Proceedings of the International Congress of Mathematicians August 16-24, 1983, Warszawa

WU-OHUNG HSIANG

Geometric Applications of Algebraic K-theory

Algebraic K-theory has been one of the most important mathematical developments of the last two decades. In the reports [81], [68], [6] of past International Congresses of Mathematicians, emphasis was given to the algebraic aspects of the theory. In this report, I shall concentrate on its geometric applications. After all, the theory was initiated by Reidemeister [70], Franz [38], de Rham [24], and J. H. O. Whitehead [89] (see also [90]) who introduced in the 30 's some invariants for solving geometric problems. The revival of the interest in these invariants in the early 60 's, which were the seeds of algebraic K-theory (Milnor [62], Smale [76] and Kervaire's exposition on the S-cobordism theorem of Barden-Mazur-Stallings [54]) also arose from geometric considerations. At the end of this note, I shall make a few conjectures.

Due to limitation of space, I skip the Hermitian \mathcal{K}-theory and Novikov's conjecture on higher signatures of closed aspherical manifolds altogether.

Some of the geometric problems dealt with here have very interesting and equally important Hermitian analogues. The interested readers might consult [30], [34.], [88].

I. $K_{1}(A), W h_{1}(\pi)$, simple homotopy type and h-cobordism

Let A be an associative ring with unit 1. The group of all non-singular $n \times n$ matrices over A will be denoted by GL($n, A)$. Identifying each $M \in \operatorname{GL}(n, A)$ with $\left[\begin{array}{cc}M & 0 \\ 0 & 1\end{array}\right] \in \operatorname{GL}(n+1, A)$, we obtain inclusions $\operatorname{GL}(1, A)$ $\subset \ldots \subset G L(n, A) \subset \ldots$ The union is called the infinite general linear group $\mathrm{GL}(A)$. A matrix is elementary if it coincides with the identity matrix except for one off-diagonal entry. It was observed by J. H. 0 .

Whitehead [4, p. 226], [63, p. 359] that the subgroup $B(A) \subset G L(A)$ generated by all elementary matrices is a perfect group and is precisely equal to the commutator subgroup of $\mathbf{G L}(A)$. We define

$$
\begin{equation*}
\Pi_{1} A=\mathbf{G L}(A) / E(A) \tag{1}
\end{equation*}
$$

which may be viewed as a generalization of the determinant function for matrices. Let π denote a multiplicative group and $Z[\pi]$ the corresponding integral group ring. We have natural inclusions $\pm \pi \subset \mathbf{G L}(1, \mathbb{Z}[\pi])$ c $\operatorname{GL}(Z[\pi])$, where $\pm \pi$ denotes the subgroup of (1×1)-matrices ($\pm g$), $g \in \pi$. The cokernel $K_{1}(Z[\pi]) /$ image $(\pm \pi)$ is called the Whitehead group $W h_{1}(\pi)$. Clearly, $K_{1}(A)$ and $W h_{1}(\pi)$ are covariant functors of rings and groups to Abelian groups respectively.

Whitehead [90] introduced the notion of simple homotopy which is finer than homotopy. Let L_{0} and L_{1} be finite σW-complexes such that L_{1} is obtained from L_{0} by attaching a k-cell e_{k} to L_{0} along a ($k-1$)-cell $e^{k-1} \subset \partial e^{k}$. Call this procedure simple expansion and the reverse procedure simple collapsing. Simple homotopy is the equivalence relation generated by simple expansion and simple collapsing. Let X and Y be the underlying topological space of the OW-complexes L and K, and let $f: X \rightarrow Y$ be a homotopy equivalence. Using the OW-complex structures of L and K, we may homotope f to a cellular map $g: L \rightarrow K$. By introducing the mapping cylinder

$$
\begin{equation*}
M_{g}=X \times[0,1] \cup Y /\{(x, 1)=g(x) \mid x \in X\} \tag{2}
\end{equation*}
$$

we obtain a OW-complex pair (M_{g}, L) such that L is a deformation retract of M_{g}. It is not difficult to see that the inclusion $K=K \times 0 \subset M_{g}$ is a simple homotopy equivalence, we shall say that f is simple if $L \subset M_{g}$ is simple. It was proved in [63, pp. 378-384] and [21] that this definition only depends on the underlying spaces X, Y and the map f, i.e., it is independent of the OW structures L and K of X and Y, and the map g.

Using simple expansions and simple collapsings repeatedly, we may replace (M_{g}, L) by a $\mathbf{C W}$-complex pair (K_{1}, L_{1}), satisfying the following conditions:
(a) $\left(M_{g}, L\right)$ are simply homotopic to (K_{1}, L_{1}) respectively and $L_{1} \subset K_{1}$;
(b) K_{1} arisés from L_{1} by attaching a finite number of k-dim cells $\left\{e_{i}^{k}\right\}$ and $(k+1)$-dim cells $\left\{e_{j}^{k+1}\right\}$ for $k \geqslant 2$.

Consider the universal covering complexes $\hat{\boldsymbol{L}}_{1} \subset \hat{K}_{1}$ of $L_{1} \subset \boldsymbol{K}_{1}$. The fundamental group π will be identified with the group of covering transformations, so that each $\sigma \in \pi$ determines a mapping

$$
\begin{equation*}
\sigma:\left(\hat{K}_{1}, \hat{L}_{1}\right) \rightarrow\left(\hat{K}_{1}, \hat{L}_{1}\right) \tag{4}
\end{equation*}
$$

which is cellular. If $O_{*}\left(\hat{K}_{1}, \hat{L}_{1}\right)$ denotes the cellular chain complex, then each $\sigma \in \pi$ determines a chain map

$$
\begin{equation*}
\sigma_{\#}: \sigma_{*}\left(\hat{K}_{1}, \hat{L}_{1}\right) \rightarrow O_{*}\left(\hat{K}_{1}, \hat{L}_{1}\right) \tag{5}
\end{equation*}
$$

and this action makes the chain group $O_{p}\left(\hat{K}_{1}, \hat{L}_{1}\right)$ into a free $Z[\pi]$-module with a basis obtained by making a choice of a lift to $\hat{\mathbb{K}}_{1}$ of each p-cell of $K_{1}-L_{1}$. Therefore, we have an isomorphism

$$
\begin{equation*}
0 \rightarrow O_{k+1}\left(\hat{K}_{1}, \hat{L}_{1}\right) \xrightarrow{\hat{a}_{k+1}} O_{l c}\left(\hat{K}_{1}, \hat{L}_{1}\right) \rightarrow 0 \tag{6}
\end{equation*}
$$

of free $Z[\pi]$-modules with the liftings $\left\{\hat{e}_{j}^{k+1}\right\}$ and $\left\{\hat{e}_{i}^{k}\right\}$ of $\left\{e_{j}^{k+1}\right\}$ and $\left\{e_{i}^{k}\right\}$ as bases. Using these bases, \hat{d}_{k+1} determines an element in $G L(Z[\pi])$ and thus an element $\tau\left(K_{1}, L_{1}\right)$ in $W h_{1}(\pi)$. It was proved in [63] and [54] that the torsion $\tau\left(K_{1}, L_{1}\right)$ is independent of the choices ${ }^{1}$ and it only depends on f. Denote it by $\tau(f) \in W h_{1}(\pi)$. Let us summarize these fates in the following theorem.

Theorem 1.1. Let X, Y be the underlying topological spaces of the OW-compleses K and L, and lei $f: X \rightarrow \bar{Y}$ be a continuous map. Let $g: \bar{K} \rightarrow L$ be a cellular map homotopic to f. Then f determines an element $\tau(f) \in W h_{1}(\pi)$ depending only on $f: X \rightarrow Y$ such that g is simple if and only if $\tau(f)=0$.

Applying simple homotopy theory to manifolds, let us consider the following geometric problem. Let ($W^{n+1} ; M_{0}^{n}, M_{1}^{n}$) be a triad of compact manifolds such that $\partial W^{n+1}=M_{0}^{n} \cup M_{1}^{n}$. We say that W^{n+1} is an h-cobordism between M_{0}^{n} and M_{1}^{n} if $M_{i}^{n}(i=0,1)$ are deformation retracts of W^{n+1}. The simplest example of an h-cobordism is ($W^{n+1}=M^{n} \times[0,1]$; $M_{0}^{n}=M^{n} \times 0, M_{1}^{n}=M^{n} \times 1$). If ($W^{n+1} ; M_{0}^{n}, M_{1}^{n}$) is a smooth h-cobordism (i.e., W^{n+1} is a smooth manifold), $\pi_{1}\left(W^{n+1}\right)=1$ and $n \geqslant 5$, then the remarkable theorem of Smale [76], [64] asserts that W^{n+1} is diffeomorphic to $M_{0}^{n} \times[0,1]$ (and also to $M_{1}^{n} \times[0,1]$). Our interest is focused on the case $\pi=\pi_{1} W^{n+1} \neq 1$. If ($W^{n+1} ; M_{0}^{n}, M_{1}^{n}$) is a smooth h-cobordism,

[^0]then a C^{1}-triangulation $t:\left(K ; L_{0}, L_{1}\right) \rightarrow\left(W^{n+1} ; M_{0}^{n}, M_{1}^{n}\right)$ gives rise to a combinatorial cobordism which has a handlebody structure from the triangulation [63]. Or, if ($W^{n+1} ; M_{0}^{n}, M_{1}^{n}$) is a topological h-cobordism and if $n \geqslant 5$, then (W^{n+1}, M_{0}^{n}) has a handlebody decomposition [56]. By a handlebody structure of W^{n+1} on M_{0}^{n}; we mean a filtration
\[

$$
\begin{equation*}
\mathbf{Y}^{(0)}=M_{0}^{n} \subset Y^{(1)} \subset \ldots \subset Y^{(0)}=W^{n+1} \tag{7}
\end{equation*}
$$

\]

such that

> for each $i>0$, there is an embedding
> $f_{i}: S^{j_{i}-1} \times D^{n-j_{i}+1} \rightarrow Y^{(i-1)}$, and a homeo-
> morphism $Y^{(i)} \rightarrow Y^{(i-1)} U_{f_{i}} D^{j_{i}} \times D^{n-j_{i}+1}$ rel Y^{i-1}.

The union of a k-handle and a ($k+1$)-handle $J=D^{k} \times D^{n-k+1} \cup D^{k+1} \times$ $\times D^{n-k}$ along $D^{k} \times H_{1}=H_{2} \times D^{n-k}$, where $H_{1} \subset \partial D^{n-k+1}$ and $H_{2} \subset \partial D^{k+1}$ are codim 0 discs, will be called a trivial pair of handles. Introducing and cancelling a trivial pair of handles correspond to elementary expansion and elementary collapsing in simple homotopy theory. Following these procedures, if $n \geqslant 5$, we may produce a handlebody structure of (7) such that $j_{1}=\ldots=j_{k}=k$ and $j_{k+1}=\ldots=j_{l-1}=k+1(2 \leqslant k \leqslant n-3)$; i.e., W^{n+1} is obtained from M_{0}^{n} by attaching k-handles and ($k+1$)-handles. By making a choice of lifting of the cores ${ }^{2}$ of the handles to ($\hat{W}^{n+1}, \hat{M}_{0}^{n}$), the universal covers of the pair (W^{n+1}, M_{0}^{n}), we get a chain complex

$$
\begin{equation*}
0 \rightarrow C_{k+1}\left(\hat{W}^{n+1}, \hat{M}_{0}^{n}\right) \xrightarrow{\hat{d}_{k+1}} C_{k}\left(\hat{W}^{n+1}, \hat{M}_{0}^{n}\right) \rightarrow 0 \tag{9}
\end{equation*}
$$

of based $Z[\pi]$-modules as in (6). The map \hat{d}_{k+1} determines an element $\tau \in W h_{1}\left(\pi\left(W^{n+1}\right)\right)$ which is the torsion ${ }^{3}$ of the inclusion of $M_{0}^{n} \subset W^{n+1}$. This element only depends on the underlying topological space and not on the handle structure of (W^{n+1}, M_{0}^{n}) and it is denoted by $\tau\left(W^{n+1}, M_{0}^{n}\right)$.

In correspondence to Theorem 1.1, we have the following \mathcal{S}-cobordism theorem due to D. Barden, B. Mazur and J. Stallings [3], [54], [63].

[^1]Theormm 1.2 (A) Let ($W^{n+1} ; M_{0}^{n}, M_{1}^{n}$) be a smooth, PL or topological h-cobordism for $n \geqslant 5$. Then, W^{n+1} is diffeomorphic, PL homeomorphio or homeomorphic to $M_{0}^{n} \times[0,1]$ if and only if $\tau\left(W^{n+1}, M_{0}^{n}\right)=0$.
(B) For a given manifold $M_{0}^{n} \quad(n \geqslant 5)$ and an element τ_{0} $\in W h_{1}\left(\pi_{1}\left(M_{0}^{n}\right)\right)$, there exists an h-cobordism $\left(W^{n+1} ; M_{0}^{n}, M_{1}^{n}\right)$ such that $\tau\left(W^{n+1}, M_{0}^{n}\right)=\tau_{0}$ and W^{n+1} is smooth or PL if M_{0}^{n} is so.

II. Higher K-groups and pseudo-isotopy theory

For A a ring with unit 1 , we observed in $\S \mathrm{I}$ that $D(A)=[G L(A), \mathrm{GL}(A)]$ $\subset \mathrm{GL}(A)$ is perfect. Let $\mathrm{BGL}(A)$ be the classifying space of $\mathrm{GL}(A)$. Construct $\mathrm{BGL}^{+}(A)$, Quillen's " + " construction [67], from BGL(\boldsymbol{A}) by attaching 2 -cells and 3-cells such that there is a homology equivalence $\mathrm{BGL}(A) \rightarrow \mathrm{BGL}^{+}(A)$ over Z, and $\pi_{1} \mathrm{BGL}^{+}(A)=\mathrm{GL}(A) / B(A)=K_{1}(A)$. In fact, $\mathrm{BGL}^{+}(A)$ is an infinite loop space. $K_{i}(A)$ is defined to be $\pi_{i} \mathrm{BGL}^{+}(A)$ ($i \geqslant 1$). Waldhausen [84] generalized this definition to construct higher algebraic K-groups of a pointed connected OW-complex X as follows. Let G be the loop group ${ }^{4}$ of X and let $R=\Omega^{\infty} S^{\infty}\left[G_{+}\right]$be the "group ring ${ }^{\prime 5}$ of G over $\Omega^{\infty} S^{\infty}$. Form the matrix ring $M_{n}(R)$. Consider the pullback diagram

and let $\hat{\mathrm{GL}}(R)=\lim _{\forall \rightarrow} \hat{\mathrm{GL}}_{n}(R)$. It turns out that $\mathrm{BG} \mathrm{L}(R)$ exists, and using the fact that $\left[\pi_{0} \hat{G} L(R), \pi_{0} \hat{G} L(R)\right]=D\left(Z\left[\pi_{0} G\right]\right)$ we may perform the " + " construction for $\mathrm{BGL}(R)$ such that $\mathrm{BGL} \hat{L}^{+}(R)$ is an infinite loop space [84], [79]. Waldhausen defined

$$
\begin{equation*}
A(X)=\mathrm{B} \hat{G} \mathrm{~L}^{+}(R) \tag{11}
\end{equation*}
$$

and $K_{i}(X)=\pi_{i} A(X)$ for $i \geqslant 1$.

[^2]Based on this model, some computations for $\pi_{i}(A(X)) \otimes Q$ were given in [49], [35], [15]. Invariant theory plays an important rôle in these results.

Due to the fact that $\Omega^{\infty} S^{\infty}$ is not an honest (topological) ring, Waldhausen's original way of introducing $A(X)$ is different from the above. See [84], [78], [79] for the details.
$A(X)$ is closely related to pseudo-isotopy theory. Let us recall some developments before the publication of [84]. If M is a compact differentiable manifold (generally with boundary), a pseudo-isotopy of M is a diffeomorphism $f: M \times I \rightarrow M \times I$ such that $f \mid M \times 0=\mathrm{id}$. Let $\boldsymbol{P}(M)$ denote the space of pseudo-isotopies endowed with the C^{∞}-topology. We are interested in computing $\pi_{i}(P(M))$. This problem was first studied by Cerf [20] and later by Hatcher and Wagoner [42]. Their idea roughly goes as follows. Connect a given pseudo-isotopy $f: M \times I \rightarrow M \times I$ to the identity pseudo-isotopy $f_{0}: M \times I \rightarrow M \times I$ by means of a generic map $\vec{F}: M \times I \times I \rightarrow I \times I$ such that $F \mid M \times I \times 0=p f_{0}$ and $F \mid M \times I \times 1=p f$ where p denotes the projection to the second I factor. Ohoosing F carefully, the construction produces a one-parameter family of handlebodies as follows: Let t denote the coordinate of the second I factor. For $t=0$ (resp. $t=1$), $M \times I$ is the given product structure induced by a gradientlike vector field associated to the Morse function $p f_{0}$ (resp. $p f$). There is a finite number of birth points ${ }^{6}$ for $0<t<\varepsilon_{0}\left(\varepsilon_{0}\right.$ a small positive number) such that at $t=\varepsilon_{0}$ the Morse function $\boldsymbol{F}_{s_{0}}$ gives rise to "trivial pairs of handles". Similarly, there is a finite number of death points for $1-\varepsilon_{1}$ $<t<1$ (ε_{1} a small positive number) such that the handles are cancelled in "trivial pairs" at $t=1-\varepsilon_{1}$. The one-parameter family of Morse functions $F_{t}\left(\varepsilon_{0} \leqslant t \leqslant 1-\varepsilon_{1}\right)$ gives rise to a one-parameter family of handlebodies over the subinterval $\left[\varepsilon_{0}, 1-\varepsilon_{1}\right] \subset[0,1]$. Based on analysis of the parametrized handlebodies, Hatcher and Wagoner [42] relate $\pi_{0} P(M)$ to $W h_{2}\left(\pi_{1} M\right)$, a quotient of $K_{2}\left(Z\left[\pi_{1} M\right]\right)$ for $\operatorname{dim} M \geqslant 6$.

In [40], Hatcher studied the space of PL pseudo-isotopy spaces $P_{\text {PL }}(M)$ and the following stability question:

Let $P_{P L}^{\prime}(M) \subset P_{P L}(M \times I)($ resp. $P(M) \subset P(M \times I))$
be the natural inclusion essentially given by $f \times i d$. Is $\pi_{i}\left(P_{\mathrm{PL}}(M)\right) \rightarrow \pi_{i}(P(M \times I))$ an isomorphism for $i \ll \operatorname{dim} M$?

[^3]He claimed the stability theorem for $P_{\text {PL }}(M)$ and then Burghelea and Lashof extended it to $P(M)$ [16]. Unfortunately, there are some flaws in the proof of [40]. Based on his work on pseudo-isotopy by eliminating the higher order singularities [51] and a modification of Hatcher's argument, K. Igusa in a still unpublished paper has proved that the stability theorem is valid for $P(M)$ with a somewhat smaller range. Elaborating on the multi-disjunction lemma, in his thesis, T. Goodwillie has claimed that the stability ranges for $P(M)$ and $P_{\text {PL }}(M)$ are the same (yet unpublished). The interest in the stability theorem stems from the observation that

$$
\begin{gather*}
\boldsymbol{P}(M)=\lim _{i} P\left(M \times I^{i}\right), \tag{13}\\
\left(\operatorname{resp} . \boldsymbol{P}_{\mathrm{PL}}(M)=\lim _{i} \boldsymbol{P}_{\mathrm{PL}}\left(M \times I^{i}\right)\right)
\end{gather*}
$$

becomes an infinite loop space and we can apply homotopy theory and the categorical machinery. This is the starting point for Waldhausen.

Let us study $W h^{\text {Diff }}(M)$, the double delooping of $\boldsymbol{P}(M)$. Motivated by consideration of the parametrized handlebodies for studying $\pi_{0} P(M)$, consider a "rigid handlebody theory", a manifold model of Waldhausen's expansion space [84]. (We follow the exposition of [46].)

Let ∂_{0} be an $(n+k-1)$-dim manifold and $\pi_{0}: \partial_{0} \rightarrow \Delta^{k}$ a differentiable bundle map such that the fibers are ($n-1$)-dim manifolds (generally with boundary). Suppose that ∂_{0} is a codim 0 submanifold of ∂Y for a manifold Y and $\pi: ~ Y \rightarrow \Delta^{T}$ is a bundle projection extending π_{0}. We say that Y is a ll-parameter family of rigid handlebodies on ∂_{0} if there is a filtration:

$$
\begin{equation*}
\bar{Y}^{(0)}=\partial_{0} \subset Y^{(1)} \subset \ldots \subset Y^{(l)}=\mathbf{Y} \tag{14}
\end{equation*}
$$

satisfying the following conditions:
(a) For each $i>0$, there is an embedding

$$
f_{i}: S^{j_{i}-1} \times D^{n-j_{i}} \times \Delta \rightarrow Y^{(i-1)}
$$

and a homeomorphism

$$
\Psi^{(i)} \xrightarrow[\underset{\sim}{h_{i}}]{\underset{ }{h_{1}}} \Psi^{(i-1)} \cup_{f_{i}} D^{j_{i}} \times D^{n-f_{i}} \times \Delta^{k}
$$

rel $\Psi^{(i-1)}$ such that f_{i} and d_{i} preserve the projection onto Δ^{k}.
(b) $M^{(i)}=Y^{(i)} \cup_{\partial_{0}=\partial_{0} \times\{1\}} \partial_{0} \times I$ is a manifold, even though $Y^{(i)}$ need not be.
(c) Let $\partial_{+} Y^{(i)}=\mathrm{cl}\left(\partial M^{(i)}-\left(\partial_{0} \times\{0\} \cup \partial M^{(i)} \mid \partial \Delta^{k}\right)\right)$ where $\partial M^{(i)} \mid \partial \Delta^{k}$ is the part lying over $\partial \Delta^{k}$. Then, $f_{i}\left(\mathcal{S}^{j_{i}-1} \times D^{n-j_{i}} \times \Delta^{k}\right) \subset \partial_{+} Y^{(i-1)}$ and f_{i} is a differentiable embedding into $\partial_{+} Y^{(i-1)}$ (after we smooth the corners). Note that h_{i} has an obvious extension to

$$
M^{(i)}=M^{(i-1)} \cup D^{j_{i}} \times D^{n-j_{i}} \times \Delta^{k}
$$

and also assume that this is a diffeomorphism (again after smoothing the corners).

The attaching data, the f_{i} 's and d_{i} 's, are a part of the structure, but independent handles may be attached in any order. We may construct a category E_{k}^{n} which has the k-parameter families of rigid handlebodies as objects and the compositions of isomorphisms and cancelling of trivial pairs of handles ${ }^{7}$ as morphisms.

The obvious definitions of face and degeneracy make $E_{.}^{n}$ a simplicial category and appropriate inclusions and quotients make it into a cofibration category in the sense of [84], [46], [59].

Let X be a space and let ξ be a stable vector bundle over X. The categories $E_{k}(X, \xi)^{n}, k, n=0,1, \ldots$, are defined as follows. The objects are diagrams

$$
\begin{equation*}
f:\left(Y, \partial_{0}\right) \rightarrow X \tag{16}
\end{equation*}
$$

where $\left(Y, \partial_{0}\right)$ is an object of E_{k}^{n} and $f: Y \rightarrow X$ is a continuous map, together with a stable bundle isomorphism $\psi: t Y \rightarrow f^{*} \xi$ where $t Y$ is the stable tangent bundle of \bar{Y}. The morphisms and cofibrations of \mathbb{E}_{k}^{n}, appropriately modified with the data on the induced bundles from ξ, define morphisms and cofibrations of $E_{k}(X, \xi)^{n}$. Note that $E_{k}(X ; \xi)^{n}$ has a composition law "+" - disjoint union of (\bar{Y}, ∂_{0})'s - and hence the classifying space has an infinite delooping in the sense of Γ-spaces [72]. On the other hand, we can make use of the cofibration structure such that the S. construction of [84] and the Q construction of [66], [46] apply to this situation as explicit deloopings of $E_{k}(X ; \xi)^{n}$.

Let $\mathbb{E}_{k}^{h}(X ; \xi)^{n} \subset \mathbb{D}_{k}(X ; \xi)^{n}$ be the full subcategory ${ }^{0}$ of objects such that $\partial_{0} \subset \bar{Y}$ is a homotopy equivalence. We can also deloop $B^{h}(X ; \xi)^{n}$ by means of S. construction.

[^4]Multiplying by D^{1}, we define functors

$$
\begin{align*}
& S . W^{T}(X ; \xi)^{n} \xrightarrow{\Sigma} S^{\prime} . E .(X ; \xi)^{n+1}, \tag{17}\\
& S \cdot E_{\cdot}^{h}(X ; \xi)^{n} \xrightarrow{\Sigma} S_{U} E^{n}(X ; \xi)^{n+1} .
\end{align*}
$$

Set

$$
\begin{align*}
B E(X ; \xi) & =\lim _{n}\left|S . E .(X ; \xi)^{n}\right|, \\
B B^{h}(X ; \xi) & =\lim _{n}\left|S . B^{h}(X ; \xi)^{n}\right|, \tag{18}
\end{align*}
$$

where the limit is taken with respect to Σ. It turns out that $B E(X ; \xi)$ and $B E^{h}(X ; \xi)$ are weakly homotopically equivalent to $\Omega^{\text {fr }}(X)$ - the infinite loop space associated to the frame bordism and $W h^{\text {Comb }}(X)$ of [84], respectively, if X is a finite complex. (They are independent of $\xi!$) It has been shown that $W h^{\text {domb }}(X)$ is rationally equivalent to $W h^{\text {Diff }}(M)$ if X is homotopy equivalent to M with the tangent bundle of $M, t(M)$ stably equivalent to ξ. (This is the reason why we keep ξ in the construction.) In fact, Waldhausen has récently claimed that $W h^{\text {Comb }}(X)$ is $W h^{\text {Diff }}(\mathbb{M})$.

Finally, let us state the remarkable result of Waldhausen [84]. It comes out of his "localization theorem" [84], [59]; [83].

Theorem 2.1 There is a fibration up to homotopy

$$
\Omega B E(X ; \xi) \rightarrow A(X ; \xi) \rightarrow B E^{h}(X ; \xi)
$$

which is weakly homotopically equivalent to

$$
\Omega^{\text {fr }}(X) \rightarrow A(X) \rightarrow W h^{\text {Oomb }}(X)
$$

if X if a finite complex.
Since $W h^{\text {Comb }}(M)$ is (at least rationally) equivalent to $W h^{\text {Diff }}(M)$, one can easily see the importance of the functor $A(X)$ if one is interested in computing $\pi_{i}(P(M))=\pi_{i+2}\left(W h^{\text {Diff }}(M)\right)$.

III. $K_{0}(A)$, obstructions to being a finite OW-complex and to finding a boundary for an open manifold

Again let A be a ring with unit 1 . Let $K_{0} A$ be the additive group having one generator, $[P]$, for each finitely generated projective module P over A, and one relation, $[P]-\left[P_{0}\right]-\left[P_{1}\right]$, for a short exact sequence $0 \rightarrow P_{0}$ $\rightarrow P \rightarrow P_{1} \rightarrow 0$. In other words, $K_{0} A$ is the "Grothendieck group" associated
to the category of finitely generated projectives over A. The class of free A-modules of rank 1 generates a cyclic subgroup of $K_{0} A$. The quotient

$$
K_{0} A /(\text { subgroup generated by free modules) }
$$

is called the projective class group, $\tilde{K}_{0}(A)$. If $A=Z[\pi]$, then $\tilde{K}_{0}(Z[\pi])$ is sometimes written as , $\tilde{K}_{0}(\pi)$.

Let \boldsymbol{X} be a connected $O W$-complex and let \boldsymbol{Y} be a connected finite OW-complex. We say that X is dominated by Y if there exist $f: X \rightarrow Y$, $g: Y \rightarrow X$ such that $f g: Y \rightarrow \bar{Y}$ is homotopic to the identity. We would like to know whether X itself is of the homotopy type of a finite complex. It turns out that we may choose \boldsymbol{Y} such that

$$
H_{i}\left(\hat{\mathbb{M}}_{i}, \hat{X}\right)=0
$$

for $i \neq k_{c}\left(k_{c} \geqslant 2\right)$ and $H_{l_{c}}\left(\hat{M}_{f}, \hat{X}\right)$ is a finitely, generated projective module over $Z\left[\pi_{1} X\right]$ where M_{f} denotes the mapping cylinder of f and (\hat{M}_{f}, \hat{X}) is the universal covering of the pair ($\left.M_{f}, X\right)$. The class

$$
\begin{equation*}
\sigma(x)=(-1)^{k}\left[H_{l}\left(\hat{M}_{f}, \hat{X}\right)\right] \in \tilde{K}_{0}\left(\pi_{1} M\right) \tag{19}
\end{equation*}
$$

turns out to be well-defined, independent of the choice of \bar{Y} or of the integer k. In [86], the following fundamental theorem was proved:

Theorem 3.1 (A) For X a connected OW-complex dominated by a finite complex, X is of the homotopy type of a finite complex iff $\sigma(X)=0$.
(B) Let $\sigma_{0} \in \tilde{K}_{0}(\pi)$ be a given element with π a finitely presented group. There exists a connected OW-complex X dominated by a finite CW-comples with $\pi_{1} X=\pi$ and $\sigma(x)=\sigma_{0}$.

Let $W^{n}(n>5)$ be a smooth (or PL) open manifold. If there exists an arbitrarily large compact set with 1-connected complement and if $\boldsymbol{H}_{*}(W)$ is finitely generated as an Abelian group, then; as was proved in [10], W is the interior of some smooth (or PL) compact manifold, \vec{W}. For the general case, L. Siebenmann developed the following theory [74]. Let $W^{n}(n>5)$ be a connected smooth open manifold and let ε be an end of W^{n}. We say that ε is tame if it satisfies the following conditions:
(A) There exists a sequence of neighborhoods of ε, $U_{1} \supset U_{2} \supset \ldots \supset U_{i} \supset \ldots$ such that $\bigcap U_{i}=\emptyset$ and $\pi_{1}\left(U_{i}\right) \leftarrow \pi_{1}\left(U_{i+1}\right), i=1, \ldots$ are isomorphisms. We set $\pi=\pi_{1}(\varepsilon)=\underset{\leftarrow}{\lim } \pi_{1}\left(U_{i}\right)$ and call it π_{1} of the end ε.
(B) Each \boldsymbol{J}_{i} is dominated by a finite $\mathbf{C W}$-complex.

We may ask whether we can add a boundary to W^{n} at the tame end ε and reduce our problem to the case where W^{n} has only one end. In fact, we may choose each U_{i} of (19) to be a manifold with compact boundary ∂U_{i} such that $\pi_{q}\left(\partial U_{i}\right) \simeq \pi_{1}\left(U_{i}\right) \simeq \pi$ and

$$
H_{j}\left(\hat{U}_{i}, \partial \hat{U}_{i}\right)=0
$$

for $i \neq 7,(3 \leqslant k \leqslant n-3)$ where $\left(\hat{U}_{i}, \partial \hat{U}_{i}\right)$ is the universal covering of the pair $\left(U_{i}, \partial U_{i}\right)$ and $H_{l c}\left(\hat{U}_{i}, \partial \hat{U}_{i}\right)$ is a finitely generated projective module 'over $Z[\pi]$. Then, $(-1)^{k}\left[H_{k}\left(\hat{U}_{i}, \partial \hat{U}_{i}\right)\right]=\sigma\left(U_{i}\right) \in \tilde{K}_{0}(\pi)$ is the obstruction defined in Theorem 3.1. Here is Siebenmann's theorem [74].

Theorem 3.2. (A) $(-1)^{k}\left[H_{l c}\left(\hat{U}_{i}, \partial \hat{U}_{i}\right)\right] \in \tilde{K}_{0}\left(\pi_{1} \varepsilon\right)$, only depends on ε, and we denote it by $\sigma(\varepsilon)$.
(B) A boundary can be added to W^{n} at ε iff $\sigma(\varepsilon)=0$.

IV. Künneth formula for algebraic K-theory and its geometric application

Let T be an infinite cyclic group with a generator t, and let $A[T]$ be the finite Laurent series ring of A on t, which is just the group ring of T over A. If α is an automorphism of A, we also have the α-twisted finite Laurent series ring $A_{\alpha}[T]$. (See [32] for details.) Let $\operatorname{Nil}(A, \alpha)$ be the full subcategory of the category $\mathrm{P}(A)$ with objects $(P, \overline{f)}$ where P is a finitely generated projective module over A with f an α semilinear nilpotent endomorphism. Let $\operatorname{Nil}_{0}(A, \alpha)$ be the Grothendieck group of $\operatorname{Nil}(A, \alpha)$. The "forgetful functor" defined by "forgetting" the endomorphism f defines a homomorphism $j: \operatorname{Nil}_{0}(A, \alpha) \rightarrow K_{0}(A)$ and we let $\overbrace{\operatorname{Nil}_{0}}(A, \alpha)$ denote Kerj. It is easy to see that we have a natural decomposition

$$
\begin{equation*}
\operatorname{NiI}_{0}(A, \alpha)=\widetilde{N i I}_{0}(A, \alpha) \oplus K_{0}(A) \tag{21}
\end{equation*}
$$

Let I denote the subgroup of $K_{1} A$ generated by $x-\alpha_{*} x$ and let $\left(K_{0} A\right)^{\alpha *}$ denote the subgroup of $x \in K_{0}(A)$ invariant under α_{*} (induced by α). Thinking of K_{1} and K_{0} as homology functors of rings, one might guess from the Künneth formula for the homology groups of a space D fibering over $S^{1}, \vec{F} \rightarrow \boldsymbol{W} \rightarrow \boldsymbol{S}^{1}$, that there should be an exact sequence

$$
0 \rightarrow K_{1}(A) / I \rightarrow X \rightarrow K_{0}(A)^{\alpha *} \rightarrow 0
$$

such that $X \simeq K_{1}\left(A_{a}[T]\right)$. This is not true in general, unless A is (right or left) regular [7]. In fact, it was proved in [4, p. 628] that there
is a canonical decomposition

$$
\begin{equation*}
K_{1}(A[T])=K_{1}(A) \oplus \widetilde{\operatorname{NiI}}_{0}(A) \oplus \widetilde{N i l}_{0}(A) \oplus K_{0}(A) \tag{22}
\end{equation*}
$$

This was generalized in [32] to give:

$$
\begin{equation*}
K_{1}\left(A_{a}[T]\right)=X \oplus \widetilde{\operatorname{Nil}_{0}(A, \alpha) \oplus \widetilde{\operatorname{Nil}}_{0}\left(A, a^{-1}\right), ~} \tag{23}
\end{equation*}
$$

where X fits into an exact sequence $0 \rightarrow K_{1}(A) / I \rightarrow X \rightarrow K_{0}(A)^{\alpha_{*}} \rightarrow 0$, and we also have a natural projection:

$$
\begin{equation*}
p: K_{1}\left(A_{a}[T]\right) \rightarrow K_{0}(A)^{\alpha *} \oplus \widetilde{\operatorname{Nil}_{0}}(A, a) \tag{24}
\end{equation*}
$$

For the group $\pi=G \times_{a} T$, a semi-direct product, consider $A_{a}[T]$ $=Z\left[G \times_{a} T\right]$ with $A=Z[G]$. By passing to $W h_{1}\left(G \times_{a} T\right)$, we have the formula

$$
\begin{equation*}
W h_{1}\left(G \times{ }_{a} T\right)=\bar{X} \oplus \widetilde{\operatorname{Nil}}_{0}(A, a) \oplus \widetilde{\operatorname{Nil}}_{0}\left(A, \alpha^{-1}\right) \tag{25}
\end{equation*}
$$

where $0 \rightarrow W h_{1}(G) / I \rightarrow \bar{X} \rightarrow \check{K}_{0}(A)^{\alpha_{*}} \rightarrow 0 \quad\left(I=\left\{y=x-\alpha_{*} x \mid x \in W h_{1}(G)\right\}\right)$. We also have a natural projection

$$
\begin{equation*}
\bar{p}: W h_{1}\left(G \times_{a} T\right) \rightarrow \tilde{K}_{0}(G)^{\alpha_{*}} \oplus \widetilde{\mathbb{N i}_{0}}(Z[G], a) \tag{26}
\end{equation*}
$$

Now consider the following geometric problem. Let $M^{n}(n \geqslant 6)$ be a closed smooth (PL or topological) manifold. Is M^{n} a fibration over S^{1} with connected F^{n-1} as fiber? If so, we should have a projection $g: M^{n} \rightarrow S^{1}$ such that the fiber is homotopic to a connected finite complex X with $\pi=\pi_{1} M^{n}=G \times{ }_{a} T$ being a semi-direct product of $G=\pi_{1} X$ by $T=\pi_{1} S^{1}$. For $\pi=Z$ (i.e., $G=1$), it was proved in [12] that this condition is sufficient. For the general case, we need to find a codim1 submanifold $\boldsymbol{F}^{n-1} \subset M y$ representing the homotopy fiber of q satisfying the following conditions:
(A) When we cut \mathbb{M}^{n} open along H^{n-1}, we have an h-cobordism ($W^{n} ; F_{0}^{n}, F_{1}^{n}$) with F_{0}^{n-1}, F_{1}^{n-1} diffeomorphic to (PL or homeomorphic to) \vec{F}^{n-1};
(B) $\tau\left(W^{n}, F_{0}\right) \in W h_{1}(G)$ vanishes.

If only condition (A) is satisfied, we call it an almost fibration. It was proved in [28] that the obstruction to being an almost fibration is an element in $\tilde{\mathbf{K}}_{0}(G)^{\alpha_{*}} \oplus \operatorname{Nil}_{0}(Z[G], \alpha)$.

Generalizing the problem when a space fibers over S^{1}, let M_{1}^{n} be a closed smooth (PL or topological) manifold of $\operatorname{dim} n \geqslant 6$ with $\pi=\pi_{1} M=G \times{ }_{a} T$ and let $\mathbb{F}_{1}^{n-1} \subset M_{1}^{n}$ be a connected codim1 submanifold with $G=\pi_{1} B^{n-1}$ corresponding to the subgroup G.c π. Let

$$
\begin{equation*}
f: M_{2}^{n} \rightarrow M_{1}^{n} \tag{28}
\end{equation*}
$$

be a homotopy equivalence. We ask what is the obstruction $O(f)$ to finding an ($n-1$)-dim submanifold $F_{2}^{n-1} \subset M_{2}^{n}$ and a map

$$
\begin{equation*}
g:\left(M_{2}^{n}, H_{2}^{n-1}\right) \rightarrow\left(M_{1}^{n}, H_{1}^{n-1}\right) \tag{29}
\end{equation*}
$$

such that
(A) g is a homotopy equivalence of pairs,
(B) $g^{-1}\left(F_{1}^{n-1}\right)=F_{2}^{n-1}$,
(C) the induced map $g: M_{2}^{n} \rightarrow M_{1}^{n}$ is homotopic to f.
$O(f)$ is called the obstruction to splitting f with respect to \mathbb{F}_{1}^{n-1}.
Theorem 4.1 [36]. Assume that $\left(M_{1}^{n}, F_{1}^{n-1}\right), f: M_{2}^{n} \rightarrow M_{1}^{n}(n \geqslant 6)$ are given as above. Then the obstruction $O(f)$ to splitting f with respect to \mathbb{F}_{1}^{n-1} is equal to $\bar{p} \tau(f)$ where $\tau(f) \in W h_{1}(\pi)$ is the torsion of f.

One should read S. E. Oappell, A Splitting Theorem for Manifolds, Invent. Math. 33 (1976), pp. 66-170 for the generalization of the above theorem.

V. Negative K-groups $K_{-i}(A)$ and some of their geometric applications

In [4, pp. 657-674], H. Bass introduced the functor $K_{-i}(A)(i \geqslant 0)$. He observed that the decomposition (22) is functorial and can be written as

$$
\begin{equation*}
0 \rightarrow K_{1}(A) \rightarrow K_{1}(A[t]) \oplus K_{1}\left(A\left[t^{-1}\right]\right) \rightarrow K_{1}(A[T]) \rightarrow K_{0}(A) \rightarrow 0 \tag{31}
\end{equation*}
$$

It is natural to define $K_{-i}(i>0)$ recursively using the formula

$$
\begin{equation*}
K_{-i}(A)=\operatorname{Coker}\left\{K_{-i+1}(A[t]) \oplus K_{-i+1}\left(A\left[t^{-1}\right]\right) \rightarrow K_{-i+1} A[T]\right) \tag{32}
\end{equation*}
$$

Bass showed that (31) continued to hold with K_{0}, K_{1} replaced by K_{-i} and $K_{-i+1}(i>0)$ (and he also defined negative Nil groups). For T^{n}
$=T \times \ldots \times T$, we have the following decomposition formula [4], [1]:

$$
\begin{align*}
W h_{1}\left(\pi \times T^{n}\right)= & W h_{1}\left(\pi \times T_{1} \times \ldots \times \hat{T}_{i} \times \ldots \times T_{n}\right) \oplus \\
& \oplus \tilde{K}_{0}\left(\pi \times T_{1} \times \ldots \times \hat{T}_{i} \times \ldots \times T_{n}\right)(\bmod \text { nil terms }) \\
= & W h_{1}(\pi) \oplus n \tilde{K}_{0}(\pi) \oplus \\
& \oplus \sum_{i=2}^{n-1}\binom{n}{i} K_{1-i}(Z[\pi]) \oplus \\
& \oplus K_{1-n}(Z[\pi])(\bmod \text { nil terms }) . \tag{33}
\end{align*}
$$

It was proved in [8], [19] that if π is a finite group, then

$$
\begin{equation*}
K_{-i}(Z[\pi])=0 \quad \text { for } i \geqslant 2 . \tag{34}
\end{equation*}
$$

Let us now turn to a geometric problem. A Top stratification of a space X is an increasing family of closed subsets of $X,\left\{X^{n} \mid n \geqslant 1\right\}$ such that $X^{(-1)}=\mathrm{f}$, there is a positive integer N such that $X^{(N)}=X$, and for every n, each component of $X^{(n)}-X^{(n-1)}$ is a topological (Top) n-dim manifold without boundary (possibly empty). The stratification is locally cone-like if for every $x \in X^{(n)}-X^{(n-1)}$, there exists a compact Top stratified space L and a stratum-preserving open embedding $h: R^{n} \times o L \rightarrow X$ such that $h(0, v)=x$ where $c L$ denotes the open cone over L and v is its vertex. The space L is called a link of x and h is called a local chart. We shall call a space X a Top $O S$ space [2], [75], if it has a locally cone-line stratification. In [2], we define (combinatorial) PL structures on a Top $O S$ space X compatible with the stratification (see [2] for the precise definition), and then study the existence and uniqueness of suoh structures on a given Top $O S$ space. Of course, these questions are the refined forms of the problem of triangulating a topological space and the Hauptvermutung. The simplest example of a Top $O S$ space is the suspension $\sum M$ of a closed manifold M. In [62], [77] counterexamples to Hauptvermutung were given with $X=\sum M^{n}(n \geqslant 5)$ as the underlying topological space and with elements in $W h_{1}\left(\pi_{1} M\right)$ as the invariants to distinguish them. [1], [2] globalize the examples of Milnor and Stallings into an obstruction theory such that the obstruction invariants are generally in the subquotients of K_{-i} of the group ring of the links of various strata.

The obstruction theory of [1], [2] has been explicitly applied to the following problem. Let $R_{1}, R_{2} \in O(n)$, the group of orthogonal transformations of R^{n}. We say that R_{1}, R_{2} are topologically (resp. linearly) equiv-
alent if there is a homeomorphism (resp. linear automorphism) $f: R^{n} \rightarrow R^{n}$ such that $f^{-1} R_{1} f=R_{2}: R^{n} \rightarrow R^{n}$. The conjecture that the notions of topological and linear equivalence of rotations should be equivalent was stated by de Rham in 1935 [24] and he reduced it to the case where the rotations. have finite order. Note that f induces a homeomorphism

$$
\begin{equation*}
\hbar: X_{1} \rightarrow X_{2}, \tag{34}
\end{equation*}
$$

where $X_{i}=R^{n} \mid\left\langle R_{i}\right\rangle$, the quotient space of R^{n} by the finite subgroup of $O(n)$ generated by $R_{i}, i=1,2$. Given X_{i}, the preferred PL structures induced from the rotation R_{i}, we may then try to deform \hbar to a PL homeomorphism. This is the problem studied in [2]. (See also [69].) Modifying the topologically equivalent R_{1}, R_{2} to new ones, $R_{1}^{\prime}, R_{2}^{\prime}$, if necessary, we manage to kill most of the obstructions in the subquotients of K_{-i} and then apply a version of G-signature theorèm to obtain the following result [47].

Let $R_{1}, R_{2} \in O(n)$ have order $7=72^{m}$ where l is odd and $m \geqslant 2$. Suppose that (a) R_{1} and R_{2} are topologically equivalent, and (b) the eigenvalues of R_{1}^{l} and R_{2}^{l} are either 1 or primitive 2^{m}-th roots of unity. Then R_{1} and R_{2} are linearly equivalent.

If k is odd, then condition (b) is superfluous. In this case, it was proved independently, by Madsen and Rothenberg [60] using a differont method from [47]. However, the K_{-i} groups of [1], [2] (see also [57]) still play an important rôle in their work.

The interest of de Rham's problem was revived [55] and there are. remarkable counterexamples of this conjecture in [18] if $70=72^{m}, m \geqslant 2$, $l \neq 1$, and the above condition (b) is not satisfied.

VI. Concluding remarks and some conjectures

One of the problems in algebraic \boldsymbol{K}-theory is to compute $\boldsymbol{K}_{i}(A)(-\infty<\boldsymbol{i}$ $<\infty)$. Emphasizing the geometric applications, we are mostly interested in the case of $A=Z[G]$ for G a finitely presented group. Most algebraic calculations have been carried out for G finite. Let me pose some conjectures about the case when G is not necessarily finite or torsion-free. In fact, I believe that these problems are more geometrically interesting and they should serve as guide posts for future development.

Conjeoture 1. Let G be a finitely presented group. Then $K_{-i}(Z[G])=0$ for $i \geqslant 2$. At least, $K_{-i}(Z[G])=0$ for $i \gg 0$.

Before I state the next conjecture, let me single out a class of infinite groups. We say that a closed manifold M^{n} is a $K(\Gamma, 1)$-manifold (an aspherical manifold) if $\pi_{i}\left(M^{n}\right)=0$ for $i>1$ and $\pi_{1} M^{n}=\Gamma$. Note that Γ is necessarily torsion-free.

Conjeoture 2. Let Γ be the fundamental group of a closed $K(\Gamma, 1)$-manifold. Then $W h_{1}(\Gamma)=\tilde{K}_{0}(\Gamma)=K_{-i}(Z[I])=0(i \geqslant 1)$. (See [31] for supporting evidence.)

It is clear that the following conjecture is much stronger than Conjecture 2.

Conjeioture 3. Let Γ be a torsion-free group such that BF has the homotopy type of a finite CW-complex. Then $W h_{1}(\Gamma)=\tilde{K}_{0}(\Gamma)=K_{-i}(Z[\Gamma])=0$ ($i \geqslant 1$).

For the higher K-groups, let us consider the map of [58]:

$$
\begin{equation*}
\lambda_{*}: h_{*}(B G ; \underset{=}{\underline{K}}(Z)) \rightarrow K_{*}(Z[G]), \tag{35}
\end{equation*}
$$

where $h_{*}(B G ; \underline{K}(Z))$ denotes a generalized homology theory with coefficients in the spectrum of the algebraic K-theory of Z.

Conjecture 4. If Γ is a torsion-free group such that $B \Gamma$ is of the homotopy type of a finite CW-complex, then

$$
\lambda_{*} \otimes \mathrm{id}: h_{*}(B \Gamma ; \underline{\underline{K}}(Z)) \otimes Q \rightarrow K_{*}(Z[\pi]) \otimes Q
$$

is an isomorphism.
For $B \Gamma$ having the homotopy type of an aspherical manifold, Conjecture 4 was verified in some special cases [31]. As we pointed out in [35], Conjecture 2 is the algebraic K-theory analogue of Novikov's conjecture on higher signatures. (So are Conjectures 2, 3!) Interested readers should consult [30], [34], [88] for further details about this conjecture.

References

(A suggested list)
[1] Anderson D. R. and Hsiang W.-C., The Functor K_{-i} and Pseudo-Isotopies of Polyhedra, Ann. of Math. 105 (1977), pp. 201-233.
[2] Anderson D. R. and Hsiang W.-C., Extending Combinatorial PL Structures on Stratified Spaces, Invent. Math. 32 (1976), pp. 176-204; II, Trans. AMS 260 (1980), pp. 223-253.
[3] Bardon D., The Structure of Manifolds, Ph.D. Thesis, Cambridge Univ., 1963, Cambridge, England.
[4] Bass H., Algebraio K-Theory, W. A. Benjamin, Now York, 1968.
[5] Bass H., K-Theory and Stable Algebra, Publ. de l'Inst. des Hautes Etudes Sci., 22 (1964).
[6] Bass H., Algebraic K-Theory: A Historical Survey, Proc. Int. Oong. Math., Vancouver, Vol. I (1974), pp. 277-283.
[7] Bass IF., Heller A. and Swan R., Tho Whitehead Group of a Polynomial Extension, Publ. de L'Inst. des Hautes Etudes Sci., 22 (1964).
[8] Bass H. and Murthy M. P., Grothendieck Groups and Picard Groups of Abelian Group Rings, Ann. of Math. 86 (1968), pp. 16-73.
[9] Browder W., Manifolds with $\pi_{1}=Z$, Bull. AMS 72 (1966), pp. 238-244.
[10] Browder W., Structuro on $M \times R$, Proc. Oamb. Phil. Soc. 61 (1965), pp. 337-345.
[11] Browder W., Surgery on Simply Connected Manifolds, Ergebnisse der Math. 65, Springer, 1972.
[12] Browder W. and Levine J., Fibering Manifolds Over a Circle, Oomment. Math. Helv. 40 (1966), pp. 153-160.
[13] Browder W., Levine J. and Livesay R., Finding a Boundary for an Open Manifold, Amer. J. Math. 87 (1965), pp. 1017-1028.
[14] Burghelea D., Automorphisms of Manifolds, Proc. Symp. Pure Math. 32 (1978) pp. 347-372.
[15] Burghelea D., Some Rational Computations of the Waldhausen Algebraic KTheory, Oomment. Math. Helv. 54 (1979), pp. 185-198.
[16] Burghelea D. and Lashof R., Stability of Concordance and the Suspension Homomorphism, Ann. of Math. 105 (1977), pp. 449-472.
[17] Burghelea D., Lashof R., and Rothenberg M., Groups of Automorphisms of Manifolds, Lecture Notes in Math., Vol. 473, Springer-Verlag, Berlin and NY, 1975.
[18] Cappell S. and Shaneson J., Non-Linear Similarity, Ann. of Math. 113 (1981), pp. 315-355.
[19] Carter D., Lower K-Theory of Finite Groups. Oomm. Algebra 8 (1980), pp. 19271937.
[20] Cerf J., La stratification naturelle des espaces de fonctions différentiables réeles et le théoròme de la psoudo-isotopie, Publ. Math. IHES 39 (1970), pp. 5-173.
[21] Chapman T. A., Topological Invariance of Whitehead Torsion, Amer. J. of Math.
[22] Chapman T. A. and Ferry S., Approximating Homotopy Equivalences by Homeomorphisms, Amer. J. Math. 101 (1979), pp. 583-607.
[23] Charney R., Homology Stability for GL_{n} of a Dedekind Domain, Invent. Math. 56 (1980), pp. 1-17.
[24] de Rham G., Sur les nouveaux invariants topologique de M. Reidemeister, Recueil Math. (T.1) 43 (1935), pp. 737-743.
[25] de Rham G., Sur les complexes avec automorphismes, Oomment. Math. Helv. 12 (1939), pp. 191-211.
[26] Dwyer W. G., Twisted Homological Stability for General Linear Groups, Ann. of Math. 111 (1980), pp. 239-251.
[27] Dwyer W. G., Hsiang W.-C. and Staffeldt R. E., Pseudo-Isotopy and Invariant Theory, I, Topology 19 (1980), pp. 367-385.
[28] Farrell F. T., The Obstruction to Fibering a Manifold over a Circle, Actes du Congrès Int. Math., Nice (1970), T2, pp., 69-72.
[29] Farrell F. T. and Hsiang W.-C., The Topological-Euclidean Space Form Problem Invent. Math. 45 (1978), pp. 181-192.
[30] Farrell F. T. and Hsiang W.-C., On Novikov's Conjecture for Non-Positively Curved Manifolds I, Ann. of Math. 113 (1981), pp. 199-209.
[31] Farrell F. T. and Hsiang W.-C., The Whitehead Groups of Poly- (Finite or Cyclic) Groups, J. London Math. Soc. 24 (2) (1981), pp. 308-324.
[32] Farrell F. T. and Hsiang W.-C., A Formula for $K_{1} R_{\alpha}$ [T], Proc. Symp. in Pure Math. 17 (1970), pp. 192-218.
[33] Farrell F. T. and Hsiang W.-C., A Geometric Interpretation of the Künneth Formula for Algebraic K-Theory, Bull. AMS 74 (1968), pp. 548-553.
[34] Farrell F. T. and Hsiang W.-C., Topological Characterization of Flat and almost Flat Riemannian Manifolds $\mathbb{M}^{n}(n \neq 3,4)$ (to appear in Amer. J. Math.).
[35] Farrell F. T. and Hsiang W.-C., On the Rational Homotopy Groups of the Diffeomorphism Groups of Discs, Spheres, and Aspherical Manifolds, Proc. Symp. Pure Math. 32 (1978), pp. 325-338.
[36] Farrell F. T. and Hsiang W.-C., Manifolds with $\pi_{1}=G \times{ }_{a} T$, Amer. J. Math. 95 (1973), pp. 813-848.
[37] Ferry S., Homotoping ε-Maps to Homeomorphisms, Amer. J. Math. 101 (1979), pp. 567-582.
[38] Franz W., Über die Torsion einer Überdeckung, J. Reine Angew. Math. 173 (1935), pp. 245-254.
[39] Goodwillie T., Ph. D. Thesis, Princeton University, 1982.
[40] Hatcher A. E., Higher Simple Homotopy Theory, Ann. of Math. 102 (1975), pp. 101-137.
[41] Hatcher A. E., Concordance Spaces, Higher Simple-Homotopy Theory, and Applications, Proc. Symp. Pure Math. 32, Part I (1978), pp. 3-21.
[42] Hatcher A. E. and Wagoner J., Pseudo-Isotopies of Compact Manifolds, Astérisque 6 (1973).
[43] Hsiang W.-C., A Splitting Theorem and the Künneth Formula in Algebraic K-Theory, Algebraic K-Theory and its Geometric Applications, Lecture Notes in Math. 108 (1969), Springer-Verlag, pp. 72-77.
[44] Hsiang W.-C., On π_{i} Diff M^{n}, Geometric Topology (ed. J. C. Cantrell), Academic Press, 1979, pp. 351-365.
[45] Hsiang W.-C., Manifolds with $\pi_{1}=Z^{k}$, Manifolds - Amsterdam 1970, Lecture Notes in Math. 197 (1971), Springer-Verlag, pp. 36-43.
[46] Hsiang W.-C. and Jahren B., The Rigid Handlebody Theory I, Current Trends in Algebraic Topology, OMS Oonference Proc., 2, Part II (1982), pp. 337-385.
[47] Hsiang W.-C., and Pardon W., When are Topologically Equivalent Orthogonal Transformations Linearly Equivalent? Invent. Math. 68 (1982), pp. 275-316.
[48] Hsiang W.-C. and Sharpe R. W., Parametrized Surgery and Isotopy, Pacific J. Math., 67 (1976), pp. 401-459.
[49] Hsiang W.-C. and Staffeldt R. E., A Model for Computing Rational Algebraic K-Theory of Simply Connected Spaces, Invent. Math. 68 (1982), pp. 227-239.
[50] Hsiang W.-C. and Staffeldt R. E., Rational Algebraio K-theory of a Product of Hilenberg-MacLane Spaces, to appear.
[51] Igusa K., Higher Singularities of Smooth Functions are Unnecessary, preprint.
[52] Karoubi M., Fondements de la K-théorie, Actes du Oongrès Int. Math., Nice (1970), T. 2, pp. 27-32.
[53] Karoubi M., Théorie de Quillen et homologie du groupe orthogonal; Le théorème fondamental de la K-théorie hermitienne, Annz. of Math. 1.12 (1980), pp. 207-282.
[54] Kervaire M., Le théorème de Barden-Mazur-Stallings, Oomment. Math. Helv. 40 (1965), pp. 31-42.
[55] Kuiper N. and Robbin J. W.,Topological Classification of Linear Endomorphisms, Invent. Math. 19 (1973), pp. 83-106.
[56] Kirby R. C. and Siebenmann L. C., Troundational Essays on Topological Manifolds, Smoothings, and Triangulations, Annal's of Math. Studies 88, Princeton University Press, 1977.
[57] Lashof R. and Rothenberg M., G-Smoothing Theory, Proc. Symp. Pure Math. AMS 32, Part I (1978), pp. 211-266.
[58] Loday J.-L., K-théorie algébrique et représentations de groupes, Ann. Sci. Wc. Norm. Sup. 4^{θ} série, 9 (1976), pp. 309-377.
[59] Loday J.-L., Homotopie des espaoes de concordances [d'après F. Waldhausen], Séminaire Bourbaki, Springer Lecture Notes in Math. 710 (1979), pp. 187-205.
[60] Madsen Ib. and Rothenberg M., Classifying G-Spheres, Bull. AMS (New Series) 7 (1982), pp. 223-226.
[61] Mazur B. and Poenaru V., Séminaire de Topologie combinatoire et différentielle, Inst. Hautes Etudes Scient. 1962.
[62] Milnor J. W., Two Complexes Which are Homeomorphic but Combinatorially Distinct, Ann. of Math. 74 (1960), pp. 575-590.
[63] Milnor J. W., Whitehead Torsion, Bull. A.MS 72 (1966), pp. 358-426.
[64] Milnor J. W., Leetures on the h-Cobordism Theorem, Princeton U. Press, 1965.
[65] Novikov S. P., Pontrjagin Classes, the Fundamental Group, and Some Problems of Stablo Algebra. In: Essay on Topology and Related Topics, Mèmoires dédiés à Georges de Rham, Springer, 1970, pp. 147-155. Also Translations Amer. Math. Soc. 69 (1968), pp. 172-179.
[66] Quillen D., Higher Algebraic K-Theory: I, Lecture Notes in Math. 341 (1973), pp. 77-139.
[67] Quillen D., On the Cohomology and K-Theory of the General Linear Group over a Finite Field, Ann. of Math. 96 (1972), pp. 552-586.
[68] Quillen D., Higher Algebraic K-Theory, Proc. Inter. Oong. Math., Vancouver, (1974), Vol. 1, pp. 171-176.
[69] Quinn Frank, Ends of Maps I, Ann. of Math. 110 (1979), pp. 275-331; II, Invent. Math. 68 (1982), pp. 253-424.
[70] Reidemeister K., Homotopieringe und Linsenräume, Hamburger Abhandl. 11 (1935), pp. 102-109.
[71] Schultz R., On the Topological Classification of Linear Representations, Topology 16 (1977), pp. 263-270.
[72] Segal G., Categories and Cohomology Theories, Topology 13 (1974), pp. 293-312.
[73] Siebenmann L., A Total Whitehead Torsion Obstruction, Oomment. Math. Helv. 45 (1970), pp. 1-48.
[74] Siebenmann L., The Obstruction to IFinding a Boundary for an Open Manifold of Dimension Greater than Five, Ph.D. Thesis, Princeton Univ., 1965.
[75] Siebenmann L., Deformation of Homeomorphism on Stratified Sets, Oomment. Math. Helv. 47 (1972), pp. 123-163.
[76] Smale S., On the Structure of Manifolds, Amer. J. Math. 84 (1962), pp. 387-399.
[77] Stallings J., On Infinite Processes Leading to Differentiability in the Complement
of a Point, Differential and Oombinatorial Topology, Princeton Univ. Press, 1965, pp. 245-254.
[78] Steinberger M., On the Equivalence of the Definitions of the Algebraic K-Theory of a Topological Space, Lecture Notes in Math. 763 (1979), Springer-Verlag, pp. 317-331.
[79] Steiner R., Infinite Loop Structures on the Algebraic K-Theory of Spaces, Math. Proc. Oamb. Phil. Soc. 90 (1981), pp. 85-111.
[80] Swan R., K-Theory of Finite Groups and Orders, Lecture Notes in Math. 149, Sprin-ger-Verlag, 1970.
[81] Swan R., Algebraic K-Theory, Actes, Congrès Intern. Math., Nice, 1970, T. I, pp. 191-199.
[82] Wagoner J., Delooping Classifying Spaces in Algebraic K-Theory, Topology 11 (1972), pp. 349-370.
[83] Waldhausen F., Algebraic K-Theory of Generalized Free Products, Ann. of Math. 108 (1978), pp. 135-256.
[84] Waldhausen F., Algebraic K-Theory of Topological Spaces, I, Proc. Symp. Pure Math. 32 (1978), pp. 35-60.
[85] Waldhausen F., Algebraic K-Theory of Spaces, a Manifold Approach, Ourrent Trends in Alg. Topology, OMS Oonf. Proc., 2, Part I (1982), pp. 141-184.
[86] Wall C. T. C., Finiteness Conditions for CW-Complexes, Ann. of Math. 81 (1965), pp. 56-69.
[87] Wall C. T. C., Surgery on Oompact Manifolds, Academic Press, 1970.
[88] Wall C. T. C., The Topological Space-Form Problems, Topology of Manifolds, Markham 1970, pp. 319-331.
[89] Whitehead J. H. C., Simplicial Spaces, Nuclei and m-Spaces, Proc. London Math. Soc. 45 (1939), pp. 243-327.
[90] Whitehead J. H. C., Simple Homotopy Type, Amer. J. Math. 72 (1950), pp. 1-57.

[^0]: ${ }^{1}$ Since we may have different liftings of the cells, we pass from $K_{1}(Z[\pi])$ to $W h_{1}(\pi)$ in order to make the invariant well-defined.

[^1]: ${ }^{2}$ I.e., $f\left(\mathcal{S}^{j_{i}-1} \times 0\right)$ of (8) where 0 is the center of $D^{n-f_{i}+1}$.
 ${ }^{3}$ Note the asymmetry of M_{0}, M_{1} in the definition. If we wish to consider (W, M_{1}), we have to consider the duality of [63, pp. 393-398].

[^2]: ${ }^{4} G$ is either a simplicial group model or a topological group model of the loop space ΩX of X.
 ${ }^{5}$ Since $\Omega^{\infty} S^{\infty}$ is not a topological ring, R is only a group ring in an appropriate sense. This causes most of the technical difficulties.

[^3]: ${ }^{6}$ See [20], [42] for the precise definitions.

[^4]: 7 For technical reasons, we don't really cancel the trivial pairs geometrically. See [46] for details.

