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Some Recent Advances in Analytical Number Theory 

The realm of the analytical theory of numbers is nowadays too vast for 
one to attempt a complete survey within an article of this length. We 
therefore mainly restrict ourselves to those aspects of the additive theory 
that are associated with the author's recent work. 

The circle method of Hardy and Littlewood plays a dominant rôle 
in the analytic part of the additive theory of numbers. Familiar though 
this method is to experts in the field, it is appropriate in an expository 
article that we should give a brief description of the underlying procedure 
in order that we should be aware of its limitations and of the relevance 
to it of recent mathematical developments. 

Avoiding complete generality for the sake of brevity and clarity, 
we can indicate the nature of the method by considering its formal appli­
cation to the problem of determining whether an indeterminate equation 

/ ( I i , J a , . . . , U = 0 (1) 

is soluble, where f(œ19 ..., xr) is a polynomial with rational integral coeffi­
cients. It being inherent in the technique that normally it should only be 
applied when the answer to the proposed question is thought to be in the 
affirmative, the method usually not only settles the problem of existence 
but supplies an estimate for the number v(x) of solutions of (1) that lie 
in some large appropriate region Bx, where x is a parameter tending to 
infinity. In many, but by no means all, of the more important problems 
the natural form of this region is inherent in the other data and is there­
fore not the subject of a special definition; this, for example, is the situation 
in Waring's problem when we consider the representation of large numbers 
N as the sum of s Zs-th non-negative powers. 

[86] 
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The genesis of the method, as modified by Vinogradov, is the obser­
vation that 

i 
VW ^ t S e2nif{li—>lr)edd. 

0 {lv...Jr)eRx 

To treat the integral the range of integration is split up into intervals 
(or arcs as they are usually called, since the procedure is easily interpreted 
in terms of the circumference of the unit circle) that are in some sense 
centred by rational numbers (Earey fractions) of the form Tifà, where 

(Ä, fc)=l, 0<f t<fc , Ä < X , 

and where X is a suitable function of x. When 0 is at the "centre" hjh 
of an arc and Jc is small, the integrand can be estimated with great accuracy 
because 

62mf(ll,....lr)hlk 

is a periodic function ip l1,...,lr with small periods; consequently, by 
partial summation or some equivalent process, the integrand can also 
be satisfactorily calculated when 0 is close to Ä/&. Thus part of the integral 
can be adequately treated, while the form of the calculations suggests 
that the residual part is negligible in circumstances where we may reason­
ably expect there to be an asymptotic formula for v (x). 

Ta validate the asymptotic formula thus suggested it is requisite to 
overcome the difficulties encountered when Jc is large or when 0 is far 
from the centre of the arc it lies in (these two possibilities are partly 
interchangeable because there is usually somelatitude in the choice of X). 
There are two main lines of development here. The first is for us to refine 
the calculations already made so that they are applicable to the entire 
range, endeavouring in some places to gain improvements by shewing 
there is some cancellation between contributions from arcs corresponding 
to a common denominator Jc. However, matters of such nicety intervene 
that it is seldom that the programme succeeds. This approach was first 
used by Kloosterman in his investigation on quaternary quadratic forms, 
whence flows the present custom of designating such a procedure by the 
term Kloosterman refinement. 

The second and more common technique is applicable to problems 
that are additive or that can be made additive by a suitable transform-
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ation. The Waring's problem about the number v(N) of solutions of 

typifying the situation to be covered by this routine, the integrand is 
now 

f(Q)c~2nim, 

where 

Over the set Jt of minor arcs, which the residual range of integration is 
termed, the integrand is bounded by 

(bd\f(0)\)a f\f(0)r°dd, 

where 0 < g < s. In favourable circumstances, which alas do not too 
often occur, the integral above can be estimated because it has a natural 
arithmetical meaning. The upper bound, on the other hand, has often 
been satisfactorily estimated through the work of Weyl, Weil, and Vino­
gradov. Impressive developments in Waring's and other problems have 
been achieved by these means. There is, however, the substantial short­
coming that the method is inapplicable whenever the order of magnitude 
of v(N) is not larger than N. Consequently, it cannot deal with important 
unsolved problems such as the Goldbach problem or Waring's problem 
for four cubes. Similar remarks relate to the more general earlier context 
when v(x) is small in terms of x, where as before Hx is chosen in a natural 
way. Finally, many variations in this line of attack have been introduced 
by various writers, and we refer the interested reader to the several treatises 
on the subject for further details. 

Enough has been said already to see the potential relevance of expo» 
nential sums of the type 

y e2nif(lll...llr)hflc ^y 

l},...tlr^U 

to the circle method. The study of such sums can be easily reduced ta 
that of complete sums 

V e2nif{li W*/*, (4) 
Q<lltl2>..;lr<?c 
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which themselves are a specialization of sums of the form 

y e2„if(ilt...,ir)hik9 (5) 

0<ZjM..,Jr<fc 
g(lv...tlr)=0 

where the significance of the notation / may change as we go from (3) 
to (5). Although the importance of (4) has been long understood, it has 
been perhaps less appreciated that there are a multitude of ways in which 
(5) might conceivably be of assistance. 

Best possible estimates for (3) in the case r = 1 were made available 
by Weil's work and allowed considerable progress to be made in additive 
number theory (both by the circle method and by other means). It was 
therefore to be expected that Deligne's fundamental and far reaching 
proof of the generalized Weil conjectures should lead to further advances 
as soon as it could be shewn how his work was applicable to the sums (5). 
Estimates for special cases having been obtained by various writers, best 
possible estimates in the general case were in fact first obtained by the 
speaker in 1979 by a very simple method ([7], [10], and in a paper shortly 
to appear), while shortly afterwards Katz obtained similar estimates 
by a more recondite method, which also shed much light on the structure 
of the Z-functions over algebraic varieties [14]. 

Eecently, a striking advance has been made by Heath-Brown using 
a Kloosterman refinement and the estimates for multiple exponential 
sums. As the culmination of a series of important papers, Davenport 
shewed that an w-ary cubic form / with integral coefficients had a non-
trivial integral zero provided that n^l6 ([1], [2], [3]). The result js 
false for n = 9 even when / is non-singular but it had been conjectured 
that it is always true for n = 10. Heath-Brown [4] has proved its truth 
for n = 10 when the form is non-singular, an achievement that settles 
the situation for the most important category of cubic forms. 

Notwithstanding the potential relevance of the Dehgne estimates 
to the circle method, no other significant advance has yet been made 
through this order of ideas. This is due in part to certain deficiencies 
in the circle method to which we shall later allude and also tq the fact 
that in many of the more important outstanding problems the expected 
value of v(x) is too small for the method to be applied in any but the most 
abstruse manner. 

Yet there is a further possible avenue of advance through the drcle 
method that seems not yet to have been exploited. This is to go beyond 
the Kloosterman refinement and to consider possible cancellations be-
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tween contributions from integrals corresponding to different values of h 
Serious arithmetical and analytic difficulties, not yet normally capable 
of resolution, lie athwart this path. But the author has been successful 
in directing this idea to the theory of indefinite and definite ternary 
quadratic forms, in which the cardinality of the representations of num­
bers is too small for a Kloosterman refinement to be adequate. Inter­
esting though this development may be from a methodological angle, 
it enables no real progress to be made since the theory of ternary forms 
has already been successfully treated by other more appropriate methods. 

We turn now to some recent progress in additive number theory that 
has been made by alternative methods. First, we mention the mixed prob­
lem of representing numbers as the sum of squares and non-negative 
cubes, the history of which goes back to Hardy and Littlewood. Although 
it is conjectured that all large numbers are both the sum of one square 
and two cubes and of two squares and one cube, the best that was known 
through the circle method about two squares in this context was that 
they and four cubes sufficed to represent all large numbers. £Tot so long 
ago, however, Linnik [15] proved by his ergodic method that, if v(n) 
is the number of representations of n as the sum of two squares and three 
non-negative cubes, then 

v(n)>n2l*~e 

for n>n0, thus shewing that all large numbers are expressible in the 
proposed manner. But this work neither supplied an asymptotic formula 
for v(n) nor even shewed that v(n) was of the expected order of magnitude. 
We therefore propose to sketch briefly how we proved the asymptotic 
formula 

where (5(n) is the singular series, thus demonstrating that the theory 
for two squares and three cubes conforms to the traditional pattern of 
results in Waring's problem [8]. Note that this is only the third genuine 
example of an asymptotic formula in Waring's problem where the car­
dinality of representations of n does not essentially exceed n in order of 
magnitude (the other two are the explicit formulae for three squares and 
for four squares), a fact that is related to our avoidance of the circle method. 
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The source of the method is that, if r(/t) denotes the number of ways 
of expressing [i as the sum of two squares, then 

r(rì=é%X(l) (P*0) (6) 

and 

V(n) = JT r(n„x3-Y3-Z3). (7) 
X3+F3-hZ3<n 

Substituting (6) in (7), we find that v(n) is expressible as a combination 
of sums such as 

X3+Y3+Z3=n,modk 

where Jc < n112. The latter sums in turn can be evaluated by complicated 
transformations in terms of the exponential sums 

V* 62ni(aX+bY+cZ)jk 

X3-}- F3+Z3=rc, modfc 

to which our estimates through Deligne's theory are applicable. The for­
mulae thus obtained almost, but not quite, suffice, a very complicated 
argument involving a deep theory of elliptic curves over finite fields 
being needed to complete the proof. 

A somewhat surprising lacuna in the theory of these mixed problems 
has been the absence of known asymptotic formulae for the representations 
of numbers as the sum of three squares and a non-negative ifc-th power 
when Jc is greater than 2.J Notwithstanding the existence of an exact 
formula for the number of ways of expressing a number as the sum of 
three squares, this question turns out to be unexpectedly difficult for 
the larger values of Jc, and it is only now that the asymptotic formulae 
have been derived by the author by exploiting relatively recent devel­
opments in the theory of the Dirichlet's ^-functions [11]. 

We next consider the classical Diophantine equation 

Xh + Yh =Zh+Wh (h>2), (8) 

which was studied, in particular, by Fermât and Euler. Although these 
scholars obtained rational parametric solutions when A is 3 or 4, it has 
been conjectured that the equation has no non-trivial solutions whenever 
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Ji > 5. This speculation being obviously extraordinarily difficult to treat 
in view of its connection with Format's Last Theorem, it is of interest 
to ponder some associated questions involving the expression of a number 
as the sum of two A-th powers whose resolution would provide some guid­
ance about the matter. Let rh(n) be the number of ways of expressing n 
as the sum of two A-th powers (positive or negative, order being rel­
evant), let Nh(x) be the number of positive integers n not exceeding x for 
which rh(n) > 0, and let vh(x) be the number of those integers for which 
rh(n) > 2, noting that vh(x) = 0 for h > 5 if the conjecture is true, Then 
we have been able to shew that 

Nh(x) ~A(h)x2ih (9) 

and 

vh(x) =0(xWh~V+B), 

thus demonstrating that it is certainly exceptional for a number express­
ible in the given form to be thus expressible in more than essentially 
one way. This goes some way in the required direction and is actually 
true for all Ji > 3, although so far we have only supplied the full details 
for the case where A is odd ([6], [7], in which are supplied references to 
relevant earlier writings by Erdös, Mahler, Greaves, and the author). 
This work also furnishes an analytic theory of the representation of num­
bers as the sum of two A-th powers for A > 2, a theory that is seen to con­
trast markedly with the classical theory for the case A = 2. 

Considerations relating to the density of representations, to which we 
have previously alluded, preclude the application of the circle method 
to the additive equation (8), which indeed is even beyond the theoretical 
powers of that method whenever A > 3. Yet we cannot tarry long enough 
to describe our method in detail on account of its complication. It must 
therefore suffice to indicate briefly the ideas involved by referring to the 
case A = 3, in which (8) takes the form 

r(r2 + 3s2) = g(e2 + 3o-2) (10) 

after a simple transformation. Since only solutions with X+Y ^Z+W 
serve to give a bound for v3(x), we are led to study (10) subject to r < Q 
and other appropriate conditions. Now (10) is contained in the equation 

r(r* + 3s*) = gl, (11) 
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which, being of the form 

r(r2 + 3s2) s Omodg, 

can be studied with great accuracy by the theory of exponential sums 
in a manner akin to that used in the two squares and three cubes problem. 
The cardinality of solutions of (11) is too large, however, and it is necess­
ary to take into account the special nature of the number I by means 
of a sieve method that exploits the idea that, for any prime p, a square 
or2 is not a quadratic non-residue, moàp. The calculations involved in 
this refinement are somewhat complicated and involve our estimates for 
multiple exponential sums of type (5) for r = 3. 

There is an application of these ideas to the study of the number Q(%)Oî 
representations of n as the sum of four non-negative cubes. It being at 
present impossible to find an asymptotic formula or even a positive lower 
bound for q(n), it is not without interest to elicit as keen an upper bound 
as possible for g(n). Here our method gives [5] 

Q(n) =0(nllfl8+e), 

which represents an improvement on the trivial bound 0(n2l3+e). 
It had been guessed by Davenport and others that there is a positive 

density of numbers expressible as the sum of two cubes of rational numbers, 
and this was proved by Stephens [17] on the assumption that the Birch-
Swinnerton-Dyer conjectures for certain elliptic curves are true. At the 
level of unconditional results, if M(x) is the number of positive integers 
up to x that are the sum of two rational cubes, then our result (9) gives 

M(x)^Wz(x)>Axx
2lz 

with an explicit value for Ax. But our method can be adapted to take 
meaningful account of the changed circumstances with the consequence 
that we can shew that [12] 

M(x)>A2x
2/3logx. 

The calculations involved also shed other light on the conjecture and 
suggest that it can only be true if the elliptic equation 

X3 + Y3 =nZ3 (12) 

frequently has a smallest solution in which Z is almost exponentially large 
in terms of n. 
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Another interesting question in this field is whether a polynomial 
f(x) equalling a sum of two integral A-th powers for every integer x is 
identically of the form 

{/i(»)}*+{/.(«)}*. (13) 

Our method cannot so far resolve this matter but can at least shew that 
such polynomials f(x) have certain properties that are consistent with 
their having the proposed form (13). We should also observe that Schinzel 
[16] has actually shewn that the answer is in the affirmative provided 
that certain far-reaching generalizations of the prime-twins conjecture 
are true. 

Our thesis has tended to shew up certain shortcomings in the power­
ful circle method in spite of the suggestions we have made concerning 
its improvement. Apart from theoretical limitations, these deficiencies 
fall into a number of categories. For example, the method is in some 
respects not very flexible in adapting itself to the peculiar circumstances 
of individual problems, a penalty no doubt of the wide ranging scope of 
the machinery. Moreover, for the deeper problems the analysis becomes 
very complicated, a situation that is brought about in part by the need 
to consider exponential sums at arguments other than the arithmetically 
natural values A/7c. In view of these facts and our present inability to make 
further substantial progress with Waring's problem through the circle 
method, it seems worthwhile to devise an alternative method of some 
generality that might incorporate some of the features of the special 
methods already mentioned. We therefore go on to describe a procedure 
developed by the author [9] that is applicable in principle to Waring's 
problem for any exponent and that has already been successful in isolating 
some new results. In some respects it has a potential for further refine­
ment that is denied the circle method, although we have not succeeded 
in using it to resolve any of the deeper unsettled questions. Furthermore, 
the method has nowhere the same universality as that of the circle method. 

We hint at the method by considering its relevance to problems in­
volving the equation 

P+?(*! , . " ! W = »I (14) 

in which there is always a square present and in which p(Zly •.., Zr) is a sum 
of powers. The underlying idea, implemented in practice with rather 
more refinement than our remarks here might suggest, is to split up 
9 (h} • • • > \) ii1*0 two sums of powers <px(lt,..., l8), <p2 (l8+1,..., lr) in a suitable 
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way and to prove that the expected asymptotic expression L(m) for the 
number N(m) of solutions of 

ï2+ç>i(ïi, •••?!*) —ro­
is in fact always valid save possibly for a small exceptional set of m. 
If this can be achieved, then one can estimate the number of solutions 
of (14) by considering 

]?K{n-<p2(ls+l,...,lr)} 

provided that r — s is not too small. 
The connection between JSf(m) and L(m) is treated by attempting 

to shew that the variance 

£{N(m)--L(m)}2 

Wh^X 

is small, to which end we require a good asymptotic formula for • 

Now the latter sum is obyiously equal to the number of solutions in certain 
integers of the equation 

I — x = <Pi(A19 -.-, A>s)—<Pi(hi •••? h) = ^(^IJ •••? Ki hi •••? ï«)j 

say, and hence of 

QCT = ip(Kx, ...,Ks,lx, . . . , I S ) , 

where in particular Q, a are of the same parity. For given Q, this gives 
rise to the condition 

V(Ai,..., AA,ïi, ...,ls) =0modç , 

which can be treated by means of the exponential sums 

Y1
 e2niy>(lv...,*3tllt...,ls)h/k ß^j 

by a variation of earher methods described. The analysis is then completed 
by using, inter alia, many of the properties of these sums that were pre­
viously developed in connection with the circle method, it being notable 
that we now need only work with trigonometrical sums corresponding 
to rational arguments. 
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We notice that our procedure consists partly of reducing our problem 
to another one in which one of the unknowns occurs linearly. If the lowest 
exponent occurring in the given problem is greater than two, then several 
transformations are needed to secure a linear problem and the details 
can become very formidable. However, a simple proof of the asymptotic 
formula in the nine cubes problem can be derived in this manner. 

When examined systematically, our method is seen to have many 
links with the circle method in spite of the different genesis, the occur­
rence of similar exponential sums being a ease in point. But the expo­
nential sums in our method are shorn of arithmetically irrelevant analytic 
complications, thus lightening the potential task of effecting Kloosterman 
type refinements when these might be relevant or possible. 

Our mention of the sizes of the solutions of the Diophantine equation 
(12) gives us an opening to introduce our final topic. This is the Pellian 
equation 

T2~I>U2 = 1 , 

whose fundamental solution rjD = T+VJDU is known to satisfy 

2]/l)<VD<6AV1JioeD 

for positive (uon-square) determinants D. Since these inequalities have 
more or less represented the full extent of our knowledge, the author [13] 
has evolved a lattice point method that determines the distribution of 
the determinants D for which rjD is limited by small functions of D. Al­
though the results obtained can only be rigorously substantiated for the 
smaller limits, the author in fact believes they are true for much larger 
limits. If we were right in this opinion, and in our reasons for holding 
it, then some interesting facts concerning the class number A(D) of 
properly primitive indefinite binary quadratic forms 

ax* + 2bxy-t-cy2 

of determinant D = bz — ao would emerge. For example, we could obtain 
the asymptotic formula 

£ Ji(JD) r^(25ll2n2)xlog2x, 
D^x 

which would settle a matter that has been open since it was first raised 
by Gauss in the Disquisitiones Arithmeticae (V, Art. 304). As it is, we 
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can obtain unconditional lower bounds for the above sum that advance 
our knowledge, i Moreover, we are led to conjecture that 

v i x 

psi,mod4 

and that, if r(ß} x) is the number of determinants p == 1 mod4 for which 
h(p) >ß, then 

tol£i!!L * do) 
aj-̂ oo 0/loga? 3ß 

as |8-»oo. Impressive corroboration of these ideas comes from the present 
work of Henri Cohen, who simultaneously has been led by entirely differ­
ent considerations of a more algebraic nature to enunciate conjectures 
about the behaviour of h(p). His work, which is strongly supported by 
numerical evidence, agrees with ours in all areas where the subjects of 
investigation coincide (in particular, equation (15)), although it should 
be stressed that he and the author by no means study the same questions 
overall. Conditional work on similar matters has also been described in 
a recent paper by Takhtajan and Vinogradov [18]. As with the earlier 
matters discussed, this topic shews there is much life left in many of the 
important questions in number theory that were first raised centuries ago. 
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