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Singularities of Ray Systems 

The simplest example of a ray system is the system of all normals to 
a given surface in Euclidean space. Hamilton (1824) turned the theory 
of ray system into a part of symplectic geometry; since Maslov's thesis 
(1965) ray systems are called Lagrangian submanifolds. 

The normals to a surface foliate some neighbourhood of that surface m
f 

but away from that neighbourhood various normals start intersecting 
one another (Eig. 1). The resulting complicated and beautiful geometry 

Mg. l 

was hidden up to 1972, when the relation between singularities of ray 
systems and Euclidean reflection groups was discovered. 

This relation, for which there is no a priori reason, turned out to be 
a powerful method for the analysis of singularities. By 1978 it became 
clear that the Euclidean reflection groups also govern the singularities 
of Huygens evolvents. 

Huygens (1654) discovered that the evolvent of a plane curve has 
a cusp singularity at each point of contact with the curve (Fig. 2). Plane 
curve evolvents and their higher-dimensional generalizations are the 
wave fronts on manifolds with boundary. The singularities of wave fronts, 
as well as those of ray systems, are classified by reflection groups. 

[27] 



28 Plenary Addresses: V* I. Arnold 

While the ray and front systems on manifolds without boundary are 
related to the A, JO and 13 series of the Weyl groups, the singularities of 
evolvents are described by the JS, 0, F series (those having Dynkin 
diagrams with double connections). 

Fig. 2 

The relation of the remaining reflection groups (I2(P)i S9}E^j to 
singularity theory was unknown until recently. This situation has changed 
since the fall of 1982 when it was discovered that the group JB3 (the group 
of symmetries of the icosahedron) governs the singularities of evolvent 
systems at the inflection points of plane curves. 

The icosahedron appears at an inflection point as mystically as it 
does in Kepler's law of planetary distances. I believe, however, that in 
our problem the appearance of the icosahedron is more relevant than 
in Kepler's case; I hope that the remaining group JBT4 will appear naturally 
in the analysis of the more complicated singularities of ray systems and 
wave fronts. 

The main theme of this paper is the application of the relation between 
singularities of ray systems and reflection groups. The results I shall 
discuss are now included in symplectic and contact geometries under 
the names of Lagrangian and Legendrian singularity theories. But one 
may consider them as part of the calculus of variations, or of control 
theory, of PDE theory, or of classical mechanics, of optics, or of wave 
theory, of algebraic geometry, or of general singularity theory. Some of 
these results deal with objects so basic, that it seems strange that the 
classics have missed them. For example, the local classification of pro­
jections of surfaces in general position in the usual 3-space was dis­
covered only in 1981. 



Singularities of Ray Systems 29 

The number of nonequivalent projection germs is 14: the point neigh­
bourhoods on generic surfaces generate exactly 14 different patterns 
when the surfaces are seen from different points of 3-space. 

The reason is perhaps the difficulty of the proofs: they depend on 
the relations (sometimes Unexpected) to invariant theory, Lie algebras, 
.reflexion groups, algebraic geometry, and Deligne mixed Hodge structures. 
,Some of the results were stimulated by applications of singularity theory 
to perturbation analysis of Hamiltonian dynamical systems, and even 
to number theory, but most new concepts came from the problem of 
bypassing an obstacle in Euclidean 3-space. 

In order to describe these new results I must recall some well-known 
notions. 

1. Symplectic geometry 

A symplectic structure on an even-dimensional smooth manifold is a closed 
nondegenerate differential 2-form on it. 

Examples : 1. The oriented area element defines a symplectic structure 
en the plane. 2. The direct product of symplectic manifolds has a natu­
ral symplectic structure. 3. The phase space of classical mechanics 
(the total space of the cotangent bundle of a smooth manifold) has a natu­
ral "ÄjpAÄg" symplectic structure. 4. One may equip the manifold of 
oriented lines in Euclidean space with the symplectic structure of the 
total space of the cotangetit bundle of the sphere, since these two mani­
folds are diffeomorphic. 5. The characteristic direction at a point of a hyper-
surface in a symplectic manifold is the skew-ortho-complement to 
the tangent plane. The characteristics on a hypersurface are the integral 
lines of its field of characteristic directions. The manifold of characteristics 
inherits a symplectic structure from the original manifold. 6. In particu­
lar, the manifold of extremals of general variational problem, lying 
at the same level manifold of the Hamiltonian function, is equipped with 
a natural symplectic structure. 7. Consider the space of odd-degree binary 
forms. There exists a unique (up to constant multiple) nondegenerate 
SLg-invariant bilinear skew form on this even-dimensional linear space. 
This form defines a natural symplectic structure on the space of binary 
forms. 8. The binary forms in co and y, with coefficient in front of a?2Ä+1 

equal to 1, form a hyperplane in the space of all forms. The manifold 
of characteristics of this hyperplane can be identified with the manifold 
of even-degree polynomials in œ of the form x2k+... We have thus equipped 
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this space of even-degree polynomials with a symplectic structure. 9. The 
one-parameter group of shifts along the a?-axis preserves this symplectic 
structure. The Hamiltonian function of this group is a polynomial of 
degree 2, known already to Hilbert (1893). The manifold of characteristics 
of a level hypersurface of the Hamiltonian function can be identified 
with the manifold of polynomials x2k~~l+.<. with sum of roots equal to 0, 
We thus get a natural symplectic structure on this space of polynomials, 

THEOREM (G. Darboux, 1882). All the symplectic structures on mani­
folds of a fixed dimension are locally diffeomorphic. 

Thus, every symplectic structure is locally reducible to the normal 
form ^dpiAdq^ by a suitable choice of local u Darboux coordinates" pu qim 

Let us now consider submanifolds of a symplectic manifold. The 
restriction to the submanifold of the symplectic structure is a closed 
2-form, but it is not necessarily nondegenerate. In Euclidean space there 
is not only the inner geometry of a submanifold, but also an extensive 
theory of exterior curvatures. In the symplectic case the situation is 
much simpler: 

THEOREM (A. B. Givental, 1981). The germ of a submanifold of a symplec­
tic manifold is determined (up to a symplectic diffeomorphism) by the 
restriction of the symplectic form to the tangent spaces of the submanifold. 

An intermediate theorem, dealing with vectors nontangent to the 
submanifold, was proved by A. Weinstein (1973). Unlike the Weinstein 
theorem, the Givental theorem implies the classification of the germs 
of generic submanifolds in a symplectic space: one uses the classification 
of the degeneracies of symplectic' structures obtained by J. Martinet 
(1970) and his followers. 

Examples: 1. The germs of a generic 2-surface in a symplectic mani­
fold are locally symplectomorphic (symplectically diffeomorphic) to those 
of the surface p2 = pi, ffi = 0, p3 = qz = ... = 0 (we use the Darboux 
coordinates). 2. On a 4-submanifold one encounters stably the curves 
of elliptic and hyperbolic Martinet singularities with normal forms 

P* =PiP3±Qi22 + ilfi, Pz = 0 , pi = q4 = ... = 0. 

The ellipticity and hyperbolicity concern the character of the motions 
in a dynamical system related intrinsically to the submanifold. The 
relevant divergence-free vector field on a 3-dimensional manifold has 
a curve of singular points. The classification at singular curves turns 
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out to be less pathological than that at singular points (the latter being 
almost as difficult as the whole of celestial mechanics). 

I have thus described the first steps of the symplectic singularity 
theory of smooth submanifolds. 

A Lagrangian submanifold of a symplectic manifold is a submanifold 
on which the restriction of the symplectic structure vanishes, and which 
has highest possible dimension (equal to half of the dimension of the 
symplectic manifold). 

Examples: 1. The fibers of the cotangent bundle. 2. The manifold 
of lines normal to a smooth submanifold (of arbitrary dimension) in 
Euclidean space. 3. The set of all polynomials x2m+... divisible by xm. 

A Lagrangian fibration is a fibration whose fibers are Lagrangian 
submanifolds. 

Examples : 1. The cotangent bundle. 2. The fibration sending an oriented 
line in Euclidean space to the corresponding unit vector at the origin. 

All Lagrangian fibrations of a given dimension are locally symplecto-
morphic (in the neighbourhood of each point of the total space). 

A Lagrangian mapping is a diagram 7->JS->JB, where the first arrow 
is an immersion of a Lagrangian submanifold, and the second is a Lagran­
gian fibration (Fig. 3). 

Fig. 3 

Examples: 1. The gradient mapping: qv-tdSjdg. 2. The normal mapping: 
associate to each vector normal to a submanifold in Euclidean space 
its end point. 3. The Gaussian mapping: associate to each point of a trans-
versally oriented hypersurface in Euclidean space the unit vector at 
the origin in the direction of the normal at that point. (The corresponding 
Lagrangian manifold consists of the normals to that hypersurface.) 
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An equivalence between Lagrangian mappings is a fiber-preserving 
symplectomorphism between the total spaces of the fibrations, mapping 
the first Lagrangian submanifold onto the second one. 

The set of critical values of a Lagrangian mapping is called its caustic. 
The caustics of equivalent mappings are diffeomorphic. 

Example. The caustic of the normal mapping of a surface is the envel­
ope of its normals, i.e., its focal surface (the surface of the curvature 
centers). 

Every Lagrangian mapping is locally equivalent to a gradient one 
(to a normal one, to a Gaussian one). The singularities of generic gradient 
(normal, Gaussian) mappings are equivalent to those of generic Lagran­
gian mappings. These singularities are classified by the Euclidean reflection 
groups A9 D, E. 

Example. Consider a medium of dust-like particles moving inertially 
whose velocities form a potential field. After a time interval t a particle 
moves from m to x+t dSftx. We obtain a one-parameter family of smooth 
mappings JB3-»B3. 

These are Lagrangian mappings. Indeed, a potential field of velocities 
defines a Lagrangian section of the cotangent bundle. The phase flow of 
Newton's equation sends the initial Lagrangian manifold to new Lagran­
gian manifolds, which, however, need not be sections (for large t)i their 
projections to the base space may have singularities (Fig. 4). The caustics 

Pig. 4 

of these mappings are the places where the density of particles becomes 
infinite. According to Ta. B. Zel'dovich (1970), a similar model (taking 
into account gravitation and expansion of /the Universe) deâcribes the 
generation of the large-scale nonuniformity of the distribution of matter 
in the Universe. 

The theory of Lagrangian singularitiesrimßhes that a new-born caustic 
has the shape of a saucer (at,moment t after its birth the saucer's axes 
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are of order tf1/2, its depth of order t and thickness of order t12). The saucer's 
birth corresponds to Az. All metamorphoses of caustics in generic one-
parameter families of Lagrangian mappings in 3-space are presented 
in Fig. 5 (1976). • 

THEOREM (1972). The germs of generic Lagrangian mappings of manifolds 
of dimension < 5 are stable and simple (have no moduli) at every point. The 
simple stable germs of Lagrangian mappings are classified by the A, D, E 
Euclidean reflection groups, as explained below. 

2 . Contact geometry 

A contact structure on an odd-dimensional smooth manifold is a non-
degenerate field of hyperplanes in the tangent spaces. The exact meaning 
of "nondegenerate" is irrelevant because of the "Darboux contact the­
orem": in the neighbourhood of a generic point, all generic fields of hyper-
planes on a manifold of a fixed odd dimension are diffeomorphic. 

Examples: 1. The space of contact elements of a smooth manifold con­
sists of all its Rangent hyperplanes. The velocity of an element belongs 
to the hyperplane defining the contact structure, if and only if the velocity 
of the contact point belongs to that element. 2. The space of 1-jets of 
functions y = f(x) has a natural contact structure dy = pdx (p = df/dx 
for the 1-jet of y =f(x) at x). 

The external geometry of a submanifold of a contact space is locally 
determined by the internal one, i.e., by the contact structure traces on 
the ' tangent spaces (the Givental contact theorem). 

An integral submanifold of a contact manifold is said to be Legendrian 
if it has the highest possible dimension. 

Examples: 1. The set of all contact elements tangent to a fixed sub­
manifold (of arbitrary dimension). 2. In particular, the contact elements 
at a given point form a Legendrian manifold (the fibre of the bundle of 
eontact elements). 3. The set of 1-jets of a function. 

A fibration is said to be Legendrian if its fibers are Legendrian sub­
manifolds. 

Examples: 1. The projective cotangent fibration (a contact element 
is sent to its contact point). 2. The fibration of 1-jets of a function over 
its 0-jets (forgetting derivatives). 
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All Legendrian fibrations of a given dimension are locally contacto-
morphic (at every point of the total space). 

The projection of a Legendrian submanifold to the base of a Legen­
drian fibration is called a Legendrian mapping. Its image is called a front. 

Examples: 1. The Legendre transformation: A hypersurface in a pro­
jective space can be lifted to the space of its contact elements as a Legen­
drian submanifold. The manifold of contact elements of the projective 
space fibers over the dual projective space (associate to a contact element 
the hyperplane containing it). This fibration is Legendrian. The projection 
maps the lifted Legendrian manifold to the hypersurface which is pro-
jectively dual to the original hypersurface. Thus the projective dual 
of a smooth hypersurface is a Legendrian mapping front. 2. The equidistant 
mapping: Pick a point on every oriented normal to a hypersurface in 
Euclidean space, at distance t from the hypersurface (along the normal). 
We get a Legendrian mapping whose front is equidistant from the given 
hypersurface. 

Legendrian equivalence, stability and simplicity are defined by analogy 
with the Lagrangian case. 

Every Legendrian mapping is locally equivalent to a mapping defined 
by a Legendre transformation, and to an equidistant mapping. The local 
Legendrian singularity theory coincides with that of singularities of 
Legendre transformations (or equidistant mappings, or wave fronts). 

THEOREM (1973). The germs of generic Legendrian mappings of manifolds 
of dimension < 5 are stable and simple at every point. The simple stable 
germs of Legendrian mappings are classified by the A} D, E Euclidean 
reflection groups : the Legendrian mapping fronts are holomorphically equiv­
alent to the varieties of singular orbits of the corresponding reflection groups. 

Example. The singularities of a generic wave-front in 3-space are 
(semicubical) cuspidal edges (A2)9 and swallow-tails (A3, Fig. 6: at these 
points the front is diffeomorphic to the surface in the space of polynomials 
xi + ax^ + bx + c7 consisting of the polynomials having multiple roots). 

Remarle. The necessity to complexify in the above theorem suggests 
that Euclidean reflection groups may have different real forms. 

All Lagrangian singularities can be constructed from the Legendrian 
ones. For this, one considers Legendrian submanifolds of the space of 
1-jets of functions. By forgetting the value of the functions one projects 
the jet space onto the phase space. The Legendrian manifolds' germs 
are projected isomorphically onto the Lagrangian ones. For instance, 

7 — Proceedings... 
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the caustic of a Lagrangian mapping is the projection of the cuspidal 
edge of the Legendre mapping front under a generic projection with 
1-dimensional fibers. 

Fig. 6 

THEOREM (O. V. Lyashko, 1979). All holomorphic vector fields transversal 
to a front of a simple singularity can be mapped one onto another by front-
preserving holomorphic diffeomorphisms germs. 

Example. A generic vector field in a neighbourhood of the "most 
singular point" of the swallow-tail {x*+ax*+bx+c = (x+a)2...} is 
reducible to the normal form d/dc (Fig. 7) by a swallow-tail-preserving 
diffeomorphism. 

Pig. 7 

The reduction to normal form of various geometric objects by wave-
front or caustic-preserving diffeomorphisms is the main technical tool 
in the geometry of ray systems and yave fronts. For instance, the study 
of the metamorphoses of moving wave fronts is based on a result "dual" 
to the Lyashko theorem. 
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THEOREM (1976). Generic holomorphic functions equal to 0 at the umost 
singular" point of a simple singularity front can be mapped one onto another 
by front-preserving holomorphic diffeomorphisms germs. 

Example. A generic function at the most singular point of a swallow­
tail is reducible to the normal form ß+const by a swallow-tail-preserving 
diffeomorphism. 

The theorem above follows from the equivariant Morse lemma. We 
use it as follows. The momentary wave fronts form a "large front" in the 
space-time. Eeduce the time function in the space-time to normal form 
by a large-front-preserving diffeomorphism. We obtain the normal form 
of the metamorphosis of the momentary front. 

The infinitesimal diffeomorphisms preserving a front are the vector 
fields tangent to it. Their study leads to a "convolution operation" on the 
invariants of the reflection group. This operation associates to a pair of 
invariants (i.e., of functions on the orbit space) a new invariant — the 
scalar product of the gradients of the given functions (lifted from the orbit 
space to the Euclidean space). 

The linearization of this operation is a bilinear symmetric operation 
on the space cotangent to the orbit space at 0. 

THEOREM (1979). The linearized convolution of the invariants is equiv­
alent to the operation (p, q)t-*8(p-q) on the local algebra of the corresponding 
singularity, where 8 *= D+(2jh)E, h is the Goœeter number, and D is the 
Euler quasihomogeneous derivation. 

For the exceptional groups this theorem was proved by A. B. Givental. 
In his joint work with A. IST. Varchenko (1981) the theorem is extended 
to higher quasihomogeneous singularities. In this extension they substi­
tute the Euclidean structure by the intersection form of a suitable non-
degenerate period mapping. This period mapping comes from a family 
of holomorphic differential forms on the fibers of the Milnor fibration 
associated to a versai deformation of a function. A nondegenerate inter­
section form determines (according to the parity of the number of variables 
of the function) either a locally flat pseudo-Euclidean metric with a stan­
dard singularity at the Legendrian front, or a symplectic structure which 
is holomorphically extendable to the front. 

Example. The set of odd-degree polynomials having highest coefficient 
equal to 1 and sum of the roots equal to 0 is thus equipped with a new 
symplectic structure. The variety of polynomials with maximal possible 
number of double roots is a Lagrangian subvariety. 
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3 . Applications of Lagrangian and Legendrian singularities 

The theory was first developed for the study of asymptotics of oscilla­
tory integrals by the stationary phase method. I shall not discuss these 
(very important) applications here in detail, but shall rather mention: 
(1) Varchenko's (1976) proof of the formula describing the exponent of the 
main term of oscillatory integrals in terms of the Newton boundary of the 
phase function; (2) the example due to the same author of the nonsemi-
continuity of this exponent; and (3) V. B". Karpushkin's (1981) proof of 
a uniform with respect to the parameters estimate from above of the 
double oscillatory integrals (for simple integrals such an estimate was 
obtained by I . M. Vinogradov, and for triple ones it was disproved by 
Varchenko's nonsemicontinuity example). 

The uniform estimate also holds for all members of generic families 
of functions depending on a small number I of parameters (Duistermaat 
proved it in 1974 for I < 6; Colin de la Verdiere in 1977 for I < 7; Kar-
pushkin in 1982 for Z<9) ; I = 73 is too large (the Varchenko example 
becomes possible). 

The study of asymptotic expansions of oscillatory integrals in the 
complex domain has led Varchenko (1980-1981) to the construction of 
a mixed Hodge structure, which he calls the asymptotic structure. He has 
proved that its Hodge numbers coincide with the mixed Hodge 
numbers constructed algebraically by Steenbrink (1976). Among the 
corollaries of Varchenko's theory are: (1) the constancy of the Hodge 
structure invariants along the "^ = const" statum, and (2) the fact 
that the "inner modality" of quasihomogeneous functions coincides with 
their true modality. In real algebraic geometry the mixed structure gives 
some generalizations of the Petrovskii-Oleinik inequalities. 

THEOREM (1978). The local Poincaré index of a gradient vector field in R2n 

is bounded from above by the middle Sodge number |ind| < h^n. 

The singularity mixed Hodge structure associates to a finite multi­
plicity critical point of a function a finite set of rational numbers, the 
critical points spectrum. The spectrum's left end is the smallest exponent 
of the oscillatory integrals with a given phase function (along complex 
chains). The examples show the semicontinuity of this exponent, as well 
as of all the other spectrum points. For instance, the spectrum obtained 
through a deformation reducing the multiplicity by one, divides the 
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initial spectrum (in the same way as the axes of an ellipsoid divide the 
axes of the initial ellipsoid). 

The spectrum semicontinuity conjecture (1978) was recently confirmed 
by the works on an apparently unrelated to it algebraic geometry problem : 
how large can the numbers of (Morse) singular points on a hypersurface of 
degree d in CPn be% 

Bruce (1981) gives an estimate from above, which asymptotic (for 
the surfaces in CP3) is d3/2 + . . . (the best estimates from below are of 
order 3#3/8, S. Ohmutov, 1983). Comparing the first exactly known answers 
(0,1, 4,16, 31, 64) with the mixed Hodge structure, I have formulated the 
following 

CONJECTURE. The number of singular points does not exceed the number 
of integer points m of the cube (0, d)n, for which (n —2) dß + 1 < J£w* < ndß. 

For surfaces in 3-space this implies an estimate from above 23#/48 + . . . 
Trying to prove this cojecture A. B. Givental in October of 1982 improved 
the lower order terms in the Bruce estimate. His proof uses some Bayleigh-
Fisher-Oourant type inequalities and makes transparent the relation of 
the problem to the spectrum semicontinuity conjecture. 

A. 2ST. Varchenko immediately applied to this problem the Steenbrink 
(1976) theorem on the limits of the Hodge structures. Thus he proved 
both the conjectured estimate of the number of singular points and the 
spectrum semicontinuity (the last — for quasihomogenous function deform­
ations, generated by adding lower weight monomials). The same way 
he proved the semicontinuity of the left end of the spectrum for all functions 
in 3 variables and for functions in n variables having "far away" Newton 
polyhedra. 

I shall also mention the applications of Lagrangian singularities to the 
mechanical quadrature theory, i.e., to the problem of integer points in 
large domains. Let V be the volume of a smooth boundary domain G in 
the Euclidean Rn, and JST(X) the number of integer points inside XG, B(X) 
= XnV— N{K). The Lagrangian singularity theory implies the following 
results : 

THEOREM (Colin de Verdiere, 1977). Eor n < 7 generically 

\Rß)\^ör-2+2l(n+1K 

THEOREM (Varchenko, 1981). The average |.K(A)|2 over all lattices obtained 
from the integer point lattice by rotations and shifts, does not exceed OX*"1. 
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The convex analytic case was studied by Eandol (1969). The exponent 
(n —1) ß is what one might expect according to the law of large numbers 
(if the Xn~l cells were divided by the boundary independently). The proof 
of the last theorem is inspired by the Duistermaat (1974) proof of the 
Maslov "canonical operator" unitarity. 

The statistics of Newton diagrams of singularities has led to another 
inequality related to integer points, 

THEOREM (K. A. Sevastianov, S. V. Konyagin, 1982). The number of 
vertices of a volume V convex polyhedron in Rn, whose vertices are integer 
points, does not exceed OF(w~1)/(w+1) (the same estimate holds also for the 
number of faces of arbitrary dimension). 

The influence of the boundary inflections on the remainder term of 
the asymptotic of the number of integer points is a particular case of the 
interrelations between the integer and smooth structures of Rn, which are 
crucial for many branches of calculus. 

For instance, the order of approximation of a typical point of a sub­
manifold by the hyperplanes defined by the equations with not too large 
integer coefficients is essential for-the resonance phenomena in the theory 
of nonlinear oscillations (the flattening of the fast frequencies' manifold 
enhances the sticking at resonances). 

In his study of evolutions of action variables in Hamiltonian systems, 
N. £L Nehoroshev introduced "steepness exponents" of the unperturbed 
Hamiltonian function. The calculation of these exponents for a generic 
Hamiltonian function has inspired the theory of tangential singularities. 

4. Tangential singularities 

These are singularities of the arrangement of a projective surface with 
respect to its tangents of all dimensions. 

Example. The tangential classification of points on a generic surface 
in 3-space (Fig. 8) was found by O. A; Platonova and E. E. Landis (1979). 
A line (p) of parabolic points divides the surface into the domain (e) of 
elliptic points and that of hyperbolic ones (h) containing the curve (/) 
of inflection points of the asymptotic lines with the biinflection points (6), 
the selfintersection points (c), and the points of tangency to the parabolic 
line (t). 
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This classification is useful both for Nehoroshev's exponent estimate 
and for the classification of projection degenerations. 

Mg. 8 

THEOREM (O. A. Platonova, O. P. Shcherbak, 1981). Project a generic 
surface from RP3 to a plane along the straight lines passing through a pro­
jection center (a point outside the surface). 

All the projections thus obtained are locally equivalent to the 14 projec­
tions of surfaces $ =/(#? y) along the x-axis, where f is given by the list 

x, x2
7 x3+xy, x3±xyz, x3+xy3, x*+xy, x*+x2y+xy2, 

x5±x3y+xy, x3±xy*, x*+x2y+xy3, xò+xy. 

Here the projections are considered as the diagrams 7->J0->JB consist­
ing of imbeddings and fibrations, and the equivalences are 3 x2-diagrams, 
whose verticals are diffeomorphisms. 

The singularities of a projection from a generic center are only Whitney 
folds jand cusps (one sees a cusp along every asymptotic ray). Other sin­
gularities require special points of view. The f initeness of the list of normal 
forms of projections (and hence that of the list of visible contours) is not 
evident a priori, because there exists a continuum of nonequivalent sin­
gularities in generic 3-parameter families of projections of surfaces to 
the plane. 

The hierarchy of tangencies may become more transparent in terms 
of the symplectic and contact geometries. Melrose (1976) remarked that 
the tangent ray geometry of a surf ace in Euclidean space depends on two 
hypersurfaces in the symplectic phase space : the first describes the metric 
and the second — the surface. 
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The same pair of hypersurfaces describes the hierarchy of asymptotic 
tangents. Thus we are able to transfer a large part of the geometry on 
the usual space surfaces to the general case of arbitrary hypersurface 
pairs in symplectic or contact spaces, using the geometrical intuition of 
the surface theory for the study of general variational problems with one­
sided phase constraints. 

Let Y and Z be two hypersurfaces in symplectic space X, intersecting 
transversally along a submanifold W. Projecting Y and Z onto their 
characteristics' manifolds U, V, we obtain a hexagonal diagram 

where Z is the (common) manifold of ôritical points of the projections 
from W to U and to V. 

Example. Let X = {q, p} be the phase space of a Euclidean free par­
ticle (q is the particle position, p — its momentum); Y — the manifold 
of unit vectors (p* = 1); Z — the manifold of boundary vectors (q belongs 
to a hypersurface r). Then Ü is the ray space, V is JT'S tangent bundle 
space, W — the bundle space of the boundary (not necessarily tangent) 
unit vectors and E — the spherical tangent bundle space. 

Singularities of both projections W->U and W->V at a nonasymptotic 
tangent unit vector are Whitney folds. Each projection defines an invo­
lution on W which is the identity on 27. 

Example. We have defined two involutions a and r on the manifold 
W of boundary unit vectors of a convex plane curve (Fig. 9). The product 
of involutions is the Birkhoff (1927) billiards transformation. 

Melrose used the involution pairs to reduce the symplectic space hy­
persurface pairs to a local normal form by a ö°°-symplectomorphism 
(in the analytic case the series obtained are generically divergent, as is 
the case in the Ecalle (1975) and Voronin (1981) theories of dynamical 
systems at resonances). 
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At more complicate singularities (for instance, at asymptotic unit 
vectors) the symplectic space hypersurface pairs have moduli. However, 
one can reduce the pair formed by the first hypersurface and the inter­
section to simple normal form (at least formally), for the first two degen­
eracies of the fold. Thus we can study the singularities of the mapping 
which associates the ray to a boundary unit vector at the generic asymp­
totic and biasymptotic unit vectors. 

Fig. 9 
The variety of critical values of this mapping is locally diffeomorphic 

to the product of the usual swallow-tail with a linear space. This variety 
lies in the symplectic space of straight lines in a standard manner : 

THEOKEM (1981). All the generic symplectic structures at the point of the 
critical variety described above are locally reducible one into another by a criti-
cal-variety-preserving formal diffeomorphism. 

At a biasymptotic ray the variety of tangent rays is locally diffeo­
morphic to the product of a swallow-tail with a line. So the above theorem 
describes the symplectic geometry of the variety of tangent rays. 

5. The obstacle problem 

Consider an obstacle bounded by a smooth surface in Euclidean space. 
The obstacle problem requires a study of the singularities of the shortest 
path lenght from a point in the space to a fixed initial set, among paths 
avoiding the obstacle. This simple variational problem on a manifold 
with boundary is unsolved even for generic obstacles in 3-space. 

The shortest path consists of segments of straight lines and of geo­
desies on the obstacle surfaces (Fig. 10). Hence let us consider the system 
of geodesies orthogonal to a fixed front. The system of all rays tangent 
to these geodesies is a Lagrangian variety in the symplectic space of all 
rays (as is every system of extremals of a variational problem). In the 
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usual variational problems on manifolds without boundary the relevant 
Lagrangian variety is smooth (even in the presence of caustics). In the 
obstacle problem it may acquire singularities. The above theorem implies 
the following 

COROLLARY (1981). The Lagrangian variety in the generic obstacle problem 
has a semicubical cuspidal edge at the generic asymptotic rays and an "open 
swallow-tail" singularity at the bi-asymptotic rays. x 

Fig. 10 

The open swallow-tail is the surface in 4-space {x5+Ax3+Bx*+Ox+D} 
consisting of polynomials with at least triple roots. The differentiation 
of polynomials maps the open swallow-tail onto the usual one. The opening 
of the swallow-tail eliminates the selfinetersections but preserves the 
cuspidal edge (Fig. 11). 

THEOREM (1981). The 
in 3-space form an open 
low-tail of the caustic). 

Fig. 11 

edges of the wave fronts 
-tail in the space-time (over 

genericaUy 
usual swal-
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THEOREM (O. P. Shcherbak, 1982). Consider a generic one-parameter 
family of space curves and suppose that for a given value of the parameter 
(of the time) the family curve has a biflatness point (of type 1, 2, 5). Then the 
projective dual curves form a surface in the space-time, which is locally diffeo­
morphic to the open swallow-tail. 

The open swallow-tail is a first representative of a large series of sin­
gularities. Consider the set of polynomials with a root of fixed comultip-
licity 1c, ((x—a)n~k(xk+f..)) in the space of polynomials xn+X1x

n~2 + 
+ ... +Xn_l. The differentiation of polynomials preserves the comultiplic-
ities of the roots. 

THEOREM (A. B. Givental, 1981). The sequence of varieties of poly­
nomials with roots of fixed comultiplicity stabilizes as the degree n increases, 
starting with n = 27c+1 (i.e., at the moment of the dissociation of the self-
intersections).' 

Example. The open swallow-tail is the first stable variety over the 
usual swallow-tail. 

The following Givental theory of triads (1982) formalizes the appearance 
of the open swallow-tail in the obstacle problem. 

DEFINITION. A symplectic triad (H, L, I) consists of a smooth hypersurt 
face jff in a symplectic manifold, and of a Lagrangian manifold L tangen­
te E (with first order tangency) along a Lagrangian manifold hyper­
surface I. 

The Lagrangian variety generated by the triad is the image of I in the 
manifold of characteristics of JET. 

Example 1. In the obstacle problem with boundary JT c Rn let us con­
sider the distance, along the geodesies of r, to the initial front as a function 
s: F-+R. The manifold L of all the extensions of the 1-forms ds from r 
to Rn forms a triad together with the hypersurface H: pz *= 1. 

This triad generates precisely the variety of rays tangent to the geo­
desies of our system of extremals on J1. 

Example 2. Consider the symplectic space of polynomials ^ = xd+ 
+A1aP~~1 + ... +Xd of an even degree d = 2m. The polynomials, divisible by 
xm, form a Lagrangian submanifold L. Let h be the Hamiltonian function 
of the shifts along the x axis. (This polynomial in X is 

Ä ;= JÇ ( -1)^W^W, i +j = d, ^W = d{^\dx\) 
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The hypersurface h = 0 is tangent to the Lagrangian manifold L along 
its hypersurface I of polynomials divisible by xm+1 and forms with them 
a triad. 

The variety generated by this triad is the Lagrangian open swallow­
tail of dimension m—1 (the set of polynomials xd~1+a1x

d+*+ ... +ad_2 

having a root of larger multiplicity than half the degree). 

THEOREM (A. B. Givental, 1982). The triad of Example 2 is stable. 
Germs of generic triads at all points are symplectically equivalent to those of 
Example 2. 

COROLLARY. The variety of rays, tangent to the geodesies of the system 
of extremals in the generic obstacle problem is locally symplectically equivalent 
to the Lagrangian open swallow-tail. 

In contact geometry two sorts of Legendrian varieties are associated 
to the obstacle problem: the varieties of the contact elements of the 
fronts and the varieties of 1-jets of multi-valued time functions. The 
varieties of the first type ar egenerically the Legendrian open swallow­
tails (they are diffeomorphically lifted Lagrangian swallow-tails). The 
varieties of the second type are the cylinders over the former. 

Example. Consider the obstacle bounded by a plane curve with an 
ordinary inflection point. The fronts are the curve evolvents. They have 
two singularities: a usual cusp (of order 3/2) at the boundary curve of the 
obstacle and a 5/2-singularity at its inflectional tangent (Fig. 12). The 

Legendrian variety is nonsingular over the generic points of the obstacle 
curve, but over the inflectional tangent points the Legendrian variety has 
a cuspidal edge of order 3/2. 
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Let us consider the 3-space of the plane contact elements (fibered over 
the plane). All contact elements of all the evolvents of a generic curve 
form a surface in this 3-space. Let us consider the 3-space of polynomials 
x3+ax*+bx+c (fibered over the plane of their derivatives). All those 
polynomials having multiple roots form a surface in this 3-space. 

THEOREM (1978). The germ of the first surface at the tangent at an inflec­
tion point of a generic curve is diffeomorphic to the germ of the second surface 
at zero, by a fibre-preserving diffeomorphism. 

This surface (Fig. 13), together with the c = 0 surface representing 
the plane contact elements at the obstacle boundary points, forms the 
variety of singular orbits for the reflection group J?3. This remark has 
led to the boundary singularity theory (1978), of which I shall only men­
tion the following. 

Fig. 13 

Example (I. G. Shcherbak, 1982). Consider a generic curve on a generic 
surface in Euclidean 3-space. At some points the curve touches the surface 
curvature line. The boundary Lagrangian singularity theory implies 
that this situation is governed by the exceptional Weyl group EA: the 
union of the focal sets of the surface and of the curve with all the surface 
normals at the points of the curve forms a variety which is locally diffeo­
morphic to the JP4 caustic. 

The boundary Lagrangian singularity theory implies an amusing 
"Lagrange duality", which interchanges the singularity of a function 
on the ambient space with that of its restriction to the boundary: this 
duality is a modernized version of the "Lagrange multipliers rule" (I. G. 
Shcherbak, 1982). 

Returning to an inflection point of a plane curve, consider the graph 
of the (multi-valued) time function for the obstacle problem. The level 
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sets of this time function are the obstacle evolvents. Hence the graph 
has the shape drawn in Fig. 14 (1978) ; this surface has two cuspidal edges 
(of orders 3/2 and 5/2). 

/ ' 

Fig. 14 

When I showed this surface to A. B. Givental (1982), he recognized 
the singular orbit variety of the group H3 of symmetries of the icosahedron 
drawn by O. V. Lyashko (1981). Givental's conjecture was rapidly con­
firmed: 

THEOREM (O. P. Shcherbak, 1982). The graph of the (multi-valued) time 
fìtnction in the generic plane obstacle problem is diffeomorphic to the variety 
of singular orbits at the inflection points of the obstacle boundary. 

THEOREM1 (O. V. Lyashko, 1981). The variety of singular orbits ofHs 

is diffeomorphic of the space of polynomials x5+ax*+bx2+c having a 
multiple root. 

Lyashko's theorem describes the variety of singular orbits of fl"3 as 
the union of the tangents to the curve (t, ts, t5) in 3-space, while Shcher­
bak deals with any curve (t+ ...,P+ ...,t5+ ...). 

A generic front in the 3-space obstacle problem must have a singu­
larity of the same type at the point of tangency of an asymptotic ray 
with the obstacle surface. 

In this paper I have not even mentioned many important aspects of 
the Lagrangian and Legendrian singularity theory, especially the global 
ones, such as the theory of the coexistence of singularities (the Lagrangian 
and Legendrian cobordism theories reduced to homotopy problems 
by Ta. M. Eliashberg, the Lagrangian and Legendrian characteristic 

1 A similar description of 27(J3"4) was found by 0. P. Shcherbak in 1983: it is based 
on an inclusion of the JET4 graded local algebra defined by the invariants convolution, 
into the E8 graded local algebra: so3-fy5 + axy3 + by3 -f ex + d. 



Singularities of Ray Systems 49 

classes of V. A. VasUiev, which are generalizations to higher singularities 
of V. P. Maslov's class, and so on). 

I have not even mentioned the extensive classification of the simple 
projections (Goryunov, 1981), the theory in which, for instance, the 
exceptional root system FA is an ancestor of a whole family of descen­
dants Eß. One can find details of those theories and the extensive relevant 
bibliography in the surveys [land [2]. 

In spite of the progress of the ray system geometry during the past 
three centuries, from Huygens up to now, the drawing of pictures very similar 
to those one finds in Huygens' works is still one of the main sources of 
new discoveries in this difficult domain where even the 3-dimensional 
problem is still unsolved and where numerous useful but unexpected 
interrelations with other branches of mathematics (such as relation 
of the obstacle problem to the group jBr

3 of symmetries of the icosahedron) 
still remain mysterious. 
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