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Geometric Applications of Algebraic Ä -̂theory 

Algebraic JE-theory has been one of the most important mathematical 
developments of the last two decades. In the reports [81], [68], [6] of 
past International Congresses of Mathematicians, emphasis was given 
to the algebraic aspects of the theory. In this report, I shall concentrate 
on its geometric applications. After all, the theory was initiated by Beide-
meister [70], Franz [38], de Eham [24], and J. H. 0. Whitehead [89] 
(see also [90]) who introduced in the 30's some invariants for solving 
geometric problems. The revival of the interest in these invariants in the 
early 60's, which were the seeds of algebraic JiT-theory (Milnor [62], Smale 
[76] and Kervaire's exposition on the #-cobordism theorem of Barden-
Mazur-Stallings [54]) also arose from geometric considerations. At the 
end of this note, I shall make a few conjectures. 

Due to limitation of space, I skip the Hermitian JT-theory and Novi-
kov's conjectrçre on higher signatures of closed aspherical manifolds 
altogether. 

Some of the geometric problems dealt with here have very interesting 
and equally important Hermitian analogues. The interested readers might 
•consult [30], [34], [88]. 

I , KX(A)9 Wh^uz), simple homotopy type and ft-cobordism 

Let A be an associative ring with unit 1. The group of all non-singular 
nxn matrices over A will be denoted by G;h(n,A). Identifying each 

M e Gh(n, A) with e GL(w+l, A), we obtain inclusions GL(1, A) 

cz ... <= G-h(n,A) cz ... The union is called the infinite general linear 
group GcL(A). A matrix is elementary if it coincides with the identity 
matrix except for one off-diagonal entry. It was observed by J. H. 0. 

11 — Proceedings... , [99] 
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Whitehead [4, p. 226], [63, p. 359] that the subgroup E (A) c GL(JL) 
generated by all elementary matrices is a perfect group and is precisely 
equal to the commutator subgroup of GL(A). We define* 

KXA = GL(A)IE(A) (1) 

which may be viewed as a generalization of the determinant function 
for matrices. Let % denote a multiplicative group and Z\n\ the correspond
ing integral group ring. We have natural inclusions ±n c 6L(1, Z\n\) 
c GL(#[rc]), where ±?t denotes the subgroup of (1 x l)-matrices (±g)9 

gen. The cokernel Kx(Z\n\)/image(zkn) is called the Whitehead group 
Wh^ut). Clearly, KX(A) and Whx(n) are covariant functors of rings and 
groups to Abelian groups respectively. 

Whitehead [90] introduced the notion of simple homotopy which is 
finer than homotopy. Let L0 and Lx be finite OW-complexes such that 
Lx is obtained from L0 by attaching a ß-cell ek to L0 along a (Jc— l)-cell 
e16"1 c dek. Call this procedure simple expansion and the reverse procedure 
simple collapsing. Simple homotopy is the equivalence relation generated 
by simple expansion and simple collapsing. Let X and Y be the underlying 
topological space of the OW-complexes L and K, and let / : X->Y be 
a homotopy equivalence. Using the OW-complex structures of L and K, 
we may homotope / to a cellular map g: L->K. By introducing the mapping 
cylinder 

Mg = I x [ 0 , l]ul/{(flj, 1) = g(x)\ xeX} (2) 

we obtain a CW-complex pair (Mg, L) such that L is a deformation retract 
of Mg. It is not difficult to see that the inclusion K = K xO c Mg is 
a simple homotopy equivalence, we shall say that / is simple if L a Mg 

is simple. It was proved in [63, pp. 378-384] and [21] that this definition 
only depends on the underlying spaces X, Y and the map/, i.e., it is inde
pendent of the OW structures L and KotX and Y, and the map g. 

Using simple expansions and simple collapsings repeatedly, we may 
replace (Mg, L) by a OW-complex pair (K19 Lx)9 satisfying the following 
conditions : 

(a) (Mg9L) are simply homotopic to (K19 Lx) respectively 
and L± c Kx; 

i (3) 
(b) Kx arises from Lx by attaching a finite number of Jfc-dim 

cells {«ft and (fc+l)-dim cells {ef+1} for h> 2. 
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Consider the universal covering complexes J0X C Ê.X of Lx c Kx. The 
fundamental group ut will be identified with the group of covering trans
formations, so that each a eut determines a mapping 

oi(Êx,Lx)->(ÊX9Lx)9 (4) 

which is cellular. If 0*(KX9Lx) denotes the cellular chain complex, then 
each a e ut determines a chain map 

o*iC*(±X9Lx)^G*(±X9Lx) (5) 

and this action makes the chain group Op(Êx, Irx) into a free #[rc]-module 
with a basis obtained by making a choice of a lift to Êx of each #-cell of 
JBTX — JJX. Therefore, we have an isomorphism 

0^Ok+l(ÊX9 Zx)^±^Ok(Ê19 Lx)->0 (6) 

of free i?[rc]-modules with the liftings {ef+1} and {eft of {e?+1} and {eft as 
bases. Using these bases, dk+1 determines an element in Gli(Z[ut']) and 
thus an element r(Kx, Lx) in Whx(ut). It was proved in [63] and [54] that 
the torsion r(KX9 Lx) is independent of the choices1 and it only depends 
on / . Denote it by r(/) e Whx(ut). Let us summarize these fates in the 
following theorem. 

THEOKBM 1.1. Zet X,Y be the underlying topological spaces of the CW-com-
plexes K and L, and let f: X-*Y be a continuous map. Let g: K->L be 
a cellular map homotopic to f. Then f determines an element r(f) e Whx(ut) 
depending only on f: X-+Y such that g is simple if and only if r(f) = 0. 

Applying simple homotopy theory to manifolds, let us consider the 
following geometric problem. Let (Wn+1; M*l, ifj) be a triad of compact 
manifolds such that dWn+l = M^vM*. We say that Wn+1 is an h-cobor-
dism between M£ 'and M" if Mf (i = 0 , 1 ) are deformation retracts of 
TP*1. The simplest example of an 7î-cobordism is (*FP+1 = Mn x [0,1]; 
M% «= Mn x 0, Mn

x = Mn xl) . If (TTn+1; Mn
Q, M^) is a smooth 7&-cobordisin 

(i.e., Wn+l is a smooth manifold), uix(W
n*1) = 1 and n > 5, then the 

remarkable theorem of Smale [76], [64] asserts that TP+1 is diffeomorphic 
to M%x [0,1] (and also to JU$x [0,1]). Our interest is focused on the 
case ut *= utJP*1*1 7^1. If (Wn+1'9 M^M^) is a smooth ft-cobordism, 

1 Since we may have different liftings of the cells, we pass from Kx(Z[ri]) to 
Whx(n) in order to make the invariant well-defined. 
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then a (/^triangulation ti (JET; L09 Jk1)-*(TP+1; M%, Jff) gives rise to a com
binatorial cobordism which has a handlebody structure from the tri
angulation [63]. Or, if (Wn+1; M%, Jf?) is a topological Ä-cobordigm and 
if w > 5 , then [Wn+1,M%) has a handlebody decomposition [56]. By 
a handlebody structure of TT71"1"1 on M%9 we mean a filtration 

Y(0> = Jf? c JW c ,è . c I® = TP+1 (7) 

such that 

for each i > 0, there is an embedding 

/<: j8^1xI>n-*+1^r ( ,-;1), and a homeo- (8) 

morphism r ( t U r { l ' " 1 ) u / , ^ x D M » + 1 relY*""1. 

The union of a fc-handle and a (fc+l)-handle J = Dft xDw"fc+1uDft+1x 
X J9w-& along Bk xSx = K% xDn-\ where Sx e aDw-ft+1 and JT2 c âZ?fc+1 

are codim 0 discs, will be called a trivial pair of handles. Introducing and 
cancelling a trivial pair of handles correspond to elementary expansion 
and elementary collapsing in simple homotopy theory. Following these 
procedures, if n > 5, we may produce a handlebody structure of (7) such 
that jx = . . . = jk =Jc and j f t + 1 = ... -=j^t = Jfc+1 (2< fc<w-3 ) ; i.e., 
Wn+1 is obtained from M% by attaching fc-handles and (&+l)-handles. 
By making a choice of lifting of the cores2 of the handles to (Wn+1

9 Jf o), 
the universal covers of the pair (W*+1, Jf£), we get a chain complex 

0->OÄ+1(^+1, M^)^±^Gk(W^\ Jf»)-»0 (9) 

of based ZM-modules as in (6). The map dk+1 determines an element 
T e Whx(ut(Wn+1)) which is the torsion3 of the inclusion of Jf^ c Wn+l. 
This element only depends on the underlying topological space and not 
on the handle structure of (TP+1, Jf?) and it is denoted by r(Wn+1

9 J Q . 
In correspondence to Theorem 1.1, we have the following Ä-cobordism 

theorem due to D. Barden, B. Mazur and J. Stallings [3], [54], [63]. 

2 I.e., f(SH~i x 0) of (8) where 0 is the center of Bn~^1. 
3 Note the asymmetry of Jf0, Jfi in the definition. If we wish to consider (TT, Mx)9 

we have to consider the duality of [63, pp. 393-398]. 
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THEOKEM 1.2 (A) Let (Wn+1; Jf^,Jf^) be a smooth, PL or topological 
h-cobordism for w > 5. Then, TFn+1 is diffeomorphic, PL homeomorphio 
or homeomorphio to Jf?x [0,1] if cmd only if r(TP+1, Jfo) = 0. 

(B) For a given manifold Jf? (n > 5) cmd an element r0 
eWhx(utx(M%))9 there exists an h-cobordism (TP+1; Jf?, JfJJ) such that 
T(TP+ 1 , Jf?) = T0 and Wn+l is smooth or PL if Jf? is so. 

II. Higher JT-groups and pscudo-isotopy theory 

For A a ring with unit 1, we observed in § I that E ( A) = [GL(u4), GL (J.)] 
c GL(J.) is perfect. Let BGL(J.) be the classifying space of GL(J.). 
Construct BGth+(A), Quillen's " + " construction [67], from BGL(J.) 
by attaching 2-cells and 3-cells such that there is a homology equivalence 
BGL(J.)-KBGL+(^L) over Z9 and rcxBGL+(^) = GL(A)IJE(A) = KX(A). 
In fact, BGL+ (A) is an infinite loop space. K^A) is defined to be ̂ BGL+ (A) 
(£>1). Waldhausen [84] generalized this definition to construct higher 
algebraic JT-groups of a pointed connected OW-complex X as follows. 
Let G be the loop group4 of X and let B = QO0B0OlG+'] be the "group 
ring"5 of G over ß00^00. Form the matrix ring Jfn(U!). Consider the pull-
back diagram 

GLJ22) -JfJ-B) 

(10) 

GLn(ut0B) • Mn(ut0B) 

and let GL(i2) = limGLJJß). It turns out that BGL(JB) exists, and using 

the fact that [ut0QJj(B), rc0GL(jß)] *= E(Z[uz0G]) we may perform the 
" + " construction for BGL(E) such that BGL+(JB) is an infinite loop 
space [84], [79]. Waldhausen defined 

JL(Z)=BGL+(iü) (11) 

and K{(X) = ut^(X) for i> 1. 

4 Q is either a simplicial group model or a topological group model of the loop 
space QX of X. 

5 Since Q^S00 is not a topological ring, B is only a group ring in an appropriate 
sense. This causes most of the technical difficulties. 
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Based on this model, some computations for ni[A(X))®Q were given 
in [49], [35], [15]. Invariant theory plays an important rôle in these 
results. 

Due to the fact that «O00^00 is not an honest (topological) ring, Wald-
hausen's original way of introducing A(X) is different from the above. 
See [84], [78], [79] for the detaUs. 

A(X) is closely related to pseudo-isotopy theory. Let us recall some 
developments before the publication of [84]. If Jf is a compact differ-
entiable manifold (generally with boundary), a pseudo-isotopy of Jf is 
a diffeomorphism / : Jf xI->Jf x i such that / |Jf xO = id. Let P(Jf) 
denote the space of pseudo-isotopies endowed with the <7°°-topology. 
We are interested in computing utt(P(M)). This problem was first studied 
by Cerf [20] and later by Hatcher and Wagoner [42]. Their idea roughly 
goes as follows. Connect a given päeudo-isotopy f: MxI->MxI to the 
identity pseudo-isotopy/0: Jf xI->Jf x i by means of a generic map 
F: Mxlxl->lxl such that JP|JMfxIxO = pf0 and F\Mxlxl =pf 
where p denotes the projection to the second I factor. Choosing F care
fully, the construction produces a one-parameter family of handlebodies 
38 follows : Let t denote the coordinate of the second I factor. For t = 0 
(resp. t = 1), Jf x I is the given product structure induced by a gradient
like vector field associated to the Morse function pf0 (resp. pf). There is 
a finite number of birth points6 for 0 < t < e0 (e0 a small positive number) 
such that at t = e0 the Morse function F8Q gives rise to "trivial pairs of 
handles". Similarly, there is a finite number of death points for l—ex 

< t < 1 (sx a small positive number) such that the handles are cancelled 
in "trivial pairs" at t =l—sx. The one-parameter family of Morse func
tions Ft ( e 0 <*<l - " e i ) gives rise to a one-parameter family of handle-
bodies over the subinterval [e0,1 — e j c [0,1]. Based on analysis of the 
parametrized handlebodies, Hatcher and Wagoner [42] relate ut0P(M) 
to Wh2(utxM), a quotient of K^(ZlutxMJ) for dimJf > 6. 

In [40], Hatcher studied the space of PL pseudo-isotopy spaces PPL(Jf) 
and the following stability question: 

Let P ; L ( J f ) c P P I i ( J f x I ) (resp. P(M) <z P(MxI)) 
be the natural inclusion essentially given b y / x i d . 
Is ^(PPL(Jf))->^(P(Jfxi)) an isomorphism for 
i <4 dimJf ? 

6 See [20], [42] for the precise definitions. 
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He claimed the stability theorem for PPIj(Jf) and then Burghelea and 
Lashof extended it to P(Jf) [16]. Unfortunately, there are some flaws 
in the proof of [40], Based on his work on pseudo-isotopy by eliminating 
the higher order singularities [51] and a modification of Hatcher's argu-* 
ment, K. Igusa in a still unpublished paper has proved that the stability 
theorem is valid for P(Jf) with a somewhat smaller range. Elaborating 
on the multi-disjunction lemma, in his thesis, T. Goodwillie has claimed 
that the stability ranges for P(Jf ) and PPL(Jf) are the same (yet unpub
lished). The interest in the stability theorem stems from the observation 
that 

P(Jf) ^UmP(MxP)9 

(13) 
(resp, PPL(Jf) = limPPL(Jf xP')) 

i 

becomes an infinite loop space and we can apply homotopy theory and the 
categorical machinery. This is the starting point for Waldhausen. 

Let us study Whmn (Jf), the double delooping of P(Jf). Motivated by 
consideration of the parametrized handlebodies for studying ut0P(3I)9 

consider a "rigid handlebody theory", a manifold model of Waldhausen's 
expansion space [84]. (We follow the exposition of [46].) 

Let d0 be an (n + Jc— l)-dim manifold and ut0: d0->Ak a differentiable 
bundle map such that the fibers are (n— l)-dim manifolds (generally with 
boundary). Suppose that S0 is a codim 0 submanifold of d Y for a manifold 
Y and ut: Y->Ak is a bundle projection extending ut0. We say that Y is 
a h-parameter family of rigid handlebodies on d0 if there is a filtration: 

Y<°> = S0 e J « c ... c JW = Y (14) 

satisfying the following conditions : 

(a) For each i > 0, there is an embedding 

/<: B**-1 X Bn-H X A-+YV-1) 

and a homeomorphism 

I») ÏU r«-1) ufJ)^ x Dft-*< X A* 

TéLÏ**"-1* such that/ t. and di preserve the projection onto Ak. 
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(b) JfW = Y®vdo=tdomdQxI is a manifold, even though Y® need 
not be, 

(c) Let d+Y® =cl(dMW-(dQx{0}\jdM®\dAk)) where dM®\dAk is 
the part lying over dAk. Then, / j ^ x D ^ x ^ c S + Y ^ and /* 
is a differentiable embedding into d+ Y^"1^ (after we smooth the corners). 
ÎTote that h{ has an obvious extension to 

jfW = Jf^-^uJD^ x Dn-*i x Ak
9 

and also assume that this is a diffeomorphism (again after smoothing 
the corners). 

The attaching data, the jf̂ 's and dt\ are a part of the structure, but 
independent handles may be attached in any order. We may construct 
a category Fl which has the Jc-parameter families of rigid handlebodies as 
objects and the compositions of isomorphisms and cancelling of trivial pairs 
of handles1 as morphisms. 

The obvious definitions of face and degeneracy make JBJ1 a simplicial 
category and appropriate inclusions and quotients make it into a cofi-
bration category in the sense of [84], [46], [59]. 

Let X be a space and let f be a stable vector bundle over X. The cate
gories Fk(X,^)n

9 &,w = 0 , l , . . . , are defined as follows. The objects 
are diagrams ' 

f: (Y,d0)-*X (16) 

where ( Y, d0) is an object of Fk and/: Y->X is a continuous map, together 
with a stable bundle isomorphism y>: tY->f*£ where tY is the stable 
tangent bundle of Y. The morphisms and cofibrations of Fk, appropriately 
modified with the data on the induced bundles from | , define morphisms 
and cofibrations of Fk(X9 £)n. Note that Fk(X

m
9 S)n has a CQmposition 

law " + " — disjoint union of ( Y, 30)'s — and hence the classifying space 
has an infinite delooping in the sense of P-spaces [72]. On the other hand, 
we can make use of the cof ibration structure such that the Sm construction 
of [84] and the Q construction of [66], [46] apply to this situation as. 
explicit deloopings of Fk(X; |)w. 

Let Fl(X; £)n a Fk(X; I f be the fuU subcategory of objects such that 
d0 a Y is a homotopy equivalence. We can also deloop F^(X) S)n by means. 
of 8 construction. 

7 For technical reasons, we don't really cancel the trivial pairs geometrically,,. 
See [46] for details. 
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Multiplying by D1, we define functors 

8ß.(X; £)n--+8]E(X-, | ) n + 1 , 
(17) 

8&{X\ Ç)n--+8E*{X) f)B+1. 
Set 

BJEl(X;S)=üm\S.E(XiS)n\, 
n 

(18) 
BBn{X; f) = lim|#E*(X; £)n\, 

n 

where the limit is taken with respect to 2J. It turns out that BF}(X; £) and 
BFh(X; £) are weakly homotopically equivalent to i3&(X) — the infinite 
loop space associated to the frame bordism and Wh°°mi)(X) of [84], respect
ively, if X is a finite complex. (They are independent of f!) It has been 
shown that Wh0omìì(X) is rationally equivalent to WhPm(M) if X is 
homotopy equivalent to Jf with the tangent bundle of Jf, *(Jf) stably 
equivalent to £. (This is the reason why we keep f in the construction.) 
In fact, Waldhausen has recently claimed that WhComh(X) is WhBm(M). 

Finally, let us state the remarkable result of Waldhausen [84]. I t 
comes out of his "localization theorem" [84], [59],- [83]. 

THEOKEM 2.1 There is a fibration up to homotopy 

QBF(X) f)->wi(Xj £)->BFh(X<9 f) 

which is weaMy homotopically equivalent to 

(P{X)->A (X)->WhCom]>(X) 

if X if a finite complex. 

Since WhComh(M) is (at least rationally) equivalent to Wh'Dm(M)f 

one can easily see the importance of the functor A (X) if one is interested 
in computing ^(P(Jf)) = uti+2 [WhBm(Jf)). 

III. K0(A), obstructions to being a finite OW-complex and to finding a 
boundary for an open manifold 

Again let J. be a ring with unit 1. Let K0A be the additive group having 
one generator, [P], for each finitely generated projective module P over 
A9 and one relation, [P] — [Po]--[Pi]> for a short exact sequence 0->P0 

-»P-^Pi-^0. In other words, K0A is the "Grothendieck group" associated 
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to the category of finitely generated projectives over A. The class of 
free JL-modules of rank 1 generates a cyclic subgroup of KQA. The quotient 

KQ A /(subgroup generated by free modules) 

is called the projective class group, £0(A). If A = Z\ut\, then &Q(Z\ut\) 
is sometimes written as jt0(ut). 

Let X be a connected OW-complex and let Y be a connected finite 
OW-complex. We say that X is dominated by Y if there exist / : X->Y9 

gi Y->X such that fg: Y-+Y is homotopic to the identity. We would 
like to know whether X itself is of the homotopy type of a finite complex. 
I t turns out that we may choose Y such that 

BtiMuX)** 0 

for % ^ Jc (Jc > 2) and Hk(Mf9 X) is a finitely^generated projective module 
over Z[utxX] where Mf denotes the mapping cylinder of / and (Mf9 X) 
is the universal covering of the pair ( Mf9 X). The class 

a(x) = ( -l)klHk(Mf, ±U e&Q(utxM) (19) 

turns out to be well-defined, independent of the choice of Y or of the 
integer Jc. In [86], the following fundamental theorem was proved: 

THEOREM 3.J (A) For X a connected OW-complex dominated by a finite 
complex, X is of the homotopy type of a finite complex iff a(X) = 0. 

(B) Let oQ e K0(ut) be a given element with ut a finitely presented group. 
There exists a connected OW-complex X dominated by a finite OW-complex 
with utxX = ut and a(x) = a0. 

Let Wn (n > 5) be a smooth (or PL) open manifold. If there exists an 
arbitrarily large compact set with 1-connected complement and if B*(W) 
is finitely generated as an Abelian group, then, as was proved in [10], 
W is the interior of some smooth (or PL) compact manifold, W. For the 
general case, L. Siebenmann developed the following theory [74]. Let 
Wn (n > 5) be a connected smooth open manifold and let e be an end of 
Wn. We say that s is tame if it satisfies the following conditions: 

(A) There exists a sequence of neighborhoods of e, 
TJX => U2 z> ... =D JJi 3 ... such that p|ü"t. = 0 
and ut^U^tt^Ui+J, i = l , . . . [are isomor
phisms. We set ut = utx(e) = lim%(ï7<) and call l ' 

it utx of the end s. 
(B) Each TJi is dominated by a finite OW-complex. 
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We may ask whether we can add a boundary to Wn at the tame end e 
and reduce our problem to the case where Wn has only one end. In fact, 
we may choose each JJi of (19) to be a manifold with compact boundary 
dTJi such that ut^BU^ canx{TJ^ ~ut and 

for i =£Jc (3<f t<w — 3) where (Ui9 dU^ is the universal covering of 
the pair (Ui9 dU^ and Bk(Û{, SE )̂ is a finitely generated projective 
module'over Z\%\. Then, (-l)klBh{Ûi9 flu",)] = a(U€) eK0(ut) is the 
obstruction defined in Theorem 3.1. Here is Siebenmann's theorem [74]. 

THEOREM 3.2. (A) (— l)k[Bk(ÎJi,dUi)'] e^fae)] only depends on e9 

and we denote it by o(s). 
(B) A boundary can be added to Wn at s iff a(e) = 0. 

IV. Künnelh formula for algebraic ÜL-lheory and its geometric application 

Let T be an infinite cyclic group with a generator t, and let A [T] be the 
finite Laurent series ring of A on t, which is just the group ring of T over A. 
If a is an automorphism of A, we also have the a-twisted finite Laurent 
series ring Aa\T~\. (See [32] for details.) Let Nil (A, a) be the full subcat
egory of the category P(A) with objects (P,/) where P is a finitely gener
ated projective module over A with / an a semilinear nilpotent endo* 
morphism. Let ETil0(A, a) be the Grothendieck group of ML (A, a). The 
"forgetful functor" defined by "forgetting" the endomorphism / defines 

a homomorphism j : Uil0(A, a)->K0(A) and we let Ml0(A,a) denote 
Kerj. It is easy to see that we have a natural decomposition 

mi0(A9 a) = m0(A, a)@K0(A). (21) 

Let I denote the subgroup of KXA generated by x—a*x and let (K0A)a* 
denote the subgroup of xeKG(A) invariant under a* (induced by a). 
Thinking of Kx and K0 as homology functors of rings, one might guess 
from the Künneth formula for the homology groups of a space F fibering 
over JS1, P-^JEZ-HS1, that there should be an exact sequence 

0->Kx (A) /I->X->K0 (A)a*->0 

such that X ~ Kx(Aa[T]). This is not true in general, unless A is 
(right or left) regular [7]. In fact, it was proved in [4, p. 628] that there 
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is a canonical decomposition 

KX(A[T]) = Zx(A)@mo(A)®^lo(A) ®K0(A)- (22) 

This was generalized in [32] to give: 

-ffiM-a^]) = X®mQ(A9 a)®m0(A9 a-1), (23) 

where X fits into an exact sequence 0->Kx(A)II->X->K0(A)a*->0, and we 
also have a natural projection: 

p: Kx(Aam)^K0(A)a*@mi0(A, «)• (24) 

For the group ut=GxaT, a semi-direct product, consider Aa[T~\ 
= Z[GxaT] with A = Z\G~\. By passing to Whx(GxaT), we have the 
formula 

Whx(G XaT) = X®mQ(A, a)@miQ(A, O , (25) 

where 0^Whx(G)II->X->K0(A)a*->0 (I = {# = œ-a*x\ x e Whx(G)}). We 
also have a natural projection 

p: Whx(GXaT)^É0(G)a*@mQ(ZlG]9 a). (26) 

Now consider the following geometric problem. Let Jfn (n ^ 6) be a 
closed smooth (PL or topological) manifold. Is Jf* a fibration over 81 with 
connected Fn~l as fiber? If so, we should have a projection q: Mn->81 

such that the fiber is homotopic to a connected finite complex X with 
ut = utxM

n = GxaT being a semi-direct product of G = utxX by T = n^Ä1. 
For ut =Z (i.e., 0 = 1), it was proved in [12] that this condition is suffi
cient • For the general case, we need to find a codimi submanifold J™"-1 c Jf ? 
representing the homotopy fiber of q satisfying the following conditions : 

(A) When we cut Jfw open along JF*"1, we have 

an A-cobordism (WW;P£,P?) with F^F?'1 

diffeomorphic to (PL or homeomorphio to) F' 

(B) rCW^jF^eWh^G) vanishes. 

- i . <2 7> 

If only condition (A) is satisfied, we call it an almost fibration. I t was 
proved in [28] that the obstruction to being an almost fibration is an 
element in %0(G)a*®mi0(Z[G'], a). 
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Generalizing the problem when a space fibers over 8l
9 let Jff be a closed 

smooth (PL or topological) manifold of àimn > 6 with ut = utxM ~Gxa2 
and let Fx~

l c Jf? be a connected codimi submanifold with G = utxF
n^ 

corresponding to the subgroup ffc ut. Let 

/ : Jf^->Jf? (28) 

be a homotopy equivalence. We ask what is the obstruction 0 (f) to find
ing an (n— l)-dim submanifold Fl"1 c Jf£ and a map 

g: (Ml, P r V W , tfST1) (29) 

such that 

(A) g is a homotopy equivalence of pairs, 

(B) r ' C r 1 ) « ^ " 1 , (30) 

(0) the induced map gx Jf^Jf^ishomotopicto/ . 

O (f) is called the obstruction to splitting f with respect to JPf"1. 

THEOKBM 4.1 [36]. Assume tJiat (Jf^P?-1), / : Jf£-> Jf? (n>6) are 
given as above. Then the obstruction 0(f) to splitting f with respect to Fx~

l 

is equal to pr(f) where r(f) e Whx(ut) is the torsion of f. 

One should read S. E. Oappell, A Splitting Theorem for Manifolds, 
Invent. Math. 33 (1976), pp. 66-170 for the generalization of the above 
theorem. 

V. Negative JK>groups K_{(A) and some of their geometric applications 

In [4, pp. 657-674], H. Bass introduced the functor K_{(A) (£> 0). He 
observed that the decomposition (22) is functorial and can be written 
as 

0-±Kx(A)->Kx(A [*]) ®KX(A [rl])->Kx(A [T])-+K0(A)->0. (31) 

It is natural to define K_j (i > 0) recursively using the formula 

K-t(A) - Ooker^^^AplJeJC^^AEr1])^^^^^]). (32) 

Bass showed that (31) continued to hold with K0,KX replaced by -KL* 
and K_w (i > 0) (and he also defined negative Nil groups). For Tn 
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= Tx ... xT,yre have the following decomposition formula [4], [1]: 

Wh^axT") = WhxinxTtX:.. xTtX ... xTn)@ 

©ItoixxTiX ... x ^ x ... xTn) (mod nil terms) 

= Whx{rì)®n&u{tt)® 

®Kx_n(Z[ut\) (mod nil terms). (33) 

It was proved in [8], [19] that if ut is a finite group, then 

K-i {Z [»]) = 0 for % > 2. (34) 

Let us now turn to a geometric problem. A Top stratification of a space 
X is an increasing family of closed subsets of X, {Xn\n > 1} such that 
X ( -1 ) = fi, there is a positive integer If such that X{N) = X, and for every 
n9 each component of X(n) —X^"1) is a topological (Top) w-dim manifold 
without boundary (possibly empty). The stratification is locally cone-UJce 
if for every x e X^— X^n~l)

9 there exists a compact Top stratified space L 
and a stratum-preserving open embedding Ä: RnxcL->X such that 
&(0, 0) = x where cL denotes the open cone over L and v is its vertex. 
The space L is called a link of x and h is called a ZocaZ chart. We shall call 
a space X a Top 0$ space [2], [75], if it has a locally cone-line stratifi
cation. In [2], we define (combinatorial) PL structures on a TopO/S space 
X compatible with the stratification (see [2] for the precise definition), 
and then study the existence and uniqueness of such structures on a given 
Top<7$ space. Of course, these questions are the refined forms of the 
problem of triangulating a topological space and the Hauptvermutung. 
The simplest example of a Top 08 space is the suspension j^Jf of a closed 
manifold Jf. In [62], [77] counterexamples to Hauptvermutung were 
given with X = J£JfM (n ̂  5) as the underlying topological space and 
with elements in Whx(utxM) as the invariants to distinguish them. [1]^ 
[2] globalize the examples of Milnor and Stallings into an obstruction 
theory such that the obstruction invariants are generally in the subquo
tients of K_i of the group ring of the links of various strata. 

The obstruction theory of [1], [2] has been explicitly applied to the 
following problem. Let BX9 B% e 0(n)9 the group of orthogonal transform
ations of Bn. We say that BX9 B2 are topologically (resp. UneaHy) equiv-
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aient if there is a homeomorphism (resp. linear automorphism) / : Bn->Bn 

such that /"1 Sa/ = B2: Bn-+Bn. The conjecture that the notions of topo
logical and linear equivalence of rotations should be equivalent was stated 
by de Eham in 1935 [24] and he reduced it to the case where the rotations. 
have finite order. Note that / induces a homeomorphism 

Jv. XX->X2, (34) 

where X{ = Bnf(B^, the quotient space of Bn by the finite subgroup 
of 0(n) generated by Bi9 i = 1 , 2 . Given Xi9 the preferred PL structures 
induced from the rotation Bi9 we may then try to deform h to a PL homeo
morphism. This is the problem studied in [2]. (See also [69].) Modifying 
the topologically equivalent Bx, B2 to new ones, B[9 B2, if necessary, we 
manage to kill most of the obstructions in the subquotients of K^ and 
then apply a version of ö-signature theorem to obtain the following re
sult [47]. 

Let B19 B2 eO(n) Jiavc order Jc = I2m where I is odd and m^2. Suppose 
that (a) Bx and B2 are topologically equivalent and (b) the eigenvalues of 
B[ wnd B\ are either 1 or primitive 2m4h roots of unity. Then Bx and B2 

are linearly equivalent. 

If Jc is odd, then condition (b) is superfluous. In this case, it was 
proved independently, by Madsen and Eothenberg [60] using a differ
ent method from [47]. However, the K^ groups of [1], [2] (see also [57]) 
still play an important rôle in their work. 

The interest of de Eham's problem was revived [55] and there are 
remarkable counterexamples of this conjecture in [18] if Je = I2m

9 m > 2f 

ü ^ l , and the above condition (b) is not satisfied. 

VI. Concluding remarks and some conjectures 

One of the problems in algebraic JI-theory is to compute Kt(A) ( — oo<i 
< oo). Emphasizing the geometric applications, we are mostly interested 
in the case of A = Z[G~\ for G a finitely presented group. Most algebraic 
calculations have been carried out for G finite. Let me pose some conjec
tures about the case when G is not necessarily finite or torsion-free. In fact, 
I believe that these problems are more geometrically interesting and they 
should serve as guide posts for future development. 

CONJEOTTJBE 1. Let G be a finitely presented group. ThenK^ (Z[G]) *= 0-
for *> 2. At least, .E^ (£[<?]) = 0 for i > 0. 
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Before I state the next conjecture, let me single out a class of infinite 
groups. We say that a closed manifold Mn is a K(T, l)-manifold (an 
^spherical manifold) if ut4(M

n) = 0 for i > 1 and utxM
n = R Note that T 

is necessarily torsion-free. 

CONJECTURE 2. Let r be the fundamental group of a closed K(r, l)-mani-
fold. Then Whx(T) = Jt0(-T) ^ K^[Z\T\) = 0 (i>l). (See [31] for sup
porting evidence.) 

It is clear that the following conjecture is much stronger than Conjec
ture 2. 

CONJECTURE 3. Let rbe a torsion-free group such that BT has the homo
topy type of a finite OW-complex. Then Whx(r) = £0(r) = K^Ztr}) = 0 
( O l ) . 

For the higher IT-groups, let us consider the map of [58]: 

V K{Ba;K(Z))->K*(Zffl), (35) 

Where h*(BG;K(Z)) denotes a generalized homology theory with coeffi
cients in the spectrum of the algebraic JBC-theory of Z. 

CONJECTURE 4. If r is a torsion-free group such that BT is of the homo
topy type of a finite GW-complex, then 

J*®id: h*[Br,-K(Z))®Q^K*(Zlut])®Q 

is cm isomorphism. 

For Br having the homotopy type of an aspherical manifold, Con
jecture 4 was verified in some special cases [31]. As we pointed out in [35], 
Conjecture 2 is the algebraic Z"-theory analogue of ETovikov's conjecture 
on higher signatures. (So are Conjectures 2, 3!) Interested readers should 
consult [30], [34], [88] for further details about this conjecture. 
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