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THE COHOMOLOGY 

OF INFINITE DIMENSIONAL LIE ALGEBRAS; 

SOME QUESTIONS OF INTEGRAL GEOMETRY 

by I. M. G E L ' F A N D 

This report is concerned with certain results and problems arising in the theory 
of the representation of groups. In the last twenty years much has been achieved 
in this field and—most important—its almost boundless possibilities have become 
apparent. 

Indeed, its problems, touching on the interests of algebraic geometry, on many 
questions of the algebraic number theory, analysis, quantum field theory and geometry, 
as well as its inner symmetry and beauty have resulted in the growing popularity of 
the theory of representations. 

It is impossible to list even briefly its main achievements, and this is not the aim 
of this communication. Nevertheless, one cannot omit mentioning the outstanding 
papers by Harish-Chandra, Seiberg, Langlands, Kostant, A. Weil, which considerably 
advanced the development of the theory of representations and opned up new rela
tionships; and, since we do not go into these questions, we will not be able to touch 
upon many of the deep notions and results of the theory of representations. 

We feel that the methods which have arisen in the theory of representation of groups 
may be used in a considerably more general non-homogeneous situation. We will 
give some examples: 

1. The proof of the fact that the spectrum of a flow on symmetric spaces of constant 
negative curvature is a Lebesgue spectrum [1] was based on methods of the theory 
of representations, namely the decomposition of representations into irreducible 
ones. One of the most useful methods of decomposing representations into irreducible 
representations is the orisphere method [5]. In the works of Sinai, Anosov, Mar
gulis [2], [3], [4], only the orispheres are considered and groups symmetries are left 
out. This rendered possible the study of the spectrum of dynamic systems in a consi
derably more general situation. 

2. The theorem of Plancherel and the method of orispheres gives rise to the conside
ration of more general problems of integral geometry, taking place in a non-homo
geneous situation [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. 

3. If we have a manifold and its mapping, the study of distributions " constant 
on the inverse image of each point " of this mapping is an extremely interesting problem, 
special examples of which were studied in the homogeneous situation (functions in 
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four-dimensional space, invariant relative to the Lorenz group, functions constant on 
classes of conjugate elements of a semi-simple Lie group [18], etc.). There are various 
aspects of this problem which are considerably more interesting and important than 
may seem at first glance. Of course, the main interest of the problem is the study of 
these distributions at singularies of the mapping. To be more precise, suppose X 
is a manifold (C00-analytical, algebraic) and ^ is some (perhaps infinitely dimensional) 
Lie algebra of smooth vector fields. One wishes to describe the space of un variant 
distributions. 

A more natural statement of the problem is obtained by replacing the distributions 
by generalised sections of a vector bundle which vary according to a given finite dimen
sional representation. Unfortunately consideration of length prevent me from giving 
a series of existing examples. Those examples are particularly interesting when X 
has only a finite number of orbits relative to ^ . For interesting example in the non-
homogeneous situation see [34]. 

4. The theory of representation of groups makes the consideration of interesting 
examples possible and shows the importance of studying the ring of all the regular 
differential operators on those algebraic manifolds which are homogeneous spaces. 
It is quite natural to wish to describe the structure of the ring R of regular differential 
operators on any algebraic manifold. Perhaps, as in [19], [20], it would be helpful 
to consider the quotient skew-field of the ring JR. Another interesting problem is the 
description of the involutions of this ring R. 

In this report I would like to tell about certain problems which were studied by my 
friends and myself while thinking about questions1 connected with representation 
theory. 

I. Representations of semisimple Lie algebras. 

0. Suppose ^-is a semisimple Lie algebra. The study of representations is essen
tially the study of a category of ^-modules. The choice of the particular category 
of ^-modules considered in the algebraic problems of the theory of representations 
is essential. Suppose / is a fixed subalgebra of ^ . ^-the module will be called (^, / ) 
finite iff 1° it is a finitely generated ^(^)-module and 2° as an ^(^)-module it is the 
algebraic direct sum of finite dimensional irreducible representations o f / a n d in this 
decomposition each of the irreducible representation appears only a finite number 
of times. 

The following two cases are very interesting: 

1° ^ is a real semisimple algebra,/ is the subalgebra corresponding to the maximum 
compact subgroup. The corresponding (^, /)-modules were considered by V. A. Pona-
maryov and the author and were called by them " Harish-Chandra modules ". 

2° 0 is a real Lie algebra, / is a Cartan subalgebra or, more generally, the semisimple 
part of the parabolic subalgebra. 

1. Let us consider in more detail the category of Harish-Chandra modules in the 
case when ^ is the algebra of a complex semisimple Lie group. 
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Further, each module is the direct sum of modules on each of which the Laplace 
operators have only one eigen-value. 

Consider an example. Suppose G is a simply connected Lie group over the alge
bra (S, B — its Borei subgroup, Jf is a unipotent radical of B, H — EL Cartan sub
group. Consider the indecomposable finite dimensional representation p of the 
group H. Note that since H = C* x C* x . . . x C* the question of the finite 
dimensional representations of H is reduced to the determination of a finite number 
of pairwise commutative matrices. Let us extend this representation p of the group H 
to a representation of the group B and consider, further, the representation of the 
group G induced by this representation B. The representation thus obtained will 
be called a Jordan representation. In the case when p is of dimension one, we obtain 
the well-known representation of the principal series. Thus we have constructed, 
using the representation of the group H, a representation of the group G. Note that 
the description of the canonical form of the representation of H is in some sense an 
unsolvable problem if the rang of H is greater than 1 [21]. 

If we consider the representation of the algebra ^ thus constructed only on the 
space of vectors which vary over the finite dimensional representation of the maximum 
compact subgroup, we will obtain Harish-Chandra modules. Apparently the follow
ing hypothesis holds: at the points of general position all the indecomposable Harish-
Chandra modules are all Jordan representations (*). 

For SL(2, C) this statement follows from work of Zhelobenko. The most interest
ing is the study of Harish-Chandra modules at singular points. Of course, the problem 
of listing all the Jordan modules is already a badly stated (unsolvable) problem, 
since it is based on the classification of systems of pairwise commutative matrices. 
However, it is not clear whether it is possible to solve this problem at a singular point, 
considering the Jordan modules as given. If such a solution were possible, it would 
have exceptional interest. 

The problem of describing Harish-Chandra modules was completely solved by 
V. A. Ponomaryov and the author for the Lie algebra of the group SL(2, C) [22], [23], [24]. 
Then these representations were constructed as a group representation (and not only 
as an algebra representation) by M. I. Graev and the authors cited above [25]. 

The classification of indecomposable Harish-Chandra modules is carried out in 
two stages. 

1. The problem is reduced to a problem in linear algebra. 
2. The linear algebra problem obtained for SL(29 C) generalises the problem of 

describing the canonical form of pairs of matrices A, B such that AB = BA = 0. To 
solve this problem we apply the Maclane relation theory, which allows us to use the 
relations A* and B*, inverse to the degenerate operators A and B, as well as the mono
mials A#klB#k*A#k3 .... 

The Harish-Chandra modules at a singular point may be divided into two classes. 

(*) To be more precise, each HARISH-CHANDRA module is decomposed into direct sum of 
submodules on which the Laplace operators have precisely one eigen-value. The set of eigen
values thus obtained is called singular if the representation of the fundamental series with 
the same eigen-values of the Laplace operator are reducible. The points of general position 
will be exactly the non-singular points. 
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The modules of first class are uniquely defined by any set of natural numbers, the 
modules of the second class are determined by any set of natural numbers together 
with one complex number L It is thus interesting to note that at singular points the 
module space is not discrete. The most convenient canonical form of Harish-Chandra 
modules are given in [25]. 

In the case of SL(2, U) the problem of classifying Harish-Chandra modules is easily 
reduced to a problem in linear algebra; explicitely the category of Harish-Chandra 
modules at a given singular point is isomorphic to the following category of diagrams 
in the category of finite dimensional linear spaces : 

« + ß+ 

Pi 

with the condition a+a_ = ß+ß- = y, where y is nilpotent. The question of the 
classification of the objects of this category is aparantly solvable but leads to consi
derable difficulties. 

CONJECTURE. — The category of Harish-Chandra modules for any semisimple group 
with given eigen-values of Laplace operators is equivalent to a certain category of 
diagrams in the category of finite dimensional linear spaces. 

2. This and the following section of the report summarise some results of I. N. Bern
stein, S. I. GePfand and the author. 

Suppose ^ is a semisimple Lie algebra over C, b is its Borei subalgebra, u is a radical 
and / is a Cartan subalgebra. Consider the following category (9. Its objects are 
(0, / ) — finite modules M, satisfying the following condition: for every vector £ e M 
the space %{u)^ is finite dimensional. This category is most useful for the application 
of the theory of highest weights. In this category, let us chose a class of objects which 
will be called elementary. All the others will be constructed from them and their 
factor modules by step by step extensions. 

Suppose % is a linear functional over / Denote by M x<%(&)-modu\e, generated 
by fx, with the relations nfx = 0 and hfx = (% — p, h) .fx for all h e f and n e u . Here p 
denotes the half-sum of the positive roots. By studying the modules Mx we get exten
sive information on the representation of the algebras <3, including finite dimensional 
ones. We now state a few theorems on Mx modules and their morphisms. 

THEOREM 1 (Verma). — Let the modules MXl and MX2 be given. Two cases are 
possible: 

1° Uom(MXl,MX2) = 0; 

and 

2° Horn (MXI, MX2) « C, 

then any non-trivial homomorphism MXl into MX2 is an embedding. 
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To state the next theorem we must introduce a partial ordering in the Weyl group W. 
Suppose sl9 s2eW. We shall say that st > s2 iff there exist reflexions al9. . .,ar 

in W such that s1 = <r1 ... ors2 and l(oi+1 . .. ars2) = l(at- ! . . . ors2) H- 1, i = 1 , . . . , r, 
where l(s) is the length of the element seW. 

THEOREM 2. — Let MXl and MX2 be given. MXl imbeds into MX2 if and only if, 

1. There exists such an x that Re % lies in the positive Weyl chamber and such 
a pair of elements sl9 s2eW9 Sx > s2 that Xi = SiX» Xi — siX-

2. Zi ~ X2 = En/ty, where nt are integers, a( are simple roots. 

The module MXQ is richest in submodules for integer values of Xo from the positive 
Weyl chamber. It follows from theorem 2 that MXo contains a submodule MSXo 

for all s e W. In this case the embedding of MSXo into MXo is determined in the follow
ing way. Suppose sai is the reflection with respect to the simple roots ai9s = sa{ . . . saic 

is the decomposition of minimum length. Let 

Xi = S<XiSai+i • • • SakXom 

Then 

Jsxo = aJxo ' 

where 
( X 2 ~ X l i « l ) (X3-X2,flC2) (XO~Xk.«k) 

n — V ( a i . a i ) V («2 ,a 2 ) F (ak.ajt) 
u - ' - ' - a i • • L ' - a 2 • • • - " - a i e 

Since the minimum representation s in the form of the product of sai is not unique, 
whereas the injection MSXo into MXo is uniquely determined, the theorem gives rela
tions between " chains " of the type described. In the general case the embedding 
is more complicated. 

The relations between MSXo may easily be shown by the following commutative 
diagram. The vertices of the diagram are numbered by the elements s of the Weyl 
group and correspond to the modules Msxo. If st < s29 then an arrow going from s2 

to Si is drawn. The mapping is defined by the embedding of MS2Xo into MS1XQ. We 
obtain a commutative diagram. It is not difficult, using this diagram, to get in parti
cular, a resolution of the finite dimensional representation by free ^(w)-modules. 

The finite dimensional representation with highest weight %0 — p is of the form 

M = MJYJMSX0. 

The theorems stated above and this diagram contain, in this case, the formulas of 
Kostant, Weyl's formulas for characters, the Borel-Weil theorem and the Harish-
Chandra theorem concerning the left ideals of enveloping algebras. 

3. The ring of differential operators on the principal affine space and the generalisa
tion of the Segal-Bargman representation to any compact group. 

Suppose G is a complex semisimple Lie group, Jf is the maximum unipotent sub
group, H — a Cartan subgroup. The manifold A = Jf\G is called the principal 
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affine space of the group G. It is an algebraic quasi affine manifold. It is interesting 
to consider the ring @ of regular differential operators on A. Suppose f(g) ranges 
over all the regular algebraic functions (polynomials) on the group G. We will give 
a method allowing to construct for any such function a differential operator on A. 
Since H normalises Jf, the transformation g -> hg may be carried over to A (left 
translations [5]). Using these left translations we can assign to every element of the 
Lie algebra / of the group H a. differential operator on A. The commutative ring of 
differential operators on A generated by these operators will be denoted, following [20], 
by Wu. Suppose n is the natural map of G into A. Denote by n* extension of the 
functions over A to functions over G induced by n. The operation n^, mapping 
the functions on G into functions on A is less obvious and supplements, in our case, 
the operation of averaging the function over the subgroup. The construction of n^ 
is carried out in the following way. 

Suppose f(g) is a regular algebraic function on G. Consider it as the linear combi
nation of matrix elements of finite dimensional irreducable representations in the 
basis of weight vectors H. Threw out all the elements of this sum except the summands 
corresponding to those matrix elements whose first index is the highest weight of the 
corresponding representations. Denote by n^f the function thus obtrained. 

Suppose / is a fixed function on G. Define the operator / in the functions by the 
formula 

7(<P) = rc*(/rc*(<P)) 

THEOREM 1. — There exists an element weWu such that w0f is a regular differential 
operator on A. Conversely, every regular differential operator on A may be repre
sented in the form Zwf. fi9 w( e Wu where ft are functions on G. 

Suppose Jf is the quotient field of the Wu ring, !F(G) is the ring of regular algebraic 
functions on G. The map constructed in theorem 1 may be expanded to the map 

i : 0 ( g ) X -• ^(G)(g)jr 
wu c 

THEOREM 2. — i is a linear space isomorphism over Jf, compatible with the right 
translations by elements of G. 

Note that the fact of the existence of an isomorphism of the spaces above was obtained 
earlier in a joint paper of A. A. Kirillov and the author [20]. 

Fo r the group SU(2) there exists an extremely useful realisation of the whole series 
of representations of this group due to Segal and Bargmann. This realisation is in 
the Hilbert space of analytic functions of two complex variables, square, integrable 
with weight e"lzil2~~lZ2l2. W e will point out a generalisation of this construction 
for any compact Lie group. 

Suppose K is a simply connected compact Lie g roup of rang r, G — its complexifi-
cation, A — the principal affine space of the group G. Introduce the weight function 
e~m°\ a e A. Suppose pf is the i'-th fundamental representation of G, let Çt denote 
the vector of highest weight in p £ . Pu t 

Hi(g) = (pis)ii,Pi(g)a 
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where ( , ) is the scalar product in the space of the representation p{ invariant relative 
to K. It is clear that Ht(g) is a function on A and we can then put 

H(a)= tHt(a). 
i=l 

Now consider the analytic functions on A which are square integrable with weight 
e-H(a) c a u t h e Hilbert space of all these functions a " generalised Segal-Bargmann 
space ". The group K thus obtained acts on it in a natural way and the unitary repre
sentation thus obtained contains every irreducible one exactly once. Let us call any 
operator with polynomial regular algebraic coefficients a " differential operator on A ". 

CONJECTURE. — The operator conjugate (in the generalised Segal-Bargmann space) 
with a regular differential operator is again a regular differential operator. 

The involutions which arise in the ring of regular differential operators are far from 
trivial. Thus, for the case of SU(n) the operator, say, conjugate with multiplication 
by a simple first order function, is a differential operator of the (n — l)-st order. The 
techniques developed in the previous section apparently will turn out to be very useful 
in the study of the ring of differential operators on A, in particular, for the proof of 
the conjecture stated aboce. The fact of the matter is that the construction of the invo
lution itself is most conveniently carried out in the terms developed there. Using 
this method the conjecture was checked for S 17(3). 

We state another problem. Let the real form of the group G be given. Its unitary 
representation naturally gives rise to an involution in the enveloping algebra °U(<3). 
We must find all the possible extensions of this involution from °Ui<3) to the ring of 
all the regular differential operators on A. In the simpliest examples these extended 
involutions correspond to series of unitary representations (of real groups) contained 
in the regular one. It would be interesting to list the involutions in the ring of regular 
differential operators on any quasiaffine algebraic manifold. 

It would also be interesting to consider the factor space of the group G, not only 
over the maximal unipotent group, but also over any orispherical subgroup. 

II. Integral geometry. 

In this paragraph I will only consider one elementary example [17]. The derivation 
of the Plancherel formula for G = GL(n, C) is based on the following problem in 
integral geometry. Denote by Jf e G the set of all the upper triangular matrices 
with units on the diagonal. Suppose the function f(x), x e G is given. Let 

-I q>(xl9 x2) = \ f(Xi lzx2)dz9 

u 
where x± and x2 are any matrices. The problem is: given (p(xl9 x2) find f(x). It 
suffices to solve the problem when x = e is the unit matrix. We can assume that the 
fonction / is given on C"2 and the equation y = x± 1zx2 for fixed Xi and x2 defines 
. ^ 2 , n , . . n(}1 — 1) m C" a plane of dimension . 
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Now replace our problem with the following, at first glance meaningless, problem. 

Consider the space Hn2J k = j of all the fc-dimensional planes in Cn\ 

For all heH„2tk consider the function 

i 9(h) = I f(x)dx. 

We must now recover f(x). In the paper [10] this problem is solved in the following 
manner. Using the function cp and its derivatives construct a differential (k9 h) form 
2tfq> on the Grassman manifold Gn2ffc of /̂ -dimensional planes containing the point x. 

This form Jf cp is closed and the value of f(x) is equal to fflq>9 where y0 i
s a n v 

cycle homologic to the set of all /c-dimensional planes containing the point x and 
lying in a fixed k + 1-dimensional plane passing through the point (Euler's cycle (*)). 
As to the integral over the other fe-dimensional cycles in the basis of Schubert cells 
in G„2ffc, it is equal to zero. 

In our case the function cp(xl9 x2) is known not on the whole manifold H„2tk but 
only on a certain submanifold. The submanifold of HH2k will from now on be called 
the " complex of fc-dimensional planes ". The complex is called permissible if the 
form ffl<p on this complex is determined by the values of the function cp on this complex 
only. In the case when cp is given on a permissible complex we can recover f(x) 
by using the formula 

< 
f(x) = Cy\ tfq>, 

where y is a cycle lying in the complex; thus to find Cy it suffices to decompose the 
cycle y over the Schubert cell basis. In our case the complex will consist of planes 
of the form hXuX2 = [y/y = xj~1zx2 } and has dimension n2. It turns out to be per
missible. The set of these planes of this complex which contain the point e has the 
necessary dimension k and forms a cycle. The coefficient of the Euler cycle is equal 
to n\ Considering the form Jf cp only on the complex, we will obtain the classical 
inversion formula 

f(e) = [(2i)Vkn\y a (£ - 0M, - i) * *•»-«)"-A«. A*»-
Apparently one can obtain the Paley-Wiener theorem for GL(n, C), in a similar manner; 
in other words, obtain conditions on q>, which imply the decrease of / at infinity. 
To do this we embed GL(n, C) not into C"2 but into CP"2 and consider the problem 
as a projective problem of integral geometry (see [15]). Since in this case we can recover 
f(x) in the points at infinity as well, the Paley-Wiener conditions will consist in the 

(*) Note that other problems of integral geometry give rise to integration over other cycles 
in Gn2fc; see, for example [16]. 
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following: the function / ' and its derivatives (recovered by using cp) must be equal 
to zero at all the points of infinity. 

III. Cohomology of infinite algebras. 

0. This part of the report contains results obtained jointly by D. B. Fuks and the 
author. 

We know how difficult it is to describe any reasonable category of representations. 
On the other hand, the problem of determining cohomology groups is a sumpler one. 
Here we list results about the cohomology of Lie algebras of vector spaces, which 
show that these cohomologies are reasonable, are not equal to zero and are not infinite 
dimensional. 

Recall that the cohomology H*(& ; M) = £ HQ(& ; M) of the topological alge-
Q 

bra ^ with coefficients in the ^-module is defined as the cohomology of the complex 
C(& ;M) = { cq(& ; M), da(<& ; M)} where ca(& ; M) is the space of continuous skew-
symetric ^-linear functionals on ^ ranging over M, and the differential da = dr(<& ; M) 
is defined by the formula 

wad {f+i) = z (- ir*-1*«., a d t i {t+1) 
- £ (-irtM£i,...,Z. <w-

If M is a ring, and the operators on ^ are its differentials, then the complex C(@ ; M) 
has a natural multiplicative structure. 

1. Problems and examples. 

The main example of an infinitely dimensional Lie algebra will be the algebra of 
smooth vector fields on a smooth manifold. 

Suppose M is a closed orientable connected smooth (*) manifold. Denote by 5l(M) 
the Lie algebra of smooth tangent vector fields on M with Poisson brackets for commut
ing. The first of the problems considered is a follows. Define the cohomology 
ring §*(M) = H*(W(M) ; U) of the algebra SU(M) with coefficients in the unit repre
sentation, i. e., in the field U of real numbers with a trivial 9ï(M)-module structure. 
This ring obviously is a differential invariant of the manifold M. Looking ahead 
we shall say that the space J79($I(M); IR) will turn out to be finite dimensional for 
any q (see [28]). The problem of computing the ring $)*(M) is not as of yet completely 
solved. 

We would like to point out the difference between the method of constructing 
invarients of manifolds by using objects of differential geometry ' (the Lie algebra of 
vector fields) and the usual method of constructing differential invariants. Whereas 
usually the differential form representing a Pontryagin of Chern class on the mani
fold X is built up from the individual object (by using the metric) on the manifold, 

(*) By smooth we always mean of class C°°. 
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in our case the invariants are constructed using the infinite dimensional set of all 
smooth vector fields on the manifold. 

As an example consider the case when M is the circle S1. We can show that the 
ring H*(S*) is generated by a two-dimensional generator a and a three-dimensional 
generator, the two being related only by the skewsymetry condition. 

Further the generators a e ^(S1), <£ e ^(S1) are represented by cocycles 
AeC^S1); U), B e C 3 ^ 1 ) ; U) given by the formulas 

A(f,g) =1 / '(*) f"(x) 
g'to g"(x) 

dx 

B(f,g,h) 
/(x) f'(x) fix) 
g(x) g'(x) g"(*) 
h(x) h'(x) h"(x) 

dx 

When the dimension of the manifold M increases the ring §*(M) becomes consi
derably richer; thus the ring §*(S2) has 10 generators, and the ring $*(Sl x S2)9 

20 generators (see [29]). 

The cohomology of the Lie algebra of smooth vector fields is intimately connected 
with the cohomology of Lie algebras of formal vector fields. By a formal vector 
field at the point 0 of the space Rn we mean a linear combination of the form 
2,Pi(xl9..., x„)ef where el9..., e„ are the standard basis vectors of the space Rn and 
Pi(xx,..., x„), the formal power series with real coefficients in the coordinates x±,..., x„ 
of the space. The set of formal vector fields is, in an obvious sense, a linear topological 
space, and a natural commutation operation transforms it into a topological Lie 
algebra. This algebra is denoted by Wn. 

2. The algebra of formal vector fields. The cohomology of the algebra Wn with 
coefficients in,R. 

In order to state the final result it is necessary to describe a certain auxilliary topo
logical space Xn (n = 1,2,...). Suppose Jf ^ 2n and let ptE(N, n) -> G(N, n) 
be the canonical U(n) bundle over the (complex) Grasman manifold G(Jf, n). The 
usual (W-complex of the manifold G(Jf, n) has the following property: the 2n-th 
skeleton [G(JV, n)]2n does not depend on Jv^ when Jf ^ 2n. The inverse image of 
the jset [G(Jf, n)] under the map p will be denoted by Xn. 

The space X1 is a three-dimensional sphere, the other spaces do not have such a 
simply visualised description. We have the following. 

THEOREM 2 . 1 . — For all q, n there is an isomorphism 

H\Wn ; R) = H*(Xn ; R). 

Multiplication in the ring H*(Wn ; R) (as well as in the ring H*(Xn ; R)) is trivial, i. e., 
the product of any two elements of positive dimension is equal to zero. 

The cohomology of the space Xn may be computed by using standard topological 
methods. For example, it is trivial for 0 < q < 2n and for q > n(n + 2). 

Theorem 2.1 is the central result of the article [30]. Its proof uses a somewhat 
modified version of the Serre-Hoschild spectral sequence [31] corresponding to the 
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subalgebra of the algebra Wn, generated by the elements x{e^ (*); this subalgebra is 
isomorphic to <&l(n9 R). Beginning with the second member, this spectral sequence 
turns out to be isomorphic to the Leray-Serre spectral sequence of the bundle 
Xn -> [G(Jf, n)]2„ with fibre U(n). 

It turns out also that each element a e H9(W„ ; U) is represented by such a cocycle 
AeCq(W„; U), that A(£l9.. .,£q) depends only on the 2-jets of formal vector fields 
{!, . . . ,{, (see [30]). 

To study the cohomology of Wn with coefficients in other modules (and to describe 
those modules) it is important to know the structure of the subalgebras 

... œ Lkcz ... a L0czW„ 

where Lk consists of vector spaces whose components are series without terms of 
power less than or equal to K. 

The relation between the cohomology of the algebras W„ and L0. The following 
general fact is easily generalised to the case of the cohomology of infinite dimensional 
Lie algebras. 

Suppose B is an subalgebra of Lie algebra A; M — some 22-module; M — an induced 
yl-module (i. e. M = Hom[B] (M, [A]) where [A], [B] are enveloping algebras for A, B). 
Then 

H*(A ; M) = H*(B ; M). 

We will apply this statement in the case when M is a tensor representation of the 
algebra L0 (i. e. a finite dimensional representation obtained from the representation 
of the algebra &l(n ; R) by means of the projection L0 -> L0/L1 = &l(n ; R)). At 
the same time the induced representation M of the algebras W„ is none other than 
the space of the corresponding formal tensor fields. For example, if M = R is the 
unit representation of the algebra L0 , then M is the space F(Rn) of formal power series 
in n variables with the natural action of the algebra W„ ; if M is the space Ar(R")' of 
skewsymetric r-linear forms in R"9 then M is the space Qr of formal exterior differential 
forms of r order in R". 

The cohomology of the algebra Wn with coefficients in the spaces of formal exterior 
differential forms. The space 

H*(wn,n*)= £tfW,;ßr) 

is obviously a bigraduated algebra (over R)9 isomorphic, as we just found out, to 
H*(L0;A*(K»)'). 

THEOREM 2.2. — The bigraduated ring H*(Wn ; Q*) = H*(L0; A*(Rn)') is multipli-
catively generated by 2n generators 

p lGtf a ' - 1 (L 0 ;A 0 (Ä7) ( / = 1 , . . . , H ) 
T,eH' (L0; A'(*„)') (i = 1, ...,n) 

These generators are connected only by the following relations p{pk = — pkpf ; 
Pk^i = Wh J T.Tfc = Vi ; T 'M2 . . . ij;1 = 0 if Ì! + 2/2 + . . . + nin > n. 

(*) ij= 1 ,...,«• 
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In particular, the ring H*(L0 ; R) = H*(L0 ; A°(Rn)') = H*(Wn ; F(Rn)) is an exterior 
algebra in generators of dimension 1, 3, 5, . . .,2n — 1. i. e. 

H*(W„; F(R-)) = H*(?l(n, R); R). 
Moreover, 

H\L0; A'(R»)') - { H,{Lo. A W ) ^ Ha-r{An} R). 
where q < r 

R) where q ^ r 

while the dimension of the space Hr(L0, Ar(Rn)') is equal to the number of ways in 
which the number r may be represented as the sum of natural numbers. 

The computation of the cohomology of L0 with coefficients in the tensor represen
tation reduces to the computation of the cohomology of the algebra L± with coeffi
cients in IR. In a similar way for jets, to the cohomology of Lk with coefficients in IR. 

Apparently the following statement holds. 

CONJECTURE. — For any n the spaces Hq(Lk ; R) are finite dimensional. 

For w = l the dimension of the space Hq(Lk; R) equals C* -1 + Ck
q+\, q,k=0,1, . . . ) . 

Using previously mentioned results to compute the cohomology of the algebra L0 

with tensor coefficients we can deduce that the classes of cohomology of the algebra Wn 

(even Wt) with coefficients in tensor fields is not always representable by cocycles 
depending only on 2-jets of their arguments (in contrast with the cases of constant and 
skewsymetric coefficients). 

We have been unsuccessful, so far, in computing the cohomology H*(A, U) for 
other Cartan algebras. Note that all these cohomologies are connected with very 
important standard complexes. For this complex consists of the polynomials 
P(at,..., aq) ; (ß1,..., ßq), af e IR", ßt e (IR")' ; the polynomial P is skewsymetric under 
the simultaneous interchange of af, ßt with a,-, ß}. The differential is given by the 
formula 

dP(ocl9...,ocq+1;ßl9...,ßq+1) 
= 2 ( - lY+t(aS9 ßt) - (oit, ßs))P(ocf + a,, a , , . . . , a / , . . „ a , , . . . ; 

ßf+ßt,ß1,...,ßf,...,ßt,...,ßq+1). 

Usually, the infinite dimensional Lie algebras which arise in the formal theory are 
factor subcomplexes of this complex. 

3. The algebra of smooth vector fields. Cohomology with coefficients in R. 

Suppose M is a compact connected orientable smooth n-dimensional manifold 
without boundary, 3I(M) — the Lie algebra of smooth tengent yest fields on M. In 
the standard complex C(M) = { Ca(M) = C(3I(M); R)da} we introduceva filtration 
0 = C0(M) c d (M) c . . . c C(M) where Ck(M) = { C&M)} is a subcomplex of 
the complex C(M), defined in the following way. A cochain LeCa(M) belongs to 
CjJ(M) if it equals zero on any Ca the vector fields (l9..., Çq such that for any k points 
of the manifold M one of the fields Çl9 Ç2,..., Çq equals zero in the neighbourhood 
of each of these points. For example, CQ(M) = 0; C\(M) consists of such cochains L 
that L(£ l s . . . , ÇJ = 0 when the supports of the fields £l9.. .,£q are pairwise non-
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intersecting; Ca
q^x(M) consists of such cochains L that L(^1,.. .9^q) = 0 when the 

supports of the fields Çi9...9Çq have no common intersection to all of them; 
Ck(M) = Ca(M) when k ^ q. It is clear that Ck(M) for all k is a subcomplex of the 
complex C(M) and that Q(M)Cf(M) c Cq

k%\(M). 

To compute the cohomology of the factor complex Ck(M)/Ck_1(M) we have defined 
a spectral sequence, the first term of which may be expressed by using the cohomology 
of the manifold M and the algebra Wn. A special role is played by the complex C^M). 
This complex we shall call a diagonal complex. 

CONJECTURE. — The image of the cohomology of the diagonal complex C^M) 
in §*(M) under the embedding Ct(M) -> C(M) multiplicatively generates all of the 
ring &*(M). In particular the ring $*(M) is always finitely generated. 

Remark. — This is true for the second term of the spectral sequence, 

Let us describe a spectral sequence which converges to the cohomology of the dia
gonal complex. It arises in connection with two different filtrations of the diagonal 
complex of the manifold. In order to describe the first filtration, note that the 
^-cochains of the diagonal complex Ct(M) are determined by distributions (more 
precisely, by the generalized sections of a certain fibre bundle) on Mq which are sup
ported by the diagonal. The m-th term C\tin of the first filtration consists of those dis
tributions which have an order (relative to A) less than or equal to m. 

To define the second filtration fix a triangulation of the manifold 

M = M„ => M„_1 = ) . . .=> M 0 

where Mt is the z-dimensional skeleton, and the m-th term C l m of the filtration consider 
those g-cochains which are realised by distributions whose support is Mm c A. 

Knowing the cohomology of W„ can construct a spectral sequence which allows us 
to compute the cohomology of the diagonal complex. 

THEOREM 3.1 . — There exists a spectral sequence S = { Ef'q9 d*,q } which converges 
to the cohomology of the diagonal complex §*(M) such that 

EP,q = HP+"(M) ® Hq(Wn ; R) ; 

E™, in particular, can be different from zero only when — n < p < 0. 

Let us clarify the operation of " globalizing " the formal cohomology: construct 
a mapping of the space E~r>q+r = Hn~r(M) ®Hq+r(Wn9 R) into C\(M). This mapp
ing is not uniqual determined : it depends on the choice of the system of local coordi
nates on M. Suppose T = { U1,..., Ujr} is a coordinate covering of M with coordi
nates ykl,..., ykn on Ut and {p{} is a decomposition of unity consistent with this 
covering. In order to construct the element J(a ® *¥)(a e Hn+r(Wn, R)9 WeH^^M)) 
find a cochain a e C"+v(Wn ; R) representing the closed form co from the class *P. Set 

Sifln ® ^ K i - • -. Q = I û)A[ £ pkcp(oL, Uk ; { l f . . . , y ] 
JM k=l 
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where <p(<x, L7f ; £ l 9 . . . , Çq) is a form on Uk, which equals 

£ <x(£i(u, Uk), ..., £q(u, Ut), ekth„ektir) x dy{ A . . . A dyio 
K i < . . . < i r ^ n 

at the point M e L/f , where the Ct are considered as a formal field in the neighbourhood 
of the point u under the coordinates yki. The theorem is proved in [29] (statement 1.4). 

The cohomology with coef dents in the spaces of smooth sections of smooth vector 
bundles. Suppose A is a finite dimensional GL(n, R) module and suppose M is a 
smooth connected manifold (we do not assume M either orientable, or compact, or 
without boundary). Denote by a the vector bundle over M with fiber isomorphic 
to A, induced by the tangent bundle and by means of the representation of the group 
CL(n, R) in A. By sé denote the space of smooth sections of the fiber bundle a. The 
space sé has an obvious 5I(M) module structure. Our goal is the study of the cohomo
logy of the algebra 5I(M) with coefficients in the 9I(M) module sé. 

In the complex C(M ; A) = { C°(2I(M) ; sé) ; da } we will introduce a filtration 
similar to the one considered above for C(M). We shall say that the cocycle 
L e C*(5I(M) ; sé) has filtration no greater than k if the section L ( { l 9 . . . , Çq) of the 
bundle a is equal to zero for any point xeM with the following property: for any 
points xt,.. .9xkeM one of the vector fields Çt,..., Çq equals zero in the neighbour
hood of each of the points xl9.. .,xk, x. 

The space of ^-dimensional cocycles which have filtration no greater than k is denoted 
by CpI (M) ; sé). It is clear that Ck(M ; sé) = { Q(2I(M) ; sé)} is a subcomplex of 
the complex C(M ; sé). 

The subcomplex C0(M ; sé) is called " diagonal ". We denote it by CA(M ; sé). 

THEOREM 3.5. — We have the following spectral sequence {EP,q, dP'q } which 
converges to $%(M;sé) and is such that EP'q = HP(M ; R) ® Hq(L0 ; A). In the 
multiplicative case the spectral sequence is a multiplicative one and the isomorphism 
considered above is an isomorphism of rings. 

CONJECTURE. — H%(M, sé) = H(TM, R) ® HomCL(B)(i, H*(L, R)) where T is the 
principal U(n) bundle over M induced by the complexification of the tangent bundle. 

This conjecture has been proved in the case when A = Aq is the exterior power of 
the standard representation. The case q = 0 was independently studied by Locik [33]. 

In the end of this part of the report I would like to introduce a general concept of 
formal differential geometry. It arises when one formalises and generalises the 
methods of construction of Pontryagin and Chern classes (by means of metrics and 
connections); also in the expression of the index of a differential operator in terms of 
the symbol and the metric of the manifold. 

Suppose we have an algebra Wn of formal vector fields. Consider the jet space and, 
in it, a invariant algebraic submanifold X. Examples of such manifolds are the space 
of all symmetric tensors of rang 2, the set of all affine connections. 

Let us define the complex Q(X). Any rational map of X into the complex of formal 
differential forms will be called a chain of Q(X), the differential will be obtained by 
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differentiation in the image. Set Q(X) = Horn (X, fì), where fì is the complex of 
formal differential forms, and call the maps of the rational cohomology of Q(X)-
generalised Chern classes. It can be shown, in the case when X is the manifold of 
symmetric tensors of rang 2, that they coincide with Pontryagin classes (q < n). 
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