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I. Introduction. 
1. Notation. For n > 1 we let Rn denote euclidean n-space, and for x ERn 

and 0 < r < oo we let En(x, r) denote the open n-ball with center x and radius r, 
§n-^(x,r) = dQn(xìr)ì Bn = B n(0, l ) , and S""1 = S"" 1 ^ , ! ) - We also denote 
by R n = Rw U {00} the one point compactification of Rn equipped with the 
chordal metric 

q(x,y) = \p(x)-p(y)l (1.1) 

where p denotes stereographic projection of IRn onto the sphere Sn in R n + 1 . 
Throughout this paper, all notions of topology and convergence will be taken 
with respect to this metric. 

Suppose that D and D1 are domains in R n and that / : D —• D' is a homeo-
morphism. We let 

Hf(x) = lim sup Hf (z, r) (1.2) 
r->0 

for x € -D\{oo,/_1(oo)}, where for 0 < r < dist(z, dD) 

n u T\ _ m a x { | / ( s ) - / ( y ) | : \x-y\=r} 
Hf[X>r) - mîn{|/(x) - f(z)\ :\z-z\ = ry ^ 

and we extend Hj(x) to the points 00 and / _ 1 (oo) by setting Hf(oo) = Hfog(0) 
and Hf(f~1(oo)) = Hgof(f~

1 (00)), where g(x) = x/\x\2. When n > 2, we call 

00 if supx€DJÏ/(a;) = oo, ^ ^ 
esssupxeDHf(x) if supxeDHf(x) < 00 

the linear dilatation of / in D. For the purposes of this lecture, we say that 
/ is quasiconformal if K(f) < 00 and K-quasiconformal if K(f) < K, 1 < 
K < 00. Thus a homeomorphism is quasiconformal if it distorts the shape of an 
infinitesimal (n — l)-sphere about each point by at most a bounded factor; it is 
üf-quasiconformal if, in addition, this factor does not exceed K at almost every 
point. 

The following result shows that the class of quasiconformal mappings is, as 
the name suggests, an extension of the family of conformai mappings. 
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1.5. THEOREM. Suppose that Z>, D' are domains in R n and that f:D-^Df 

is a homeomorphism. If n = 2, then f is I-quasiconformal if and only if f or 
its complex conjugate is a meromorphic function of a complex variable in D. Jf 
n > 3, then f is 1-quasiconformai if and only iff is the restriction to D of a 
Möbius transformation, i.e., the composition of a finite number of reflections in 
(n — l)~spheres and planes. 

When n = 2, Theorem 1.5 is simply a restatement of a theorem due to Men-
choff [M3]. When n > 3, Theorem 1.5 is an extension of a well-known result of 
Liouville to a context which requires no a priori hypotheses on the smoothness 
of / [G3, R3]. 

2. Historical remarks. Plane quasiconformal mappings have been studied for 
almost sixty years. They appear in the late 1920s in papers by Gröztsch, who 
considered the problem of determining the most nearly conformai homeomor­
phisms between pairs of topologically equivalent plane configurations with one 
conformai invariant [G14]. They occur later under the name quasiconformal in 
a paper by Ahlfors on covering surfaces [Al]. 

In the late 1930s Teichmüller vastly extended the study of Grötzsch to map­
pings between closed Riemann surfaces and obtained a very natural parameter 
space for surfaces of fixed genus #, a space which is homeomorphic to RGg~G 

[Tl]. At about the same time, Lavrentieff and Morrey generalized a classical 
result due to Gauss on the existence of isothermal coordinates by establishing 
versions of what is now known as the measurable Riemann mapping theorem for 
quasiconformal mappings [LI, M4]. 

In recent years, Ahlfors, Bers, and their school have greatly expanded the 
results of Teichmüller and applied plane quasiconformal mappings with success 
to a variety of areas in complex analysis, including kleinian groups and surface 
topology [A5, B6, El , K2]. Sullivan's recent solution of the Fatou- Julia problem 
shows that this class can also be used very effectively to study problems on the 
iteration of rational functions [S3, S4]. 

Higher dimensional quasiconformal mappings were already considered by Lav­
rentieff in the 1930s [L2]. However, no systematic tool for studying this class was 
available until 1959 when Loewner introduced the notion of conformai capacity 
to show that Rn cannot be mapped quasiconformally onto a proper subset of 
itself [L7]. 

Subsequently, Gehring, Väisälä, and many others applied Loewner's method 
and its equivalent extremal length formulation to develop the initial results for 
quasiconformal mappings in Un [G3, VI]. Then in the late 1960s, Reshetnyak 
and the Finnish school initiated a series of papers which extended the higher di­
mensional theory to noninjective quasiconformal, or quasiregular, mappings [Ml, 
R2, V4], a study which recently resulted in Rickman's remarkable extension of 
the Picard theorem [R6]. 

3. Role played by quasiconformal mappings. Plane quasiconformal mappings 
constitute an important tool in complex analysis and they are particularly 
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valuable in the study of Riemann surfaces and discontinuous groups. Bers's 
theorem on simultaneous uniformization [B3] is a beautiful application of the 
measurable Riemann mapping theorem, while Drasin's solution of the inverse 
problem of Nevanlinna theory [D2] illustrates how this theorem can be used 
to attack problems of complex analysis in a manner similar to the way the d-
equation has been applied in harmonic analysis and several complex variables. 

The geometric proofs usually required to establish quasiconformal analogues 
of results for conformai mappings sometimes yield new insight into classical the­
orems and methods of complex function theory [L3]. Quasiconformal mappings 
also arise in exciting and unexpected ways in other parts of mathematics, for 
example, in harmonic analysis in connection with functions of bounded mean os­
cillation and singular integrals [Bl], and in geometry and elasticity in connection 
with the injectivity and extension of quasi-isometries. 

Higher dimensional quasiconformal mappings offer a new and nontrivial exten­
sion of complex analysis to Rn which is distinct from [N2] and perhaps more ge­
ometric and flexible than the analytic theory through several complex variables. 
These mappings have been applied to solve problems in differential geometry, 
and they constitute a closed class of mappings, interpolating between homeo­
morphisms and diffeomorphisms, for which many results of geometric topology 
hold regardless of dimension. Finally, some of the methods developed to study 
higher dimensional quasiconformal mappings have found important applications 
in other branches of mathematics, for example, reverse Holder inequalities in 
partial differential equations [G13]. 

4. Comments on the above definition. The quasiconformal mappings studied 
by Grötzsch and Teichmüller were assumed to be continuously differentiable at 
all but a finite number of points. Later Ahlfors [A2] and Bers [B2] observed 
that it was more natural to work with mappings / : D —> Dl for which one has 
the important inequality 

tf(/)<liminf # ( / , ) , (4.1) 
3—>oo 

when {fj} is a sequence of homeomorphisms which converge to / locally uni­
formly in D. Indeed, we defined K(f) as in (1.4), rather than by means of the 
simpler formula 

K{f) = mxpHf{x), (4.2) 
x€D 

just so that (4.1) would hold. 
Inequality (4.1) implies that the class of üT-quasiconformal mappings is closed 

with respect to locally uniform convergence. Moreover, when n = 2, the mea­
surable Riemann mapping theorem implies that every homeomorphism / with 
K(f) <K is the locally uniform limit of continuously differentiable homeomor­
phisms fj with K(fj) < K [L3]. When n = 3, a quite different argument yields 
the same conclusion with K(fj) < K where K depends only on K [Kl]. The 
situation when n > 3 appears to be open. 
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If / : D —* D' is a homeomorphism with K(f) < oo, then the Rademacher-
Stepanoff theorem and an argument similar to that used by Menchoff imply 
that / is differentiable with Jacobian «7/^0 a.e. in Z>, that / belongs to the 
Sobolev class W£loc(D), and that K(f~1) = K(f) [G3], Thus the inverse of 
a X-quasiconformal mapping is X-quasiconformal; similarly, the composition 
of a K\- and a #2-quasiconformal mapping is K\^-quasiconformal. Though 
1-quasiconformal mappings are real analytic, there exists for each K > 1 a 
if-quasiconformal self mapping / of Rn which is not differentiable in a set of 
Hausdorff dimension n. 

5. Remark. Since there are several excellent expository articles on plane qua­
siconformal mappings and their connections with Teichmüller spaces [A6, B4, 
B5, B7], the remainder of this lecture will emphasize the less developed theory 
in higher dimensions. In Chapter II we consider some basic results and open 
problems for quasiconformal mappings, comparing what is known for n = 2 
and for n > 2. Then in Chapter III we mention several instances where these 
mappings arise naturally in other areas of mathematics. 

II. Some results and open problems. 
6. Tools for studying quasiconformal mappings. A homeomorphism f:D—* 

D' is quasiconformal if the distortion function Hf in (1.2) is bounded. This is 
a local restriction and we must find some way to integrate it over D in order 
to obtain global properties of / . In classical complex function theory, this is 
accomplished by means of the Cauchy integral formula. Though Pompeiu's ana­
logue is sometimes useful in treating plane quasiconformal mappings, the tool 
most often used to replace the Cauchy formula is the method of extremal length, 
formulated by Ahlfors and Beurling [A8], and its extension to higher dimensions 
[F3, V3]. 

7. Modulus of a curve family. Suppose that T is a family of curves in R n and 
let adm(r) denote the collection of all Borei measurable functions p\ Rn —» [0,00] 
such that J pds>\ for each locally rectifiable curve 7 in T. Then 

mod(r)= inf f pn dm and A(r) =mod(r)1/*1-n> (7.1) 
pGadm(r) J^n 

are the conformai modulus and extremal lengthy respectively, of V. 
It is not difficult to see that mod(r) is an outer measure on the space of all 

curve families in Rn. Alternatively, if we regard the curves in T as homogeneous 
wires, then we may think of A(r) as the resistance of the family T. In particular, 
mod(r) is large if the curves in T are short and plentiful, and small otherwise. 

The importance of the conformai modulus in the present context is due to its 
quasi-invariance with respect to quasiconformal mappings. 

7.2. THEOREM. If f: D —> D' is K-quasiconformal and if Y is a family of 
curves which lie in D, then 

K1-71 mod(r) < mod(/(r)) < Kn~1 mod(T). (7.3) 



66 F. W. GEHRING 

Inequality (7.3) plays a key role in the study of quasiconformal mappings. For 
this reason it is customary to refer to 

as the maximal dilatation of / and say that / is K- quasiconformal if K*(f) < K\ 
here the supremum in (7.4) is taken over all curve families r in D for which 
mod(r) and mod(/(r)) are not simultaneously 0 or oo. The inequality 

K(f)n'2 < K*(f) < K(f)71-1 (7.5) 

shows that this definition yields the same class of quasiconformal mappings and 
that K*(f) = K(f) whenever n = 2 or K(f) = 1. 

A homeomorphism / : Rn —> Rn is quasiconformal if and only if there exists 
a constant c such that 

lim sup Hf (x, r) < c (7.6) 
r->0 

for all x G Rn. We illustrate the use of (7.3) by establishing a global form of this 
inequality. 

7.7. THEOREM. / / / : Rn - • Rn is K-quasiconformal, then 

Hf(x,r)<c (7.8) 

for all x G Rn and 0 < r < oo, where c = c(K,n). 

The proof depends on two estimates for the conformai moduli of certain curve 
families [G2, G12, VI] . 

7.9. LEMMA. IfO<a<b<oo and ifT is a family of open arcs in Rn 

which join Sn _ 1(0, a) to Sn _ 1(0,6), then 

modtn^uwGog^)1-", 
where CJW_I denotes the (n — l)-measure ofSn~1. 

7.10. LEMMA. If C\ and C<2 are disjoint continua in Rn which join 0 to 
Sn _ 1(0, a) and oo to Sn_1(0,6), respectively, and ifT is the family of all open 
arcs which join C\ to G<i in R \(Ci U C^), then 

mod(r) > o;n_1(log(An(^ + l ) ) ) 1 —, 

where Xn depends only on n. 

7 .11 . COROLLARY. Ifn>2, if G\ and Ci are disjoint, linked continua in 
R n and ifT is the family of all open arcs which join G\ and G2 in R n\(Ci UC2), 
then mod(r) > c where c = c(n) > 0. 

PROOF OF THEOREM 7.7. By performing preliminary translations, we 
may assume that x = 0 and /(0) = 0. Let m and M denote the minimum and 
maximum values assumed by | / | on Sn _ 1(0, r) and suppose that m < M. Next 
set 

Ci = {a: G Rn: \f(x)\ < m}, C2 = {x G Rn: \f(x)\ >M}U {00}, 
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and let T be the family of open arcs which join G\ and Ci in Rn\(Ci U C2). 
Then the above estimates and (7.3) imply that 

o;n_1(log2An)1-n < mod(r) < ifn"1mod(/(r)) < ifn" WiOogtM/m)) 1 -* 

and we obtain (7.8) with c = (2Xn)
K. 

8. Mapping problems. A basic question in this area is to decide when two 
domains in Rn are quasiconformally equivalent, i.e., if one can be mapped qua-
siconformally onto the other. Since the general case is quite difficult even when 
n = 2, we consider here the simpler problem of characterizing the domains D 
in Rn which are quasiconformally equivalent to the unit ball Bn. The Riemann 
mapping theorem and the estimates in Lemmas 7.9 and 7.10 yield a complete 
answer when n = 2. 

8.1. THEOREM. A domain D in R2 < is quasiconformally equivalent to B2 

if and only if 3D is a nondegenerate continuum. 

No such characterization exists in higher dimensions. Indeed, the domains 
Ds and D4 in (8.6) below show that when n > 2, there is no way to decide 
whether the image of Bn under a self homeomorphism of R n is quasiconformally 
equivalent to Bn by looking only at its boundary. 

The following sufficient condition is a consequence of methods used to treat 
the higher dimensional Schoenflies problem [G5, M2]. 

8.2. THEOREM. A domain D inRn is quasiconformally equivalent to En if 
there exist closed sets E C D, E1 C Bn and a quasiconformal mapping g : D\E —» 
Bn\E' such that \g(x)\ -> 1 as x-+3D in D. 

As in the topological case, localized versions of Theorem 8.2 can be established 
when D is a Jordan domain in R n , i.e., when 3D is homeomorphic to S n _ 1 [BIO, 
Gl]. 

8.3. COROLLARY. If D is a domain in Rn and if D is diffeomorphic to 
Sn_1 , then D is quasiconformally equivalent to Bn. 

It is easy to construct a domain in Rn which is quasiconformally equivalent 
to Bn and does not have a tangent plane at any point of its boundary [G12]. 
Thus the sufficient condition in Corollary 8.3 is far from necessary. 

A necessary condition for quasiconformal equivalence to Bn depends on the 
following refinement of the notion of local connectivity. A set E C R n is said to 
be linearly locally connected if there exists a constant c, 1 < c < 00, such that 
for each x G Rn and 0 < r < 00 

E D B n(x) r) lies in a component of E n B n(a, cr), (QA\ 
E\Bn(x,r) lies in a component of E\Bn(x,r/c). ^ ' ' 

Then an argument based again on inequality (7.3) and the estimates in Lemma 
7,9 and Corollary 7.11 implies the following result [G7, G12]. 
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8.5. THEOREM. Ifn>2 and if D in Rn is quasiconformally equivalent to 
Bn, then Rn\D is linearly locally connected. 

Theorem 8.5 yields many simple domains in Rn which are homeomorphic, but 
not quasiconformally equivalent, to Bn. For example, let 

D1 = {xeRn:r< 1, \xn\ < oo}, 
D2 = {x G Rn: r < oo, \xn\ < 1}, 
D3 = { ^ R n : ^ > m i n ^ , 1)}, ( ' ] 

D4 = {x eRn:xn< minjr1/2,1)}, 

where x = (s i , . . . , xn) and r = (x2+ H^n-i)1/2- Then explicit constructions 
yield homeomorphisms which map D\ and D^ quasiconformally onto Bw. On the 
other hand when n > 2, Rn\D2 and Rn\Z?4 are not linearly locally connected 
and hence D<2 and D4 are not quasiconformally equivalent to Bn. 

The necessary condition in Theorem 8.5 is not sufficient and the problem 
of finding sharp geometric criteria for testing quasiconformal equivalence to Bn 

remains a most interesting open question. 
9. Homeomorphic and quasiconformal extensions. Suppose that D and Df are 

domains in Rn and that f:D->Dfis quasiconformal. We consider next under 
what circumstances / admits a homeomorphic extension to D or a quasiconfor­
mal extension to Rn. 

9.1. THEOREM. If D and D' are simply-connected domains of hyperbolic 
type in R 2, then each quasiconformal f : D —» D1 has a homeomorphic extension 
to D if and only if D and D1 are Jordan domains. 

The sufficiency in Theorem 9.1 follows from a theorem of Ahlfors [A2] and 
the necessity from [E3]. In higher dimensions we have the following result [V2]. 

9.2. THEOREM. If D and D' are Jordan domains in Rn and if D is qua­
siconformally equivalent to Bn, then each quasiconformal fiD—tD' has a 
homeomorphic extension to D. 

When n = 2, the second hypothesis in Theorem 9.2 is superfluous since every 
Jordan domain is conformally equivalent to B2. When n > 2, this is not the case 
as seen by the examples in (8.6), and Theorem 9.2 does not hold without this 
additional restriction [K3]. 

As to the problem of quasiconformal extension to Rn, we say that a set E in 
R2 is a K-quasidisk or K-quasicircle if it is the image of B2 or S1, respectively, 
under a if-quasiconformal self mapping of R 2. By a theorem of Ahlfors, a Jordan 
domain D is a quasidisk if and only if there exists a constant c such that 

min dia(7j) < c\z± — z^\ (9.3) 

for each 21,22 G 3D, where 71 and 72 denote the components of 3D\{z\,Z2] 
[A3]. 
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9.4. THEOREM. If D and D1 are Jordan domains in R2, then each quasi­
conformal f'.D—*D' has a quasiconformal extension to R2 if and only if D 
and D' are quasidisks. 

A simply-connected domain D in R 2 is a quasidisk if and only if it is linearly 
locally connected. Hence this notion also arises in connection with quasiconfor­
mal extension. 

The sufficiency in Theorem 9.4 is due to Ahlfors [A2] and the necessity to 
Rickman [R5], A higher dimensional analogue of this result is as follows [G4, 
V5]. 

9.5. THEOREM. If n > 2 and if D is a Jordan domain in Rn, then each 
quasiconformal f:D—*Bn has a quasiconformal extension toRn if and only if 
D* = Rn\D is quasiconformally equivalent to Bn. 

Thus the problem of quasiconformal extension in higher dimensions differs 
from the plane case in two respects. First, when n = 2, the exterior D* of 
every Jordan domain D is quasiconformally equivalent to B2; this is not true 
when n > 2 as we observed above. Second, when n > 2, each quasiconformal 
/ ; D —• Bn has a quasiconformal extension to Rn whenever D* is quasiconfor­
mally equivalent to Bw; this is not true when n = 2 since there exist Jordan 
domains D which do not satisfy condition (9.3) and hence are not quasidisks. 

10. Boundary correspondence. We turn to the problem of characterizing the 
boundary mappings induced by quasiconformal self mappings of balls and half-
spaces. For n > 2 let Hn denote the upper halfspace {x G Rn: xn > 0}. Then 
each quasiconformal / : HP —• Hn has a quasiconformal extension / to R n whose 
restriction to 3Hn is a self homeomorphism <p of R n _ 1 . The problem of studying 
such boundary correspondences was initiated by Beurling and Ahlfors [B8]. 

10.1. THEOREM. A homeomorphism (p:R -+R with <p(oo) = oo is the 
boundary correspondence for a quasiconformal self mapping f ofU2 with /(oo) = 
oo if and only if there exists a constant c such that 

1 <p(x + r)-<p{x) c ( 1 0 2 ) 

c (p(x) — (p(x — r) 
for all x G R1 and 0 < r < oo. 

Inequality (10.2) is equivalent to the requirement that H(p(xir) < c. This 
condition is replaced by its local form H^x) < c, or that <p is quasiconformal, 
in the higher dimensional analogue of Theorem 10.1. 

10.3. THEOREM. When n > 2, a homeomorphism ip: Rn _ 1 -• Rn_1 is the 
boundary correspondence of a quasiconformal self mapping f of HP if and only 
if <p is itself quasiconformal. 

The necessity in Theorems 10.1 and 10.3 follows, respectively, from inequali­
ties (7.8) and (7.6) and the fact that 

H^x, r) < Hf~(x, r) and H^x) < Hj{x) (10.4) 

for relevant x and r. 
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Beurling and Ahlfors established the sufficiency in Theorem 10.1 by showing 
that the formula 

fX2 

\dt 
1 fX2 

f(xUX2) = 7fa- (<P(X1 + *) + <P(X1 - 0) < 
i fX2 

+ 2^ I (P(*I + 0 - <P(*i - 0 ) d t 

(10.5) 

defines a quasiconformal extension of tp to H2. 
Ahlfors [A4] modified this construction and used the fact that each quasi-

conformai <p : R2 —> R can be written as the composition of mappings with 
small dilatation (see Corollary 11.4) to obtain a quasiconformal extension of <p 
to H3 and thus prove the sufficiency in Theorem 10.3 when n = 3. Next Car-
leson [CI] employed quite different methods from three-dimensional topology 
to extend each quasiconformal <p: R —• R to H4. Finally, Tukia and Väisälä 
[T5] started from an idea of Carleson's and applied results of Sullivan's [SI] to 
establish the sufficiency in Theorem 10.3 for general n. 

After composition with suitable Möbius transformations, (10.2) yields a cross 
ratio characterization for the boundary mappings (p : 3D —• 3D induced by ar­
bitrary quasiconformal self mappings of a disk or halfplane D in R2, and (10.5) 
gives an explicit quasiconformal extension T(<p) : D —> D of each such corre­
spondence (p. Tukia [T4] recently settled an important problem in Teichmüller 
theory by showing that if G is a subgroup of Mob(D), the group of all Möbius self 
mappings of D, then each G-compatible boundary correspondence (p: 3D —> 3D 
has a G-compatible quasiconformal extension to D. Douady and Earle [Dl] ex­
tended this work by exhibiting a conformally natural quasiconformal extension 
operator To such that 

goT0(<p) oh = T0(go(poh) (10.6) 

for each homeomorphism (p: 3D —• 3D and all g, h G Möb(D). This beautiful 
operator should yield many new results in the area; see [E2]. 

If D is a ball or halfspace in Rn where n > 2, then the method of Douady 
and Earle assigns to each homeomorphism <p : 3D —> 3D a continuous extension 
To((p) : D —• D for which (10.6) holds. However, T0((p) will, in general, be neither 
quasiconformal nor injective except when K(<p) is small, i.e., K((p) < Kn where 
Kn depends only on n. It would be interesting to know if every quasiconformal 
<p has a conformally natural quasiconformal extension. 

11. Measurable Riemann mapping theorem and decomposition. If / : D —• Df 

is quasiconformal, then / has a nonsingular differential df: Rn —• Rn at almost 
all x G D. At each such z, df = df(x) maps an ellipsoid Ef = Ef(x) about 0 
with minimum axis length 1 onto an (n — l)-sphere about 0. Then Hf(x) is the 
maximum axis length of Ej(x) and the maximum stretching under / at x occurs 
in the directions of the smallest axes of Ej(x). If g : D' —> D" is quasiconformal, 
then g is conformai if and only if Egof = Ej a.e. in D by Theorem 1.5, and Ej 
determines / up to postcomposition with a conformai mapping. 
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When n = 2 and / is sense preserving, Ef is determined by the Beltrami 
coefficient or complex dilatation 

V>f(%) = fx/fx, x = x1+ix2, (11.1) 

of / at x. In particular, p,f is measurable with 

and /iffo/ = M/ a.e. in D if and only if g : D' —• D" is conformai. Moreover, in 
dimension two it is possible to prescribe the dilatation /iy, and hence the ellipse 
Ef, at almost every x ED [A7]. 

11.3. MEASURABLE RIEMANN MAPPING THEOREM. If (A is measurable 
with \\P>\\L°° < 1 »w R2, then there exists a quasiconformal self mapping f = f^ 
ofR2 with fi/ = fi, a.e. If f is normalized to fix three points, then f is unique 
and depends holomorphically on p,. 

Theorem 11.3 is of fundamental importance in studying the complex structure 
on Teichmüller space. It can also be a powerful tool for attacking other problems 
of complex analysis. One example is the solution of the inverse problem of 
Nevanlinna theory [D2] where Drasin first constructed a locally quasiconformal 
function g with prescribed defects, and then applied Theorem 11.3 to obtain a 
quasiconformal self mapping / of R2 so that g o / was meromorphic with the 
same defects as g. A second example is Sullivan's recent solution [S3] of the 
Fatou-Julia problem on wandering domains where Theorem 11.3 was used to 
construct a large real analytic family of quasiconformal deformations of a given 
rational function. 

The following is an important consequence of Theorem 11.3. 

11.4. COROLLARY. Ifn = 2 and e > 0, then each quasiconformal /:£>—• 
D1 can be written in the form f — f\o • • • o fm where K(f3) < 1 + e for 
j = l,...,ra and m = m(eìK(f)). 

There is no analogue of Theorem 11.3 in higher dimensions. Moreover, when 
n > 2, examples show that Corollary 11.4 is almost certainly not true without 
further restrictions on the domain D. It is an important open problem to decide 
if some higher dimensional form of this result holds, even for the case where 
D = D' = Rn. 

12. Quasiconformal groups. A group G of self homeomorphisms of Rn is said 
to be discrete if G contains no sequence of elements which converge to the identity 
uniformly in Rn, and K-quasiconformal if K(g) < K for each g in G. Though 
the family of quasiconformal groups contains all Möbius groups, Theorem 11.3 
can be used to show that this larger family does not exhibit new phenomena 
whenn = 2 [S2, T2]. 

12.1. THEOREM. When n = 2, each quasiconformal group G can be written 
in the form G = / _ 1 oH o/ , where H is a Möbius group and f a quasiconformal 
self mapping ofR2. 
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The situation is different in higher dimensions, and for each n > 2 there exists 
a quasiconformal group which is not even isomorphic as a topological group to 
a Möbius group [T3]. Nevertheless, the following convergence property allows 
one to establish quasiconformal analogues of many basic properties of Möbius 
groups [G10]. 

12.2. THEOREM. If G is a discrete quasiconformal group, then for each 
infinite sequence of distinct elements in G there exists a subsequence {gj} and 
points XQ, yo in R n such that gj —• yo locally uniformly in R n\{xo} and gj1 —> XQ 
locally uniformly in Rn\{yo}-

Suppose that G is a group of self homeomorphisms of R n . We say that G is a 
discrete convergence group if it satisfies the conclusion of Theorem 12.2, and that 
an element g of G is elliptic if it is of finite order or periodic, and parabolic or 
loxodromic if it has infinite order and one or two fixed points, respectively. The 
limit set L(G) is the complement of the ordinary set 0(G), the set of x G Rn 

which have a neighborhood U such that g(U) H U ^ 0 for at most finitely many 
g EG. Finally, G is properly discontinuous in an open set O if for each compact 
F CO, g(F) n F 7e 0 for at most finitely many g EG [G10]. 

12.3. THEOREM. Suppose that G is a discrete convergence group. Then 
each element of G is elliptic, parabolic, or loxodromic, and the limit set L(G) 
is nowhere dense or equal to Rn. Moreover if card(L(G)) > 2, then L(G) is 
perfect, L(G) lies in the closure of each nonempty G-invariant set, and the set 
of fixed point pairs of loxodromic elements in G is dense in L(G) x L(G). 

Though discrete convergence groups resemble Möbius groups in many re­
spects, examples exist which show that they need not be topologically conjugate 
to Möbius groups [F2, G10]. They also occur quite naturally in situations which 
have nothing to do with Möbius or quasiconformal groups. 

12.4. THEOREM. A group G of self homeomorphisms ofRn is a discrete 
convergence group if it is properly discontinuous in Rn\E, where E is closed and 
totally disconnected. 

It will be interesting to see how much of the classical theory of kleinian groups 
carries over for this general class of groups. 

13. Holder continuity and integrability. Theorem 12.2 can be deduced from 
(4.1) and the following estimate for change in the chordal distance q in (1.1) 
under a quasiconformal mapping [G7]. 

13.1. THEOREM. // f:D -• D1 is K-quasiconformal and ifRn\D ^ 0, 
then 

«(/(*)> f(y))Q(®n\D') < c(q(x,y)/q(x, dD)Y'K (13.2) 

for x,y in D, where q(E) denotes the chordal diameter of E and c = c(n). 

Theorem 13.1 is a consequence of (7.3) and Lemmas 7.9 and 7.10. When 
D, D1 C Rn, it implies that each if-quasiconformal / : D —• D' is locally Holder 
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continuous with exponent 1/K and hence that these mappings interpolate be­
tween diffeomorphisms and homeomorphisms for 1 < K < oo. This fact is also 
reflected in the integrability of the Jacobian Jj of / . 

13 .3 . THEOREM. If f\ D -+ D' is K-quasiconformal where D,Df c Rn, 
then Jf is locally Lp-integrable in D for 1 <p < p(K, n), where 

p(K, n) < K/(K - 1), lim p(K, n) = oo. (13.4) 
K—>1 

Bojarski [B9] established the existence of the exponent p(K, n) for n = 2 by 
applying the Calderón-Zygmund inequality to the Beurling transform in (14.7). 
The proof for n > 2 was based on the fact that g = | J / | satisfies the reverse 
Holder inequality 

—^rr / gdm<c(-^— j g^dm) , c = c(K,n), (13.5) 
m(Q)JQ \m(Q)JQ J 

for each n-cube Q in D with dia(/(Q)) < d(f(Q),3D'), and on a lemma to the 
effect that if (13.5) holds for all n-cubes Q contained in an n-cube Qf, then g 
belongs to Lp(Qf) for 1 < p < p(c, n) [G6]. These results were sharpened in [12, 
R4] to obtain the second part of (13.4); the example 

f(x) = \x\~ax, a=(K- I)/K, (13.6) 

gives the first part of (13.4). There is reason to suspect that one can take 
p(K,n) = K/(K — 1) in Theorem 13.3. However, this has not been established 
even for the case n = 2. 

III. Connections with other areas of mathematics. 
14. Harmonic and functional analysis. Quasiconformal mappings are encoun­

tered in harmonic analysis through their connections with functions of bounded 
mean oscillation and singular integrals. 

A function u is said to be of bounded mean oscillation in a domain D C Rn, 
or in BMO(D), if u is locally integrable and 

IM|BMO(D) = sup —j—r I \u- uB\ dm < oo, (14.1) 
B m{B) JB 

where the supremum is taken over all n-balls B with B C D and 

UB = Tm / udm- ( 1 4 - 2 ) 
m(B) JB 

The class BMO was introduced by John and Nirenberg [J3] in connection with 
John's work in elasticity [Jl], and it gained great prominence when Fefferman 
showed that BMO(Rn) is the dual of the Hardy space H1^71) [Fl]. 

The following relations between the class BMO and quasiconformal mappings 
are due to Reimann [RI]. 
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14.3. THEOREM. / / / : D - • D' is K-quasiconformal where D,D' C Rn, 
then ||log J / | |BMO(D) < c 'where c = c(K,n). 

IAA. THEOREM. Suppose that f:D—>Df is a homeomorphism where D, 
D1 C Rn. Then f is quasiconformal if and only if there exists a constant c such 
that 

-IMIBMO(G') < II« ° /IIBMO(G) < C|M|BMO(G') (14.5) 
for each subdomain G of D and each u continuous in G1 = f(G). 

Theorem 14.3 and the necessity in Theorem 14.4 follow from the fact that 
g = \Jf\ satisfies the reverse Holder inequality in (13.5). The sufficiency in 
Theorem 14.4 is a variant, due to Astala [A9], of Reimann's original result. 

Theorem 14.4 characterizes quasiconformal mappings as the homeomorphisms 
which preserve the class BMO. The following result [J4] characterizes quasidisks 
in terms of extension properties for BMO. 

14.6. THEOREM. If D is a simply-connected domain of hyperbolic type in 
R2, then each function u in BMO(D) has a BMO extension to R2 if and only if 
D is a quasidisk. 

Next the best possible exponents for Jacobian integrability and area distortion 
for plane quasiconformal mappings are closely connected with sharp constants 
in two inequalities for the Beurling transform 

Tg(x) = ~f A àm. (14.7) 
* JR2 (x - yy 

For example, T is a bounded operator on LP(R2) with 

l | T | l p = s u p 'K'^T * m a x (p - *• r i ) ( 1 4 - 8 ) 

for 1 < p < oo and ||T||2 = 1, and there is reason to believe that 

l imin f i | | r |L = l. (14.9) 
P—KX> p 

If true, this would yield the sharp upper bound p(K, 2) = K/(K — 1) for the 
integrability of the Jacobian of a plane quasiconformal mapping discussed in §13 

Next, one can show that there exist constants a and b such that 

f \TXE(X)\ dm < am(E) log(ir/m(E)) + bm(E) (14.10) 
JB* 

for each measurable E CB2. This inequality can be combined with Theorem 
11.3 to prove that 

!2(Zia)<c(!2®)K"\ (14.ii) 

c = c(K) = 1 + 0(K - 1) as K - • 1, for each tf-quasiconformal / : B2 -> B2 

with /(O) = 0 and each measurable set E C B2 [Gi l ] . Moreover, the above 
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reasoning can be reversed to show that if (14.11) holds for a given constant a, 
then so does (14.10). It is conjectured that both hold with a = 1. If so, this 
would again imply that p(K, 2) = K/(K - 1). 

Finally, the problem of quasiconformal equivalence of domains can be refor­
mulated in terms of function algebras. Given a domain D in Rn, we let A(D) 
denote the algebra of functions u E G(D) f| W^(D) with norm 

HI = NU-(i>) + ||W||L.(i,)) (14.12) 

the so-called Royden algebra of D. We then have the following result [L5, L6]. 

14 .13 . THEOREM. Two domains D and Df in Rn are quasiconformally 
equivalent if and only if A(D) and A(Df) are isomorphic as algebras. 

Little is known about the structure of these algebras and it may be that 
geometric methods used to determine quasiconformal equivalence will yield more 
information about them than vice versa. 

15. Quasi-isometries and elasticity. A mapping / : E C Rn —• Rn is an L-
quasi-isometry in E if 

j\xi - x*\ < | / (z i ) - / ( s 2 ) | < L\*i - M (15.1) 

for xi, X2 E E; f is a local L-quasi-isometry in E if for each V > L, each x E E 
has a neighborhood U such that / is an L'-quasi-isometry in E D U. 

If / is quasi-isometric in a domain D, then / is quasiconformal by (1.2) and 
(1.4); the mapping in (13.6) shows that the converse is false. Nevertheless, 
quasiconformal homeomorphisms arise in questions concerning extension and 
injectivity of these mappings. 

15.2. THEOREM. If n ^ 4, then a quasi-isometry f of E has a quasi-
isometric extension to Rn if and only if f has a quasiconformal extension to 
Rn. 

Theorem 15.2 [T6] gives a criterion for extension in terms of the mapping / . 
There is also a criterion in terms of the set E when E is a Jordan curve [G9]. 

15.3. THEOREM. If G is a Jordan curve in R2, then each quasi-isometry f 
of C has a quasi-isometric extension to R2 if and only if C is a quasicircle. 

For each domain D C Rn let L(D) denote the supremum of the numbers 
L > 1 with the property that each local L-quasi-isometry / in D is injective 
there. The constant L(D) has a physical interpretation if we think of D as an 
elastic body and / as the deformation experienced by D when subjected to a 
force field. Requiring that / be a local L-quasi-isometry bounds the strain in 
D under the force field and L(D) measures the critical strain in D before D 
collapses onto itself. 

Little is known about this constant except that 21 /4 < L(D) < 21/2 whenever 
D is a ball or halfspace [32]. However, we can characterize a large class of plane 
domains for which L(D) > 1 [G8]. 
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15.4. THEOREM. If D is a simply-connected proper subdomain ofR2, then 
L(D) > 1 if and only if D is a quasidisk. 

15.5. COROLLARY. / / / is a local L-quasi-isometry of a bounded simply-
connected domain in R2 and if L < L(D), then f has an M-quasi-isometric 
extension to R2 where M = M(L,L(D)). 

Corollary 15.5 says that the shape of a deformed simply-connected plane elas­
tic body is roughly the same as that of the original provided the strain does not 
attain the critical value. It would be interesting to obtain a higher dimensional 
analogue of this result. 

16. Complex analysis. Quasiconformal mappings sometimes arise in function-
theoretic problems which appear to be completely unrelated to this class. An 
excellent example is Teichmüller's theorem [TI] which relates the extremal qua­
siconformal mappings between two Riemann surfaces with the quadratic differ­
entials on these surfaces. 

For a more elementary example, suppose that / is meromorphic in a simply-
connected domain D of hyperbolic type in R 2 and let 

*-(fB(f)'-
By a theorem of Nehari [Nl], / is injective whenever D is a disk or halfplane 
and \Sf\ < 2p2

D in D. Here pr> is the hyperbolic metric in D given by 

pD(z) = \g'(z)\(l-\g(z)fr1 (16.2) 

where g: D —• B2 is conformai. It is natural to ask: for which other domains 
D does such a result hold? That is, for which D is <r(D) > 0, where a(D) 
denotes the supremum of the numbers a > 0 such that / is injective whenever / 
is meromorphic with \Sf\ < ap2

D in D? 
The answer involves quasiconformal mappings and yields a new characteriza­

tion of Bers's universal Teichmüller space [B5]. 

16.3 . THEOREM. o(D) > 0 if and only if D is a quasidisk. 

17. Differential geometry and topology. Some of the results mentioned in 
Chapter II have important applications in differential geometry. For example, 
Theorem 1.5 and the necessity in Theorem 10.3 are key steps in the original 
proof of Mostow's rigidity theorem [M5]. 

17.1 . THEOREM. If n > 2 and if M and M' are diffeomorphic compact 
Riemannian n-manifolds with constant negative curvature, then M and M' are 
conformally equivalent. 

Similarly, the equicontinuity property for quasiconformal mappings implied 
by Theorem 13.1 is an important tool in establishing the following conjecture of 
Lichnerowicz [L4]. 
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17.2. THEOREM. If n > 2 and if M is a compact Riemannian n-manifold 
not conformally equivalent to a sphere, then the group C(M) of conformai self 
mappings of M is compact in the topology of uniform convergence. 

The work of Earle and Eells [El] on the diffeomorphism group of a surface and 
Bers's proof [B6] of Thurston's theorem on the classification of self mappings of 
surfaces illustrate how quasiconformal mappings can be applied to problems in 
surface topology. Sullivan showed [SI] that the Schoenflies theorem, the annulus 
conjecture and the component problem hold for quasiconformal mappings in all 
dimensions. The results of this fundamental paper suggest that quasiconformal 
mappings may prove to be an important, intermediate category of maps between 
homeomorphisms and diffeomorphisms. 
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