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1. Introduction 

The purpose of this article is to giye an overview of some recent devel­
opments in optimal stochastic control theory. The field has expanded 
a great deal during the last 20 years. It is not possible in this overview 
to go deeply into any topic, and a number of interesting topics have been 
omitted entirely. The list of references includes several books, conference 
proceedings and survey articles. 

The development of stochastic control theory has depended on par­
allel advances in the theory of stochastic processes and on certain topics 
iti partial differential equations. On the probabilistic side one can mention 
decomposition and representation theorems for semimartingales, formulas 
for absolutely continuous change of j)robability measure (e.g. the Girsa-
nov formula), and the study of Ito-sense stochastic differential equations 
with discontinuous coefficients. It seems fair to say that these develop­
ments in stochastic processes were in turn to an extent influenced by their 
applications in stochastic control. For controlled Markov diffusion pro­
cesses, there is a direct connection with certain nonlinear partial differ­
ential equations via the dynamic programming equation. These equa­
tions are of second order, elliptic or parabolic, and possibly degenerate. 
Stochastic control gives a way to represent their solutions probabilistically. 
There is an unforeseen connection with differential geometry via the 
Monge-Ampère equation. 

Broadly speaking, stochastic control theory deals with models of 
systems whose evolution is affected both by certain random influences 
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and also by certain inputs chosen by a "controller *'. We are concerned 
here only with state-space formulations of control problems in continuous 
time. Moreover, we consider only markovian control problems in which 
the state xt of the process being controlled is Markov provided the control­
ler follows a Markov control policy. We shall not discuss at all the exten­
sive engineering literature on input-output formulations particularly 
for linear system models, see Aström [1]. 

We shall mainly discuss the case of continuously acting control, in 
which at each time t a control ut is applied to the system. However, in 
§ 8 we briefly mention impulsive control problems, in which control is 
applied only at discrete time instants. In optimal stochastic control 
theory the goal is to minimize (or maximize) some criterion depending 
on the states xt and controls ut during some finite or infinite time interval. 
In § 2 we formulate a class of optimal control problems for Markov pro­
cesses, with criterion (2.2) to be minimized. The distinction between prob­
lems in which xt is known to the controller, and problems with partial 
observations is made there. When xt is known, the dynamic programming 
method can be used. In principle, this method leads directly to an optimal 
Markov control policy, although it rarely gives the optimal policy explicitly. 
In § 3, both analytical and probabilistic approaches are indicated. 
Associated with dynamic programming is the Msio nonlinear semigroup 
(§4). In §5 we discuss methods of approximate solution and special 
problems. In § 6 a logarithmic transformation is applied to positive solu­
tions of the backward equation of a Markov process. There results a con­
trolled Markov process, leading to connections between stochastic control 
and such topics as stochastic mechanics, large deviations and nonlinear 
filtering. The case of controlled, partially observed processes is mentioned 
in § 7, along with adaptive control of Markov processes. Finally in § 9 
we indicate a few of the various difficulties encountered in seeking to 
implement in engineering applications the mathematically sophisticated 
results of the theory, and mention some newer areas of application. 

2. Controlled Markov processes 

We consider optimal stochastic control problems of the following kind. 
We are given metric spaces 27, TJ called the state space and control space, 
respectively. For each fixed u e TJ there is a linear operator Lu which 
generates a Markov, Feller process with state space 27. The domain of 
Lw contains, for each u e TJ, a set B dense in the space (7(27) of bounded 
uniformly continuous functions on 27. The state and control processes 
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xt,ut are defined on some probability space (Q,^,P). The 27-valued 
process xt is adapted to some increasing family of c-algebras 3F% c #", 
and the trajectories x are right continuous. The ZJ-valued process ut is 
predictable with respect to an increasing family of cr-algebras 9% c &%m 

The c-algebra 9% describes in a measure theoretic way the information 
available to the controller at time t. The processes (xt, ut) are related by 
the requirement that 

t 

Mg(t) = g(xi)-g(xQ)^jL^g(xs)ds ' (2.1) 
0 

is a (^UP) martingale for every g eB. We consider a fixed, finite time 
interval 0 < t < T, and the objective to minimize a criterion of the form 
of an expectation 

T 

J -=JB{f h(xt,ut)dt+G(xT)}. (2.2) 
o 

Example 1. Controlled finite-state Markov chain, with 27 = {1, 2 , . . . , N}. 
In this case Lu is identified with the infinitesimal matrix (gg) of the chain. 
When the control ut is applied, the jumping rate of xt from state i to j 
is # i , 

Example 2. Controlled diffusion process with 27 = Rn, 

t t 

®i = « O + / / K J % ) * + f(f(®8,Us)dw6i (2-3) 
0 0 

with wt a brownian motion (of some dimension d) independent of the 
initial state x0. In this case 

with a - aaf and B = {g: g, gx., gœ.Xj e C(Rn), i,j = 1, ..., n}. The 
diffusion is called nondegenerate if the eigenvalues of a(x, u) are bounded 
below by c > 0. 

Further assumptions, which vary from author to author in the litera­
ture, need to be made. To avoid undue complication, in the discussion 
to follow we take a compact control space TJ, and h (x, u), G(x) bounded, 
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uniformly continuous. In (2.3), f(x, u), a(x, u) are bounded and as smooth 
as necessary. The er-algebras ^t, @t are right continuous and completed. 

If xt is ^-measurable, then the controller can observe the state xt. 
In this case, one may as well take 9% = ^t and known initial state x0. 
This is the situation in Sections 3-6 to follow. If (2.1) holds, we call 

a = (Û,^,P,{^t},xt,u) 

an admissible system for the control problem with completely observed 
states. 

A MarJcov control policy is a Borei measurable function from [0,57] x27 
into TJ. An admissible system a is obtained via a Markov control policy 
u if 

ut =u(t,Xt_). (2.5) 

Given u and x0 G 27, one would like to know whether a corresponding 
admissible system exists, with xt a Markov process. Under sufficiently 
strong restrictions this is well known. For instance, in case of controlled 
diffusions a Lipschitz condition on u(t, x) would imply the classical Ito 
conditions. For nondegenerate controlled diffusions, existence follows 
from Krylov [8, p. 87] for any bounded u. The Markov property of xt 

can be obtained under stronger hypotheses. For instance, for nondegen­
erate diffusions it holds if in (2.3) a = a(x). A martingale method for obtain­
ing the Markov property is to show that the probability distribution 
P | o of the state trajectory xm is unique and depends continuously on the 
initial state x0 [59], In general xt is only a weak-sense solution to (2.3), 
since neither the probability space nor the brownian motion wt are given 
in advance. However, in the nondegenerate case with a = a(x) a result 
of Veretennikov [61] gives a strong solution. 

3. Dynamic programming 

The dynamic programming approach to the control problem with com­
pletely observed states xt can be described in a purely formal way, as fol­
lows. For initial state x0e2 and admissible system a, write J = J(T, x0, a) 
in (2.2). Let 

W(T, xQ) = inf J(T, x0, a). (3.1) 
a 
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Formal reasoning indicates that W(T, x) should satisfy the dynamic 
programming equation 

dW 
AW, T>0, (3.2) ÔT 

with initial data W(0,x) =Q(x), where 

Ag(x) = mm[Lug(x) + Jc(x9 u)]. (3.3) 
ueU 

Formally, an optimal Markov policy u* is found by requiring *w*(t,x) 
to minimize LUW(T —t, x) + 1c(x, u) among all u e TJ. Instead of the finite 
time control problem, control until xt exits a given open set & c 27 can be 
considered. In that case the dynamic programming equation becomes the 
autonomous form of (3.2) in 6, with W(x) = O(x) for x e 80. There are 
also autonomous dynamic programming equations associated with the 
infinite time control problem, with discounted cost or average cost per 
unit time criteria to be minimized. 

In the rigorous mathematical treatment of dynamic programming 
there is one easy result, the so-called Verification Theorem [7, p. 159]. 
Eoughly speaking, it states that if W(T, x) satisfying (3.2) with the initial 
data and the associated Markov policy u* are both "sufficiently regular", 
then u* is indeed optimal and W(T, x) is the minimum performance 
in (3.1). The Verification Theorem is used to obtain explicit solutions, 
in those cases where such a solution is known. Much more difficult are 
the questions of existence of sufficiently regular W and u*, and there is 
a large literature dealing with various aspects of them. One approach 
is analytical with the stochastic interpretation made afterward. In this 
approach, existence of solutions to the dynamic programming equation 
and their regularity properties are studied, uping non-probabilistic methods. 
It is then proved that optimal (or at least e-optimal) Markov control 
policies exist. A second approach is probabilistic. In this approach, one 
starts with the minimum cost function W in (3.1) and develops stochastic 
counterparts to the dynamic programming conditions for a minimum. 
A third approach is to consider an associated nonlinear semigroup (§4). 
While this approach leads to fewer technical difficulties than either of 
the other two, it also leads to weaker results. 

For controlled diffusions the analytical approach is remarkably well 
developed (see Krylov [8], Lions [45]). In the nondegenerate case the dy­
namic programming equation is a second order nonlinear partial differen­
tial equation of parabolic type also called a Hamilton-Jacobi-Bellman 
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equation. In various other formulations, with xt controlled for all time 
t > 0 or until exit from an open set 6, the Hamilton-Jacobi-Bellman 
equation is elliptic rather than parabolic. Under reasonable assumptions 
the problem, the solution 8 has generalized second derivatives which are 
locally bounded. In the elliptic case a deeper regularity result of Evans 
([26], [60]) gives a classical solution. In the degenerate case W is less regular 
with locally bounded generalized first derivatives WXi. The dynamic 
programming equation (3.2), suitably interpreted in terms of Schwartz 
distributions, still holds ([8], [45]). For the case of controlled jump Markov 
processes, results on existence, uniqueness and- regularity of solutions 
to (3.2) were obtained by Pragarauskas [52]. 

A large class of nonlinear elliptic or parabolic equations, satisfying 
appropriate convexity conditions, can be represented as Hamilton-Jacobi-
Bellman equations. As Gaveau [35] pointed out, the Monge-Ampère 
equation has such a representation. 

In the probabilistic approach, the starting point is to rewrite the 
dynamic programming principle in the following martingale form. Given 
an admissible system a let 

t 

mt = flc(xs,u8)ds+W(T — t,Xt). 
0 

Then mt is a (#^ ,P) submartingale, and a is optimal if and only if mt is 
a ( J ^ , P ) martingale. With the aid of t h e Doob-Meyer decomposition-
for submartingales and some martingale representation theorems, condi­
tions for optimality are obtained (see Bismut [21], Davis [16], Elliott 
[25], El Karoui [5]). These conditions are probabilistic counterparts of 
those expressed analytically by the dynamic programming equation (3.2). 
With the probabilistic approach difficult questions of regularity of solu­
tions to (3.2) are avoided. The probabilistic techniques give results about 
existence of optimal Markov policies ([21], [5, p. 218]). These methods also 
give conditions for a minimum for optimal control under partial obser­
vations. 

A different kind of Mafkovian control problem for diffusions, in which 
the control acts only on the boundary of a region 0 a Rn was considered 
by Vermes [62]. 

4. The Nisio nonlinear semigroup 

The dynamic programming principle can be restated in another form, 
in terms of a semigroup of nonlinear operators. In purely formal way, 
this is done as follows. In (2.2) we fix h but consider various Q. We rewrite 
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the infimum in (3.1) as W(T, x) = 8TG(x). The dynamic programming 
principle is formally equivalent to the semigroup property 

of the family {8T} of nonlinear operators. In addition, for "sufficiently 
regular" G, one should have 

-jfiSTQ\M -AG. (4.2) 

This formal procedure was put on a rigorous basis by ÏTisio [10], who 
obtained {8T} as a semigroup on the space 0(27) and showed under some 
mild additional conditions that (4.2) holds for GeB (notation of §2). 
^Equations (4.1), (4.2) would imply the dynamic programming equation 
i(3.2) if we knew that W(T, •)= 8TG is sufficiently regular (in particular, 
if 8T maps B into B). However, W does not generally have the desired 
Tegularity. In such instances (4.2) is a kind of weaker substitute for (3.2). 

ïfisio's treatment is analytical. She obtains 8T as the lower envelope 
of the family of linear semigroups /S^, where for constant control u e TJ 
"the generator of 8% coincides on B with the operator Lu+Jc(-,u). A sto­
chastic treatment of theNisio semigroup is given in Bensoussan and Lions 
,[2], and a uniqueness result in case of nondegenerate diffusions in Msio 
£51]. El Karoui, Lepeltier, and Marchai [24] used another procedure, 
and obtained a nonlinear semigroup on a larger space of bounded functions 
<? which are measurable in a suitable sense. 

5. Explicit and approximate solutions 

In a few instances the dynamic programming equation (3.2) can be solved 
explicitly. Examples are the well known stochastic linear regulator and 
Merlon's optimal portfolio selection problem [7, pp. 160, 165]. For other 
jspeoial problems the solution can be reduced to a free boundary problem. 
The boundaries to be determined separate regions where some control 
constraint holds or not. See for example Karatzas and Benes [40]. 

When a solution cannot be found by sx3ecial methods, one can seek 
an approximate solution to (3.2). One class of approximate methods 
involve discretizations of (3.2). Among such methods the algorithm of 
Kushner [9] has a natural stochastic control interpretation. The differ­
ence equations associated with the algorithm correspond to the dynamic 
programming equation for an approximating controlled Markov chain. 
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For the special case of controlled one-dimensional diffusions, Borkar 
and Varaiya [22] used a procedure in which piece-wise constant appro­
ximating Markov control policies are allowed. 

Other results give approximate solutions to (3.2) when the state pro­
cess xt is a nearly-deterministic controlled diffusion. In (2.3) let a = e1,2a. 
The solution is sought in the form of an asymptotic series in e. In [29] 
this is done by expanding the solution We(T, x) in an asymptotic series. 
The expansion is valid in regions where the solution W°(T,x) of the 
corresponding Hamilton-Jacobi equation is smooth. In [20] Bensoussan 
obtains an asymptotic expansion, using a stochastic maximum principle 
instead of (3.2). 

6. Â logarithmic transformation 

Consider a linear operator of the form L + V(x), where L is the generator 
of a Markov process £t with state space 27. The initial value problem 

^L=L<p+V(x)<p , (6.1) 

with data ç?(0, œ) = 0(x) has a probabilistic solution by a well known 
formula of Feynman-Kac type. For positive solutions of (6.1) another 
probabilistic representation for <p(T,x) can often be found in the follow­
ing way. The logarithmic transformation I = —log^ changes (6.1) into 
the nonlinear equation 

^ =H(I)-V(x), (6.2) 

S (I) = -Jl,^). ™ (6.3) 

If one can find a control problem of the kind in § 2 such that 

S(I) = mm[LuI+lc(x, <*)], (6.4) 

then (6.2) is the dynamic programming equation (3.2). The stochastic 
control interpretation of I(T,x) is as the minimum of the criterion J 
in (2.2). Thus, in (3.1) we have W = I. For a nondegenerate diffusion 
obeying the stochastic differential equation 

dSt=b(St)dt+a(St)dwt, (6.5) 
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a Markov control policy u(t, x) changes the generator L to L-, correspond­
ing to change of drift from b(x) to u(t, x) in (6.5). In (2.2) one takes 

Jc(x, u) = \{b(x) — u)fa"1 (x) (b(x) — u), 

with a = aaf. An appropriate control problem for the case of ft a jump 
Markov process is described in [31], and for a general class of Markov ft 
in Sheu's thesis [58]. The change of generator from L to L- corresponds 
to a change of probability measure. It was pointed out by M. Day that 
this change of measure results by conditioning with respect to 0(xT) 
(see [31, (4.5)]). 

In case L = \A, corresponding to ft a brownian motion (6.1) is the 
heat equation with a potential term. The stochastic control interpretation 
of 8 = — log<p is as least average action. Upon rescaling, taking L = \ %A 
and replacing V by JrlV, the usual least action is obtained as a "classical 
mechanical limit" as A->0 [28]. The heat equation with potential is the 
"imaginary time" analogue of the Schrödinger equation of quantum 
mechanics. There is an intriguing connection between stochastic control 
and the Schrödinger equation, whose implications are not as yet well 
understood [36]. This work is in the framework of Nelson's stochastic 
mechanics. An apparently different theory of "stochastic mechanics" 
was developed by Bismut [4]. 

Holland [39] gave a stochastic control interpretation of the dominant 
eigenvalue of the Schrödinger equation as minimum mean total energy 
of a particle in equilibrium. The approach was again based on a logarithmic 
transformation and subsequently led to Sheu's treatment [58] of the 
Donsker-Varadhan formula for the dominant eigenvalue of the operator 
L + V appearing in (6.1). 

The Ventsel-Freidlin theory of large deviations deals with asymptotic 
probabilities of rare events associated with nearly deterministic Markov 
processes. The logarithmic transform gives another approach to results 
of this kind. As an illustration we consider the problem of exit from an 
open set B c 27 during the time interval 0 < tf < T. Let x\ be a Markov 
process tending to a deterministic limit x\ as e->0. Let I8 

= —elogP^ (T8 < T), where re is the exit time of x\ from B. Under various 
assumptions (including a suitable scaling of e), Ie tends to a limit 1°, where 
I°(T,x) is the minimum of a certain "action functional" among curves 
starting at x e B and leaving B by time T. In the stochastic control ap­
proach Ie(T, x) is the minimum performance in a corresponding stochastic 
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control problem [27], [31], [58]. In this approach a minimum principle 
is associated with the large deviation problem for e > 0, not just in the 
limit as e-M). 

In [32], the logarithmic transformation was applied to solutions to 
the pathwise equation of nonlinear filtering, making a connection between 
filtering and stochastic control. 

7 . Partial observations; adaptive control 

The states xt of a stochastic system often cannot in practice be measured 
directly, or perhaps can only be measured with random errors. This has 
led to an extensive literature or nonlinear filtering and on optimal control 
under partial observations. For controlled diffusions, a standard model 
is to take state dynamics (2.3) and an observation process yt governed by 

t 

yt = Jh(a>s)ds+Wt, (7.1) 
0 

with W a brownian motion independent*of w. The information available 
to the controller at time t is usually assumed to be described by the c-al-
gebra 9% generated by observations ys for s < t. However, existence of 
optimal controls has been proved only with a somewhat wider class of 
admissible controls than those adapted to this family {^J. 

Severalgood survey articles on controlled partially observed diffusions 
have recently appeared [15], [16], [17]. Hence, we shall not try to sum­
marize the various results here. In studying partially observed control 
problems it is useful to introduce an auxiliary "separated" control prob­
lem. In the separated problem the role of "state" process is taken by a 
measure-valued stochastic process at [34]. The measure at represents an un-
normalized conditional distribution of xt given observations and controls 
y si USJ 0 < s < t. A nonlinear semigroup for the controlled, measure-
valued process at has been constructed [19], [30], [33]. Among other 
recent work, we mention that of Eishel [53] on partially observed jump 
processes, and of Mazziotto and Szpirglas [49] on impulsive control 
under partial information. 

In ada/ptive control the objective is the simultaneous control and 
identification of unknown system parameters. Common techniques 
in discrete-time adaptive control involve sequential techniques, 
based on maximum likelihood or least squares, for updating esti-
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mates of unknown parameters. In the context of adaptive control of 
Markov chains see the pioneering work of Mandi [48], also Borkar and Va-
raiya [23], Kumar and Lin [41]. Another (Bayesian) viewpoint is to treat 
adaptive control of Markov processes as a special case of stochastic control 
under partial observations. This is done by simply regarding the unknown 
parameters as additional (nontime-varying) components of the system 
state. From a practical standpoint this approach encounters well known 
difficulties, in that effective solutions to partially observed stochastic 
problems are difficult to obtain. Nevertheless, special cases in which the 
problem becomes finite-dimensional have been treated by Hijab [38] 
and Eishel [54]. 

8. Impulse control; problems with switching costs 

In impulse control problems the control actions are taken at discrete 
(random) time instants, and each control action leads to an instantaneous 
change in the state xt. Typical impulse control problems are those of 
stock inventory management, in which a control action is to reorder with 
immediate delivery of the order. 

The analytic treatment of impulse control was initiated and developed 
systematically by Bensoussan and Lions [3], with emphasis on the control 
of nondegenerate diffusions. The dynamic programming equation is re­
placed by a set of inequalities which take the form of a quasivariational 
inequality. For the case of degenerate diffusions see Menaldi [50], and 
for impulsive control for Markov-Feller process see Bobin [55], [56]. 
Lepeltier and Marchai [43] gave a probabilistic treatment. 

Another class of stochastic control problems of recent interest are 
those in which control actions are taken at discrete time instants, with 
no instantaneous change in xt but with a cost of switching control actions. 
Such problems arise in the theory of controlled queues (see Sheng [57]) 
and in control of energy generating systems under uncertain demand. 
The analytical treatment again is to reduce the problem to a quasi­
variational inequality (see Lenhart and Belbas [42], Liao [44]). 

9. Applications 

Optimal stochastic control theory was initially motivated by problems 
of control of physical devices. More recent influences have come from 
management science, economics, and information systems. Until now, 
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the impact on engineering practice of'much of the sophisticated math­
ematical theory has been small. The stochastic linear regulator is a stan­
dard tool, because the optimal Markov control policies turn out to be 
linear in the state x. If the Markov policy is nonlinear, it is difficult to 
implement. Moreover, other issues may be considered in practice more 
important than optimality of system performance as predicted by the 
stochastic control model. The model is generally a simplification of nature, 
through linearizations, reductions of dimensionality, assumptions that 
noises are white, etc. A control which performs well (even optimally) 
according to the model may behave poorly in a real control system. The 
question of robustness of controls with respect to unmodelled system 
dynamics is of current interest in the engineering control literature (see 
for example [63]). A different sort of question is that of stochastic con­
trollability [64]. 

We conclude by mentioning two novel applications of stochastic con­
trol. One is Arrow's model of exploration consumption, and pricing of 
a randomly distributed natural resource. This model was analyzed in 
detail by Hagan, Oaflisch and Keller [37]. They determined approxi­
mately the free boundary between portions of the state space where new 
exploration should or should not be undertaken. 

Ludwig and associates have applied a stochastic control method to 
fishery management problems [47]. The fishery resource is controlled 
through the rate at which fish are harvested. This work has an important 
statistical aspect as well as the control aspect, since errors in measuring 
unknown parameters in the fishery model can be important. 
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