we have cé>(W) = 'ê'(W). A section 
of # is called a microfunction, and we denote by sp the homomorphism from 
®(V) to «(»0-

A differential operator P(x9 D) with real analytic functions as coefficients operates 
on the sheaf of hyperfunctions and microfunctions m the iollowing way: 

P(2boj(fPJ)) = 2b0j(P<Pj) and P sp (u) = sp (Pu). 

2. Micro-differential operators. We can construct a class of operators, wider 
than the class of differential operators, which operate on the sheaf of microfunctions. 

2.1. Let X be an open subset of C". The cotangent bundle T*X of X is 
identified with XXC". For a complex number X and an open subset Q of T*X9 

we denote by ê°°(A)(ß) the set of sequences {PA+j(z9 Q}jç_z of holomorphic functions 
satisfying the following conditions: 

(2.1.1) PJi+j(z9 0 is a holomorphic function defined on Q, homogeneous of 
degree X -\-j with respect to Ç; i.e. 

[jbww] Px+J = &+j)Pi+i 

(2.1.2) PA+J-(z,Q satisfies the following growth conditions: 
(2.1.2.1) For any compact subset K of Q and a positive number e, there is 

a positive number CKt such that 

\pi+Az> 01 < - ^ r f i J ' f o r a°y J > ° a n d (*• 0 m *• 

(2.1.2.2) For any compact subset KoiQ, there is a positive number RK suchthat 

|Pa+A0l ** (~JyRïJ for anv •/ < ° and feO in *. 
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We denote by ê(X)(Q) the set of {Px+j} of £°°W(Q) such that Px+J=0 for 
y>0. ê°°{X) and $(X) are clearly sheaves on T*X. We define ${X) as the union 
of S(k+j\ and set ê00=ê00^\ ê=ê®\ 

{P^j(z90}jez will be denoted by 2px+j(z>D)- T h e section of ^°°(A) is called 
micro-differential operator, and the section of ê(X) will be called micro-differential 
operator of order X. 

For a section 2 A + j ( z ' ^ ) °f A ^ X ^ A ^ ' O *S called principal symbol and 
denoted by o^CP). Hence, aA is a sheaf homomorphism from ê(X) onto the sheaf 
(9(X) of holomorphic functions on T*X9 homogeneous of degree X with respect to £. 

2.2. We define a product R=2B^fl+j(z9D) of micro-differential operators 

P=2PA+MI>)
 a n d Q=2Qß+j(*>i>) % 

^+;1+Z(z, o = 2 ^(DJPA+J(Z, 0)(W,+*fr 0), 
I~J+fc-|«l a ! 

where a = (al5 ..., a„) is a set of non negative integers, ^1 = ^ + . . . + ^ , and 
Da

z=d]tt]/dz^...dzt;i". By this law of multiplication, we have (PQ)R=P(QR) for 
P^°°ix\ j 2 6 * " w and P£<T°(e). We have *(A)-tf(ji)ctf(>l+AO. ' " % ' a i l d 

<f(0) are sheaves of rings with the identity l=2Bj(z9D) (Pj=l for j = 0 and 
P , = 0 for^VO). For P££(X) and ße*(/ i) , we have ffA+/l(Pß)=ffA(P)ff|l(ß). 

A differential operator P=2aaa(z)^a *s identified with the micro-differential 

operator 2 ^ ( * > ^ ) with PJ(Z9Q=2J-M°MF> 

The following lemma shows an importance of principal symbols. 

LEMMA 2.2.1. If the principal symbol <rk(P) of P£é>(X) does not vanish at a point 
p of T*X9 then P has an inverse R in $(-X)\ i.e. RP=PR=1. 

The rings ê and ê(0) have nice ring theoretic properties; for example, they are 
coherent rings, any stalk of them is a noetherian ring, etc. 

2.3. Let M be an intersection of R" and an open subset X of C". Then, the 
conormal bundle T*fX=]/^Ä T*M is a closed submanifold of T*X. Let V be 
an open subset of f^ï T*M and let Q be an open subset of T*X containing V. 
Then, ê°°{X>(Q) operates on %(V)9 and we have \-u = u9 (PQ)u = P(Qu) for 
u^(V)9P^ê°°{x\Q)9 ß€<r° ( '0(ß). 

By using this operation of micro-differential operators, the following proposition 
is easily obtained from Lemma 2.2.1. 

PROPOSITION 2.3.1. For a differential operator P and a hyperfunction u, we have 

SS(w)co-(P)-1(0)uSS(Pw)-

In fact, outside o-(P)_1(0)uSS (w), P is invertible as micro-differential operator 
by Lemma 2.2.1, and hence Psp(w)=0 implies sp(w) = 0. 

2.4. Let Po = (z09Co) and P! = (zl9Ci) be two points of T*C" and F a holo­
morphic map from a neighborhood of p0 to a neighborhood of p1 such that 
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F(p0)=p±. Assume that F is a homogeneous symplectic transformation, i.e. 
F*(2£jdzj)=2ÇjdZj' Then, we can construct a sheaf isomorphism 
$: F-1^0*)"*00™ on a neighborhood of p± suchthat $(PQ) = $(P)$(Q) for 
P€£°°W and Q€g°°V>9 and that ax($(P)) vx(P)oF for any P££(X). Moreover 
if p0 and px are contained in f-ì T*M and if F maps tf^ÌT*M into f^ÏT*M9 

then we can construct a sheaf isomorphism !P: F"1^)^-^ such that *P(Pu) = 
<P(P)-W(u) for any Peg00™ and w€#. We shall call ($ , P) or (4>, <F, F) the 
quantized contact transformation. 

Quantized contact transformations are effectively used in order to transform 
micro-differential operators into the normal forms. For example, let us consider 
a micro-differential operator P of order 1 such that a^P) A(2CjdZj)^0 and 
that GiiP^yz^T*^] is real-valued. Then, there is a quantized contact transformation 
which transforms P into i~^\djdz1. Hence, we can deduce the properties of P 
from those of d/dzl9 which is easy to analyze. Thus, we obtain the following 

PROPOSITION 2.4.1. Let P be a micro-differential operator such that the restriction 
of the principal symbol p of P to f^ÎT*Rn is real valued and that the differential 
of the principal symbol is not parallel to 2^j^zj- Then, P: ^ - * # is surjective and 
the support of microjunction solution of Pu=0 is the union of bicharacteristics of P, 
i.e. integral curves of the Hamiltonian 

fdCjdzj dzjdCj' 

3. System of micro-differential equations. 
3.1. In this talk, a system of micro-differential equations is, by definition, a coherent 

left ^-Module. Let 901 be a coherent ^-Module. Then, Sol has locally a free resolution 

where P=(PU) is an N^NQ matrix of micro-differential operators and P: êN*--+êN 

is given by (Ql9 ..., QN)^(Ql9 -..,QNl)P=(2QAi> ->2QAN)> 

We have 3RMK,(SR, #)=Ker (»"• V V"i)9 and hence 5Rw, (9W, #) is a sheaf 
of microfunction solutions of a system of micro-differential equations : 

2PUUJ = ° 0 = 1 ^i)-

3.2. The support of a coherent « -̂module is not an arbitrary subset of T*M. 

THEOREM 3.2.1 ([9], [10]). The support of a coherent ê-module is an involutive 
analytic subset of T*X. 

Remember that an analytic subset V of T*X is called involutive if the Poisson 
bracket 

{f,g} 2(K d dCtdzJ 
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vanishes on V for any holomorphic functions / and g vanishing on V. An 
involutive analytic subset has always codimension equal or greater than rc=dim X. 
We say an involutive analytic subset V is Lagrangian if codim K=dimAr, and 
a system of micro-differential equations is holonomic if its support is Lagrangian. 

THEOREM 3.2.2 ([6], [8]). Let 9ft be a holonomic system of micro-differential 
equations. Then, we have 

(1) For any point p of j /^ ï T*R"9 HOOJìIS (SDÌ, %>)p is a finite-dimensional vector 
space. More generally, so is £xtJ# (9ft, %>)p for any j . 

(2) There is a stratification f-i T*R"=n Va of f-ÎT*Rn into subanalytic 
submanifolds Va such that &xt^(^Si9^)\v is a locally constant sheaf for any 
a and j . 

A microfunction which satisfies a holonomic system of micro-differential equations 
is called holonomic microfunction. Theorem 3.2.2 suggests that we have a great 
chance to analyze holonomic microfunctions through their holonomic systems of 
micro-differential equations. 

4. Holonomic system with regular singularities. 
4.1. Let 9ft be a holonomic system of micro-differential equations and let A be 

the support of 9ft. A is therefore a Lagrangian analytic subset of T*X. At a generic 
point p of A9 A is a conormal bundle of a complex submanifold Y of X. Let us 
take a local coordinate system x=(xl9 ...9xn)9 such that Y is given byx1=...=xl=0 
and p = (09dx1). Let S£km be the holonomic system defined by 

Here, ux m is the modulo class of 1. 

THEOREM 4.1.1. There are complex numbers Xj and integers mj (j=\, ...,N) 
such that S°° (g)̂  9M is isomorphic to ®ê°° <&s S£km. (Xj mod Z, mj) are uniquely 
determined by 9ft up to permutation. 

The integer 2mj *s called the multiplicity of 9ft. 
We say that 9ft has regular singularities at /? if 9ft is isomorphic to 0 y £?x m . 

In general, we say that 9M has regular singularities, if 9ft has regular singularities 
at a generic point of any irreducible component of the support of 9M. 

Any holonomic system can be transformed into a holonomic system with regular 
singularities by using micro-differential operators of infinite order. More precisely, 
we have the following 

THEOREM 4.1.2 [7]. For any holonomic system 9M, there exists a holonomic system 
W with regular singularities such that <£'00(g)(?9M is isomorphic to «^ (8)̂ 301'. 
Moreover, 9ft' is unique up to isomorphism. 
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4.2. Let 7 be a complexification of a real analytic submanifold of JR", and let 
J ^ m be as in §4.1. Then, any homomorphism from J5fA1 into the sheaf of .micro-
functions # is given by uk-s^c{D1l^—ì)~k~1ò(x19 ...9x^ for some complex 
number c. Let 9M be a holonomic system with multiplicity 1 (this implies that 
9W has regular singularities), and suppose that 9ft is generated by a section u. 
Then, 9ft is isomorphic to £Pkl for some complex number X9 and the isomorphism 
from 9ft onto ifAjl is given by u*->Puxl with a micro-differential operator 
P££(k) (for some integer k) such that ak(P)\A^Q. Hence, for any irçafo*i,(3R, #), 
F(u) equals cP(D1f']/—l)~x~~1ö(x19 ...,*/) for a complex number c. We define 
the principal symbol a(F(u)) of F(u) by 

regarded as a section of Q1^®(Q1^)®{~Vi. Here ß̂ f2 is the sheaf of half densities. 
on A. For a holonomic microfunction which satisfies a holonomic system with 
regular singularities with multiplicity 1, we can define its principal symbol in this 
manner (see [2]). 

The above observation shows that a solution F:WH*-*^ is uniquely determined 
by the principal symbol of F(u). 

5. Asymptotic expansion of holonomic microfunctions. 
5.1. Let us consider the situation in §4 with 1=1. Then, F(u) is given by 

P(X9D)(D1//^T)~;L~1ö(X1). For the sake of simplicity let us assume that X is 
not an integer. Then, we can show that F(u) equals sp((p(x){x1-\-Y^l 0)") with 
p=X—k and a real analytic function (p(x). We have 

a(F(u)) = j ^ ^ e x p ^ r c i / ^ ) ^ ( ° ' *2 ' ' " ' *n) V\dÇidx2-dxtt\/\dx1...dxn\. 

Since 
<P(x)(x1 + iOY = cp(09x29 ..^xJ^+iOy 

+^(09x29...9xn)(x1-hi0r+1+...9 

a(F(u)) gives the first coefficient of the power series expansion of F(u) with re­
spect to jq. 

5.2. Let us consider another example. Let f(x) be a real-valued real analytic 
function. Then, it is known that S(t—f(x)) has the asymptotic expansion 

ô(t-f(x))~ n2 2 i^.v.kW^+ f cdogOva\o). 
v=0 j = l fc=0 

Here, ajvk(x) is a distribution related with the residues of the analytic continuation 
of f(x)s

+ with respect to s. 
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The above asymptotic expansion means the following: for any compactly sup­
ported C°°-function <p(x)9 we have the asymptotic expansion 

fö(t-f(x))<p(x) dx~222 if aj.r.t(x)q>(?c) dx) /V*(logOv. 
v j k 

5.3. Let us consider a more general case. Let X be an open subset of C1+". 
We shall denote by (t9x) = (t9xl9 ...9xn) the point of C1+". Let S be the sheaf 
of differential operators on X. A left coherent ^-module is called a system of 
differential equations. Let us denote by n the projection from T*X onto X. 
Then, & contains %~XQ) as its subring. For a system 9ft of differential equations, 
the support of $®n-i& 7r-19H is called the characteristic variety of 9ft. 

We say that 9ft is holonomic if so is $ ^ r i s ^ 1 ^ -
Let 9ft be a holonomic system of differential equations, u a section of 9M, and 

let F be a ^-linear homomorphism from 9ft into the sheaf $ of hyperfunctions 
on M=Xr\ JR1+". 

Suppose that F(u) has an asymptotic expansion 

(5.3.1) m -222aj.v.k(x)tX>+k(lQg0V-
j v k 

We may assume that Xj—Xr is not an integer for j^f and that for any j there 
is v satisfying fl.jV0^0. 

First, let us determine Xj. 

THEOREM 5.3.1. There exist a non zero polynomial b(s) and a differential operator 
P(t9x9tD19Dx) satisfying the following conditions 

(1) b(tDt) = tP(t9 x9 tDt9 Dx)u9 

(2) P(t9x9tDt9Dx) has the form 2 £;,«(', x)(tDtyD%. 

This theorem gives X}. We have 

(5.3.2) b(Xj) = 0 for any ;. 

In fact, by (1) of Theorem 5.3.1, we have 

(5.3.3) (bODd-tPO, x9 tDt9 üxj) 2 2 2 <W(*)'A '+* Oog 0V = 0. 
j v k 

If Oj 0 =0 for v>v0 and 0/,Vo,o^O> then the coefficient of t*j(logt)v° of the 
expansion of the left hand side of (5.3.3) is b(X^)ajv 0(x). Hence, we obtain 
b(Xj)=0. 

We shall call b(s) the b-function of u with respect to the hypersurface *=0. 

EXAMPLE 5.3.2. u = (t2-x3)"9 i.e. 

("2 tE>1+T xD* ~ a) U = (3x2£>'+2tD*)u = 0-
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We have 

(tDt){tDt-2oi-j}[tDt-2a-j)u =-l-t*Ds
xu9 

and hence b(s) = s(s-2a-2/3) (s-2a-4/3). 

EXAMPLE 5.33. u=e~vt; i.e. (t2Dt-l)u=0. In this example, b(s) = l. In 
fact, u=t2Dtu. See §5.4. 

EXAMPLE 5.3.4. Let f(x) lie a holomorphic function. Let b(s) be the ^-function 
of u=ö(t—f(x)). Then, we have 

b(tDt)S(t-f(x)) = tP(x, tDt,Dx)ö(t-f(xj). 

By multiplying /s, we obtain 

b(tDt-s)fd(t-f(x)) = P(x9 tDt-s-l9Dx)t
s+1S(t-f(x)).< 

This implies, with the change of variables (t9x)*-+(t-{-f(x)9 x)9 the following: 

b((.t+f(x))Dt-s)f(xYô(t) = P(x, (t+f(x))Dt-S-l,Dx-(df)Vt)f(xy+1ô(t)-

Comparing the coefficients of o(i)9 we obtain 

b(-s-l)f(x)s = P(x9 -s-29Dx)f(xy+\ 

Hence, b(-s-l) is the ò-function of f(x)9 i.e. b(-s-l)f(xy£@[s]f(x)s+1, 
See[l],[4]. 

5.4. We shall micro-localize the situation of §5.3. Let A be a Lagrangian 
submanifold of T*X and JA the sheaf of holomorphic functions which vanish 
on A. There is f€JAn(9(l) suchthat df==co (==2^jdzj) modulo/^, i.e. df-coZ^Q1. 
The function / is determined modulo JA. Let #A be the subsheaf of ê(\) defined 
by fff 1(/ii) and SA the subring of ê generated by #A. We denote by $A(m) 
the ^-submodule ê(m)*£A=£A'g(m) of ê for m£Z and we define </1>m = 
£Anê(m)=f2. Let $=2&j(x9D) be a micro-differential operator in / ^ 
such that ^ E E / m o d / 2 and ^ 0 4 2 » 3 ^ A ^ E O m o d ^ - Then> * is, 
determined modulo £Ai2(-l)=#l(-\)- Note that t^ ,P]€^ A ( - l ) for any P$.£A. 

THEOREM 5.4*1. Let WU be a holonomic ê-module with regnar, singularities, 
and let u be a section of 9M.( Then, there are a nonzero polynomial b(s) and.P£&A(—l) 
such that b(<P)u=Pu and that ordP^degè. 

,» | 
Consider the quotient ring sé~êA\êA(—\). Then this ring is locally isomorphic 

to the ring of differential operators on A homogeneous of degree 0 with respect 
to £. Let S be the modulo class of #. Then, the center of sä is the polynomial 
ring generated by $. si is embedded (locally) into the ring SA of differential 
operators on A. 
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THEOREM 5.4.2. Let WU be a holonomic ^-module with regular singularities and 
91 a coherent ^-sub-module of 9W. Then, the st-module JR/rf(—1)81 has the follow­
ing properties. 

(1) There is a nonzero polynomial b(s) such that b(ff)(9l/S,(—i)<iSt) = 0. 
(2) The @A-module ®A (8> (̂W/< (̂— l)9t) is a holonomic system of differential 

equations on A with regular singularities. 

5.5. Let X be an open subset of C1+" = {(/, x); t£C9xeCn} and A the co-
normal bundle of the hypersurface /=0 . Let ÜW be a holonomic system of micro-
differential equations with regular singularities defined on a neighborhood of 
p0=(Q9f—ldt)9 and w a section of 9ft. Let F be an ^-linear homomorphism 
from 991 into the sheaf # of microfunctions. Then, v(t9x) = F(u) is a holo­
nomic microfunction. 

Let b(s) be the polynomial given in Theorem 5.4.1, {Xj}j==i # the set of 
the distinct roots of b(s)9 and let m3 be the number of the set {j';j'?±j9 X},—Xj 
is a nonnegative integer}. Then, v(t9 x) has the "asymptotic expansion" at p0: 

N llij oo 

v(f,x)~ 2 2 2aj.y.*i*)(Ptll/-lY>-1''-k(\ogD,iy-iy6(t). 
j = l v = 0 fc = 0 

Moreover, it is easy to see that ajvk(x) can be calculated from €tj k(x)9s with 
fc<degò by using the equation b($)v=Pv. Each hyperfunction aJvk(x) 
satisfies the system of differential equations derived from 91/<f(—1)91 and hence 
ajvk(x) satisfies a holonomic system of differential equations with regular singula­
rities by Theorem 5.4.2. 

EXAMPLE 5.5.1. Let us consider the hyperfunction u — (t*—x3y+... as in 
Example 5.3.2. This hyperfunction has the meromorphic continuation on oc and 
has poles a=—5/6—w, — 1—/?, —7/6-/7 (w = 0, 1,2, ...). This w has the 
asymptotic expansion : 

u = c0 Ì (4 /27)" [ " + 5 / g " IJ?ô(x)(Dt/Y=ï)-»->i>-»6{t) 

Here, 

and 

+ Cl Ì (4 /27)" ["+7/ff" m'+1è{x){D,l)/-\)-^l^'ò(0. 
n=o /7!L^/JJ» 

92a +2/3 
cQ = - = - r ( l / 3 ) r ( a + l ) r ( a + 5/6)sin7c(a-f 1/6) 

92a+ 4/3 

cx = = - r ( 2 / 3 ) F ( a + l ) r ( a + 7/6)sin7i(a-l/6). 
)/37C 

[s]„ means s(s+\)(s + 2)...(s + n — 1). 
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