
r-DIMENSIONAL INTEGRATION IN n-SPACE 

HASSLER WHITNEY 

1. Introduction. There are various elementary and fundamental questions in 
ntegration theory as applied to geometry and physics that are not covered by 
.he modern theory of the Lebesgue integral. In particular, basic problems con-
ierning integrals over domains of dimension less than that of the containing 
.pace, as functions of the domain, are largely untouched. We shall present here 
i general approach to this type of problem.1 

For an example from physics, consider the flux through a surface S in Euclid
ian 3-space E*. Cut S into small pieces ai, a2, • • • ; we find the flux through 
.ach o-,, and add. Take a typical small piece a-, in the form of a parallelogram 
vith vectors vi, v2 along two of its sides, and containing the point p. The flux 
f(o-) through a- depends on p, the area of a, and the direction of a. If we change 
he direction of a, X(o-) varies; X(o-) is approximately proportional (for small a) 
,o the cosine of the angle between the normal vx X v2 to <r and the direction of 
ihe flux through p. In particular, for a rotation through ir, X(a) is replaced by 
ts negative. Thus a must be taken as oriented, say by ordering the vectors 
Vi , v2). 

We m&y represent the flux by a vector function co(p); then for small a as 
.bove, X(o) is approximately w(p)-(vi X v2), and thus is linear and skew-sym-
netric in the vectors vi, v2 determining a. More generally, for surface integrals 
n En, an integral Js may be determined by naming a function o)(p) which, for 
sach p, is a linear skew-symmetric function of v i , v2 ; that is, wis a differential 
brm, or a "2-form" for short. An r-dimensional integral may be determined 
dmilaiiy by an r-form. 

Given o)(p), say with r = 2, the integral fsu may be defined as follows. Cut 
ï into small triangles (approximately) tn, - • • , am . S being oriented, let Vn , 
t2 be the vectors of two of the sides of o-,-, so that (vix, vl2) orient <r,- like S. Let 
h be a point of o-t . Then 

/ co = lim - 2 w(p» ; *>ii. «a), 

aking the limit as the mesh of the subdivision of S approaches 0. The factor 
/2 is due to the use of triangles instead of parallelograms. The usual Riemann 
ype theory may be set up in this fashion, essentially without use of coordinate 
ystems. 

1 Some of the theory given here has appeared in notes by the author, Algebraic topology 
nd integration theory, Proc. Nat. Acad. Sci. vol. 33 (1947) pp. 1-6, and La topologie algé-
rique et la théorie de Vintégraiion, in the volume Topologie algébrique, Colloques Inter-
Lationaux du Centre National de la Recherche Scientifique, Paris, 1949. 

2 This was carried out by P. Olum in a Senior Thesis at Harvard, 1940. See 
Iso H. Federer, An introduction to differential geometry, mimeographed notes, Stenographic 
hireau, Brown University, Providence, R. I. (see Math. Reviews vol. 10 (1949) p. 264), 
nd A. Lichnerowicz, Algèbre et analyse linéaires, Massoii, Paris, 1947. 
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2. The general problem. We now ask what a general theory of integration 
should look like. For a given "integrand" X, the integral is a function of the 
domain A ; we shall write it as X • A. The basic property in the usual theory is 
additivity: 

f = [ + f if P fi Q = 0. 
J P U û Jp JQ 

In the general case, we may wish to integrate over domains with self-intersections. 
For instance, we may desire the line integral over a curve C consisting, in suc
cession, of the oriented arcs Ci, G2, C3, C2, C*. We clearly should have 

Ja Jci Ja2 J c3 Jet 

Thus a general r-dimensional domain is an "r-chain" A — ^ a*°"i. w ^ h ori
ented r-cells a*, each having a coefficient ai (which we may take as any real 
number). Now JA = ]T) a. JVj, i.e., 

(2.1) X - X > ^ = .Da^X-tr l ) , 

and the integral is a linear function of r-chains, generalizing the additivity 
above. 

Recall the Theorem of Stokes: an r-form w with differentiable coefficients 
has an exterior derivative &o; given an (r + 1)-chain A, with boundary dA9 

(2.2) / " & , = /" 
JA Ja 

co. 
eu 

If X is an integral (abstractly defined) over r-chains, we may define an integral 
8X over (r + l)-chains by the corresponding formula 

(2.3) 8X-A = X-dA. 

If we wish an integral X- A to be expressible in terms of A and local properties 
of X, such as is the case if X is defined by a differential form, we cannot let A 
be too general. For instance, for r = 1, there is a curve C and a differentiable 
function / in the plane, such that the partial derivatives of / vanish at all points 
of C, and yet / is not constant in (7.3 The natural assumption here is that C 
should be rectifiable. A similar assumption is in order for r > 1; see §8 below. 

When we haye chosen what domains should be allowable for setting up r-chains, 
we must decide how general the allowable linear functions X should be. With
out some restrictions, little theory could be obtained. For instance, for r = 0, 
a typical domain is a point p; then X-p = <j>(p) would be an arbitrary function. 
In the usual Lebesgue theory, bounded measurable functions as integrands 
form a special class of summable functions; yet they illustrate much of the 
basic theory. We might invent some kind of corresponding bound, which we 

3 See H. Whitney, A function not constant on a connected set of critical points, 
Duke Math. J. vol. 1 (1935) pp. 614r-617. 
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| X | , of X. I t turns out that assuming both | X \ and | 8X \ 
are bounded leads to a very satisfactory theory, to be described below; see 
(4.2). In particular, any X can be represented by a differential form (§6). An 
important problem is to obtain general results under weaker hypotheses than 
the boundedness of | X | and | 8X \ . 

3. Polyhedral chains. We introduce integration theory in a space R as follows. 
First choose a set of elements, "r-chains", forming a linear space; introduce a 
norm in this space; when completed, this gives a Banach space Cr. Then the space 
of "r-cochains" X is the conjugate space Cr of Cr. The function X(A) = X-A 
is the "integral" of X over A. By making the norm in Cr small, we enlarge the 
set of elements which can be in Cr (i.e., for which the norm exists); the cor
responding norm in Cr is then large, which restricts the elements occurring in 
C\ 

We shall remain mostly in Euclidean space En; later we consider briefly 
the case of manifolds and more general spaces. The norms in Cr and Cr will 
depend on the metric of En; but the sets of elements in these spaces are inde
pendent of the metric. 

Among r-chains in En we must certainly include polyhedral r-chains ^curì, 
each ari and its boundary cells being flat. Define the mass by 

(3.1) lZ>rfl-El*IK*l 
(the ari non-overlapping), | o*ï | denoting the r-dimensional volume of ari. 

The mass is too large a norm for our purposes. For instance, for r = 0, using 
( p | = 1 shows that any bounded function would define an element of C°. 
Consider the case r = n for a moment. If we take a domain P and translate 
it by a small vector v, giving Q = TVP, then Jp and JQ are nearly the same. 
For a general r, we might require f„r and JV^r to be nearly the same, even though 
v need not lie in the r-plane of </. In terms of chains, we may require the norm 
| A | * to satisfy 

(3.2) | ? > r - . - r | * ï S | f , | | ^ | / ( r + l ) . 

This does not relate r-cells in different r-planes. To take care of this, assume 
that for any (r + l)-cell <rr+1, whose boundary is an r-chain oVr+1, we have 
| d(f+1 |* _â N | </+11 for some fixed N. There is a uniquely defined largest 
norm satisfying these conditions, and also | A | * _ë | A | . We call it the tight 
norm. It is independent of N for N large. 

With this norm the conjugate space corresponds exactly to what we formerly 
called the set of "tensor cochains" in En. (See §5 below.) Though these cochains 
X are easy to work with, they are not general enough for some purposes. For 
instance, f*X, defined in §9, is not tightly Lipschitz. 

The most important norm for our purposes is the Lipschitz norm \A\*, inter
mediate in size between | A \ and | A |*. It is the largest norm satisfying the 
conditions 
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(3.3) | *r |* g I </ I , I ÓVr+1 [* g I <rr+11 . 

It is easy to find an explicit expression for | A |*, as follows. Considering all 
polyhedral (r + l)-chains D, \ A \* is the greatest lower bound 

(3.4) | A |* = GLB (| A - dD | + | D |). 
D 

For example, let a be a segment of length a, and let af be 2V, | v \ = b, b 
small. Let D be the parallelogram formed by carrying <r into </, oriented so that 
dD = o~' — <r + C, where (7 is composed of the remaining short jäides of D. 
Then | D \ S ab, \ C | = 26, and hence 

| </ - (7 |* ^ | C | + | D | g (a + 2)b. 

Of course | cr' — a \ = 2a; also | ar — cr |* = a&/2 for 6 small. 
Given A, taking D = 0 in (3.4) shows that 

(3.5) . ' | i l | * s S | A | . 

If Ar = clBr+1, choosing Z>2
r+2 so that 

| 5 - dD21 + ] D21 < | 5 |* + e 

and setting Di = B — dD2 gives 

| A - dDi\+ \Di\ = J A | < [ £ | * + €; 

this proves 

(3.6) , \9B\* £\B\*£\B\. 

In particular, (3.3) is proved. 
For some special dimensions, considering aq — bp as a 0-chain and q — p 

as a vector, we have 

r = 0: | Iff — lp |* = | Iff — lp I* ^ I ff — P I , 

with the sign = if | q — p \ S 2, and 

r = n: | 4 " |* - \An\, 

since there are no nontrivial (n + 1)-chains in En. 

IÎA 9* 0, then | A \ , \ A |*, and | A |* are all >0 . 

For any ,/, | </ | = | </ |* = | </ |«. In fact, | A | = | A |* = | 4 |* if 
A = J ] ttio-J, the cï are parallel and similarly oriented, and the a* are ^ 0 . 

4. Lipschitz cochains. A Lipschitz r-cochain in En (or in a subset R of 25") 
is an element of the conjugate space Cr of Cr (or of Cr(R), using chains in R 
only). The Lipschitz norm | X |* is the norm of X in Cr; the mass | X \ , cor
responding to ] A | , is defined. The definitions are 
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4.1) 1 * 1 * « LUB | X-A | , | X | = LUB | X-A \. 

'hough Cr is separable, Cr is not; hence Cr is not reflexive. 
Note that 88X = 0; for SOX •AH"2 = <5X-cU = X-ddA = 0. 
The following relation shows that X £ Cr if and only if | X \ and | 5X | are 

nite: 

1.2) | X |* - max (| X | , | 5X |). 

"o prove this, note first that | X | g | X |*, because of (3.5) and (4.1). Next, 
2.3), (4.1), and (3.6) give, using any Br+l, 

| 8X-B | = | X-dB | S | X |* | dB |* ^ | X |* | 5 |*; 

enee 5X is a Lipschitz (r + l)-cochain, and | 8X | g | X |*. This proves è 
L (4.2). To prove the reverse inequality, we need merely show that for any 
olyhedral r-chain A, 

1.3) | X-A | g max (| X | , | 8X |) | A |*. 

riven e > 0, choose D = Dr+1 so that 

| A - ai) | + | D I < I A |* + e. 

hen if C = A - dD, 

\X-A | ^ |X.<7 | + |X .&D| g | X | \C\ + \8X\ \D\ 

g max (| X | , | ÔX |) (| A |* + «), 

hich gives (4.3). 
Consider the case r = 0. For any Lipschitz 0-cochain X, w(p) = X-p is a 

.al-valued function. The relations 

«>(p) I = I X-p i g I X I I p I - I x i , 

I w(q) - w{p) | = | X-(lq - lp) | = | SX-(pq) | g | 5Z | | q - p | 

low that w is bounded and satisfies a Lipschitz condition. Conversely, any 
ich w defines an X. 
Now take r = n. With En oriented, X-Q is defined for polyhedral regions Q 

dented like En. Since | X-Q | g | X | | Q | , X is extendable to be an additive 
it function over measurable sets, satisfying the same inequality. Define the 
?ullness" of a set Q by 

A) 8.(Q) = |Q|/[diamQ]n . 

y standard Lebesgue theory, there is a measurable function Dx(p), | Dx(p) | â 
X" | , such that 

[.5) X-Q = [ Dx(p) dp (Q oriented like En). 
JQ 
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Moreover, using sequences of cells Oì , <r2, • • • containing p and with 

Ö»(ov) è v > 0 

for all i, 

(4.6) Z)x(p) = Hm X-<Ti/ | o* | a. e. in E* 
l—*00 

5. The X-norms. Suppose, instead of (3.3), we require 

(5.1) |< / |x*sU</ | , | a < / + 1 | * ^ k r + 1 I A -
We then, obtain the Lipschitz X-norm, with the property 

(5.2) | A |x* = GLB (| A - dD | + | D |/X). 
D 

The corresponding X-norm for cochains satisfies 

(5.3) 1*1* = max (\X\,\\8X |). 

We obtain | A | * similarly, using | v | | a \/(r + 1)X in (3.2). Define the Ldpschik 
constant of X by 

(5.4) 8(X) = LUB | I ' , ( ^ 7 ) | ; 

call X tightly Lipschitz (a "tensor eochain" in1) if this is finite. If this holds foi 
the Lipschitz r-cochain X, then 

(5.5) | 6X | ^ (r + 1)8(X), 

(5.6) | X |x» = max [| X | , (r + 1)X8(X)]. 

The sets of elements in the spaces Cx for various X are the same; only the norms 
differ; similarly for Cx*. 

Given </, it is not hard to construct a tightly Lipschitz X vanishing outside 
an arbitrary neighborhood of <r, such that | X | = 1 , X - c r = | < r | . Then foi 
X small enough, | X |x* = 1. Using this, we may prove, for polyhedral A, 

(5.7) hm | A \i = hm [ A |x* = | A \ . 
X-vO X->0 

From this we may prove that | A \ is a lower semicontinuous function of poly
hedral chains A in Cr (in fact, in any Cx or Cx*). For a general A in C ? define 
| A | as the lower bound of lim inf | A% \ for sequences of polyhedral chains A, 
with ( Ai — A |* —> 0; it may be infinite. | A \ is still lower semicontinuous. 

For r = 0, | i i |x* = | A |x* . 

6. Lipschitz cochains and dififerential forms. We present here the theorem oi 
Wolfe,4 that the Lipschitz r-cochains in an open subset R of En correspond tc 

4 J. H. Wolfe, Tensor fields associated with Lipschitz cochains, Harvard Thesis, 1948. 
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lie differential forms in R satisfying certain conditions. Suppose X is given. 
_t any point p we wish to find a corresponding linear skew-symmetric function 
(p; Vi, - • - ,vr), or equivalently, a linear function co(p)-a. .of contravariant 
-vectors a. The natural definition is the following. The set of points 

p + E Uvi (0 g U S t, i = 1, • • • , r) 

»«=1 

)rms a parallelopiped at, oriented by the ordered set (vi, - • • , vr). Set 

3.1) * o)(p; Vi, • • • , Vr) = lim X-crt/t
r, 

this exists. (Cf. (4,6).) Then for almost all p in R, this exists and defines a 
near function co(p) ; for fixed a, o)(p)-a is measurable. Also | w(p ; Vi, • • • , vr) \ S 
X | | Vi | • • • | vr | . The same is true for 8w, defined from 8X. Moreover, for 
11(7, 

3.2) X-cr = / co(p; d, •-- ,er) dp, 
Ja 

h, • " , Cr) being an orthonormal set in the plane of a, oriented like a. 
The theorem is proved by first smoothing X by an averaging process (giving 
tightly Lipschitz cochain), in which case the corresponding form is more easily 
)und, and then passing to the limit. The reason o>(p) turns out to be linear may 
e illustrated for the case r = 1 as follows. Given vectors u, v, set 

qt = p + tu, q't = qt+ tv = p + t(u + v); 

it at = pqtqt. For small t, œ(p)-tu = SPqtù> approximately, etc.; thus 

| o)(p)-tu + o)(p)-tv — o)(p)-t(u + v) | =ap | X-dat | 

= | 5 X . < 7 , | ^t2\8X\\ai\; 

ividing by t and letting t —» 0 gives the result. 
Conversely, suppose w(p) is defined and linear a. e. in R, with o)(p)-a meas-

rable for each a; suppose | co(p) | is bounded as above, and | Jaffo) | ^ N \ a | 
>r each (r + l)-cell a for which the integral is defined. Such a form we call a 
ipschitz r-form in R. (The conditions can be weakened; for instance, we need 
îerely continuity in a of w(p) • a for simple unit r-vectors a, not linearity.) Then 
1ère is a corresponding Lipschitz r-cochain X in R, for which (6.2) holds when-
^er the integral is defined. 
Say coi, Cü2 are equivalent if for each a, o)i(p)-a = u2(p)-a a. e. in R. Then 

ie Lipschitz r-cochains in R correspond exactly to the classes of equivalent Lip-
ihite r-forms in R. 
Note that for any Lipschitz r-form co in R, we may find the corresponding 

ipschitz r-cochain X, take 8X, and find the corresponding Su, even if the com-
onents of üJ are not differentiable; whenever they are, this definition of 8œ agrees 
ith the analytic one. 
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A "simple" contravariant r-vector is one expressible as a product of r vectors 
Define the "simple norm" | £ |s of a covariant r-vector f by 

(6.3) | f |. = LUB | f -« | , «simple, | a | = 1. 

Then for any X and corresponding 03, 

(6.4) | I | = » essential LUB | co(p) | . . 
V 

7. General r-chains. Recall that Cr was the completion of the space of poly
hedral r-chains; the new elements of Cr we call "general Lipschitz r-ehains" 

Consider first the case r = 0. Let R be a locally compact separable metric 
space. An additive set function 3> in R assigns to each Borei set Q a number 
$(Q), such that $C£Qì) = X/£(Q*) if the Qi are disjoint. Any such set func
tion defines uniquely a general Lipschitz 0-chain A$ , as follows. Let R = 
Ri U • • • U Rm be a partition of R into disjoint Borei sets; choose pi (j Ri, 
and set 

(7.1) ' B = 2>(Ä<)pi ; 

this is an approximation to A$ by a polyhedral 0-chain, if the Ri are "small" 
enough (i.e. cut up <_> finely enough). 

The mass \A*\ is the total variation of $. The expression for [ A* |* is more 
complicated. Not all 0-chains are expressible in this manner; but the 0-chains 
described are dense in C°. For^any Lipschitz 0-cochainX, corresponding to the 
function (a(p), 

(7.2) J T - i i * ^ / * « ( p ) * ( p ) , 
JR 

using the Lebesgue Stieltjes integral. The integral is defined for more general 
functions co; on the other hand, X-A is defined for more general A. 

Of course 3>(Q) is defined without regard to orientation properties. This cor
responds to the fact that a 0-cell, i.e., a point, has a natural orientation. We may 
consider the theory of additive set functions and the Lebesgue Stieltjes integral 
as 0-dimensional integration; r-dimensional integration for r > 0 requires orien
tation properties. 

Consider next w-chains in En. Recall the Z^-norm for summable functions F\ 

(7.3) \F\ = f \F(p)\dp. 
Jsn 

If F is cellwise constant for some subdivision of En, it defines an n-chain A 
with | A | * = | A | = | F | ; this shows that summable functions define ele
ments of Cn; in fact, they give the whole of Cn. 

Take the case n = 1. If F is not only summable but differentiable, it is easy 
to show that —dF/dx defines a 0-chain which is exactly the boundary (see 
below) of Af . On the other hand, suppose 
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Fa(x) = log | x | , x < 0; Fa(x) = log x + a, x > 0; 

hen —dFa($)/dx = —1/x, all x 9e 0. For each a, _̂ a defines a 1-chain _4a , 
nd the same function —1/x (which is not summable) "corresponds" to dAa . 

The boundary dA of a general chain A may always be defined. For if A is 
[efined by the sequence Ai, A2, - - - of polyhedral chains Ai, then 

| dAj - dAi |* g | 4 , - Ai |* 

>y (3.6), and hence dAi, dA2, - - - is a Cauchy sequence, and defines dA. 
Now take 0 < r < n, in _En. Let a(p) be any field of contravariant r-vectors, 

he components being summable functions. It may be shown that a defines 
miquely a general Lipschitz r-chain Aa , with the property that for any X, 
orresponding to ia, 

7.4) X-Aa = [ co(p)'<*(p)cip. 
Jsn 

uch Aa we call "spread out" r-chains. They are dense in Cr; this holds even 
! we require the components to be analytic functions. (This holds in open sub-
ets of En.) 

If the components aXl'"Xr of a Eire differentiable, and 

7.5) ^ i - ^ r - i = £ da^'"^-lh/dxk , 
k 

ben 

7.6) dAa = ( - l ) r i l , . 

Define the "mass" of a contravariant r-vector a by 

7.7) | a \m = GLB E I «< I , 

)r expressions a = Z a » of a as a sum of simple r-vectors. (Then the norms 
a \m and | f \8 of (6.3) correspond, considering the spaces of covariant and con-
-avariant /"-vectors as conjugate spaces of each other.) Then 

r.8) | Aa I = f I a(p) \m dp. 

'here seems to be no simple expression for | Aa |*. 

8. Lipschitz r-chains. In the applications, one integrates commonly over 
omains which are not polyhedral (curved surfaces, etc.). The domains are 
enerally expressible as images of flat domains, under mappings / which are 
ifferentiable or piecewise differentiable. We shall assume merely that / satisfies 
Lipschitz condition: If p denotes distance, 

U) 8/ = LUB P(f(p), f(q))/p(p, q) is finite. 

If / is a Lipschitz mapping of an r-dimensional polyhedron P, in which an 
•chain A is given, into a metric space R, we call (A, f), or fA for short, a Lip-
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schitz r-chain in R. We may as well take the cells of P as disjoint cells in Er. 
With Er oriented, A may be replaced by a summable function <p (see §7); ç 
defines a general r-chain <p in Er\ we call ($, f) = f(p a Lipschitz-Lebesgue r-chain 
in Ä. 

If R is a metric space satisfying certain conditions, Lipschitz chains in R 
can be used to set up integration theory. The mass | A | and norm | A |* can 
be defined; see below. Particularly important is the case that R is a smooth 
manifold M ; if a metric is not given, one may be introduced, and the spaces 
of chains and cochains (though not the norms) are independent of the metric 
(at least in compact subsets of M). 

A Lipschitz-Lebesgue r-chain f<p in En is a general Lipschitz chain, given by 
approximating <p by a cellwise constant function <pf and / by a simplicial map
p i n g / ' (thus defining an approximating polyhedral chain). The following con
tinuity theorem holds : Given f<p and numbers L and e > 0, there is a f > 0 
with the following property. For any <pf with | <p — <p' |* ^ f and for any / ' 
with 8,, ^ L and | / ' (p) - f(p) \ ^ f (all p), we have I J V - f<p |* < e. For 
given polyhedral 4 = £, and L, keeping <p' = <p, we may take f = ce for some c 
(c = Lr | A | + Z/"11 dA | ) ; but this is not possible in the general case. 

A Lipschitz chain A, being a general chain, has a boundary dA; a Lipschitz 
(r — l)-form co defines X and hence 8X. General theory now gives Stokes' 
Theorem: 

f œ = X-dA = 8X-A = f 8a>. 
JdA JA 

I t is always possible to represent a Lipschitz-Lebesgue chain in En as ftp with 
/ one-one in the carrier Car(<p) of <p, i.e., the set of points p where <p(p) 9* 0. 
For such a representation, the mass is given by the formula 

(8.2) , \fv\ = f\<p(p)l\Mp)\dp, 

Jf(p) being the Jacobian, which exists a.e. since / is Lipschitz (Rademacher's 
Theorem). For any representation, (8.2) holds with ^ . In the proof, we make 
use of the existence of a tightly Lipschitz cochain X such that 

(8.3) | X | = 1, \fr\ -*<*•& £\ft\, 

for arbitrary e > 0. 
Let Si, S2, - - - be a sequence of subdivisions of Er with mesh —> 0. Then 

given f<p, if îphi is the part of <p in the cell aki of Sk , we have ]C» Ww = £> a n d 

(8.4) l i m E l / P w l * = | # | . 
/c-*oo t 

Given ftp in Ü7W, with / one-one in Car(<p), and given rç > 0 and e > 0, there 
is a f > 0 with the following property. Let S be any simplicial subdivision of 
P of mesh < f, whose Simplexes ai satisfy ®r(ai) ^ r\. Let #/ in cr* be the 
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verage of <p in ai, and let / ' be the simplicial mapping which coincides with / at 
he vertices of S. Then 

8.5) \\ft\-\W\\<t. 

Given a Lipschitz mapping / of a subset Q of BT into a metric space R, define 
he "reduced Lipschitz constant" 

8.6) 2f,Q = GLB 8/,-i(Q), 

rtiere <p is an affine volume-preserving mapping of Er into itself, using f in Q 
jid <p in <p~l(Q). Define the "local constant" 8*(p) of / at p as follows. Let pra

r 

»e the volume of the set x\ + • • • + x\ ^ a. Let Uç(p) denote the f-neighborhood 
f p. Given f and r\ such that rj < prf, set 

8.7) a; (p, r, *) = GLB s?/l0, Q C t/r(p), | Q | > „, 
Q 

8.8) 8*(p) = lim lim inf g'lp, f, (1 - /Oprf]. 

If / is a Lipschitz mapping of a measurable subset Q of Er into Än, then 

3.9) | Jf(p) | = [g;(p)]r a. e. in Q. 

Now the set of (<p, f), with certain equivalence relations, forms the space of 
ipschitz r-chains A in R. For any such A, considering the various expressions 
p, f) of A, define 

8.10) \A\ = GLB f\<p(p)\[2fo)Y dp. 

Lctually (with some restrictions on R) we may choose (<p, f) so that / is one-one 
i Car(^) ; then | A | equals the integral above. In particular, taking <p(p) = 1 
ives the "r-volume" of the "rectifiable" manifold /(Car(<p)) in R. The definitions 
gree with the previous ones if R is an open subset of En. 
The norm | A |* is definable from \A\\ then cochains may be introduced as 

efore. 

9. Properties of Lipschitz mappings. Let / be a Lipschitz mapping of En into 
1™. Then each polyhedral r-chain A in En is carried into a Lipschitz r-chain 
4. in En. The definition may be extended to general Lipschitz r-chains in En. 
"he usual properties hold. In particular, 

J.1) | M I ^ S; I A |, \fA I* ^ max (2r
f , %

+1) \ A |*. 

GivenX in _0~ /*X in En is defined byf*X>A = X-fA. Then | /*X | g g; | X |, 
be. 
If co is a Lipschitz r-form in Em, it defines a Lipschitz r-cochain X, this defines 

*X, and this gives co* in En; call this f^œ. Recall that X defines 8X and hence 
o; also 8/*X = /*5X; hence fl/*co = /*&o. The usual analytic theory requires 
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the differentiability of both / and co for any parts of this last formula even to be 
defined. 

Nevertheless, with the "Lipschitz" hypotheses used here, an analytic treat
ment of f*o) can be given. We first note a fundamental difficulty: co may fail 
to be defined in a set of measure 0 in Em, and / might even map the whole of 
En into this set. Thus the first necessity is to enlarge or improve the definition 
of co. This is done by determining the corresponding X, and finding a new co' 
from X; then* co' = co a.e. (see §6). Then the usual analytic formula defines 
/ V a.e. in En. 

The proof requires the following approximation theorem. Let X be a Lipschitz 
r-cochain in Em, and let p be any point at which the corresponding œ(p) exists 
and is linear (see §6). Then, for any r\ > 0 and e > 0 there is a f > 0 with the 
following property. Let a be any oriented r-simplex with 

(9.2) a CC/f(p), 0 r((p)U<r) ^ v; 

if {or} denotes the r-vector defined by a, then 

(9.3) | X - < r - co(p)-{cr} | g e |or | . 

As a particular case, suppose r = 1, and X is the coboundary 5F of a Lipschitz 
0-cochain Y, Y corresponding to the real-valued function w(p). Then the theorem 
gives the Rademacher Theorem on the total differentiability a.e.1 of the Lipschitz 
function w. _ _ ___ 
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