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The construction of higher algebraic if-theory was achieved by the fundamen­
tal work of Quillen [24]. After that the main efforts were concentrated in the 
field of computations and applications of if-theory to concrete algebraic prob­
lems. The most intriguing are the conjectures relating algebraic K-theory to 
etale cohomology. Such conjectures in certain particular cases were made by 
Quillen and Lichtenbaum [14, 9, 23]. Nowadays all conjectures of this type 
are usually called the Quillen-Lichtenbaum conjectures. One of the important 
properties of algebraic üC-theory is the exact localization sequence: if Y C X is 
a closed subscheme, then there is a long exact sequence 

• • • - Ki(Y) - Ki(X) - K'i(X -Y)± KU{Y) - • • • 

(Kf = K for regular schemes) and the resulting spectral sequence 

E™ = U K.p_q(k^))^K'_p_q(X). 
co d im x=p 

Another important property is Gersten's conjecture, proved by Quillen, which 
makes it possible to identify the second term of this spectral sequence: EPQ = 
Hp(X,K-q). These properties often reduce general problems of algebraic K-
theory to the particular case of fields in which case these problems are especially 
explicit and intriguing. 

Higher if-theory of a field F (as well as of any ring) may be defined in terms 
of Quillen's plus construction: Ki(F) = TTì(BGL(F)+), where BGL(F)+ is the 
//"-space having the same homology as BGL(F), i.e., the same as homology of 
the discrete group GL(F). Thus K-theory is closely related to the homology 
theory of GL(F). 

This paper concerns some of the recent achievements in the K-theory of fields 
and in related areas. To a pity, I have only mentioned very briefly such an 
important field as etale üf-theory of Dwyer-Friedlander; the ideas and methods 
used in this theory are very far from those discussed in the main part of this 
paper. 
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1. Norm-residue homomorphism. In view of the Moore-Matsumoto theo­
rem, the group Ki(F) may be described as a group with generators {a, b} (a, b G 
F*) and relations {a\a2,b} = {ai,b} + {a,2,b}, {a,&i&2} = {a,h} + {a,&2}j 
{a, 1 — a} = 0 (a ^ 1), Suppose that n is an integer prime to char F ; then we 
have the Kummer isomorphism x-' F*/F*n ^ H1 (F, p,n). It is easy to verify that 
X ( û ) U X ( 1 —a) = 0 G H2(F, p,®2) and hence we get a well-defined homomorphism 

Rn = Rn,F'- Ki(F)/n -> H2(F, fi*): {a, b} H+ X(a) U x(&), 

which is called the norm-residue homomorphism. In case F D p,n the choice of 
the primitive nth root of unity £ makes it possible to identify Gjr-modules p,n 

and p,®2 and hence to identify H2(F,p®2) with H2(F,p,n) =n Br(F). After this 
identification Rn turns into a cyclic algebra homomorphism: {a, ft} H+ [A^(a,6)] 
(cf. [19]). Thus in this case the question about surjectivity of R^ is equivalent 
to the classical problem of Albert whether every algebra of exponent n is similar 
to a product of cyclic algebras. 

THEOREM 1.1 [17, 30]. For any field F and any n prime to charF, R^'. 
Ä2(F)/n —• H2(F,p,®2) is an isomorphism. 

The general case of the theorem may be easily reduced to the case (which 
we will consider below) when n = p is prime and F D p,p. There are two 
different, but closely related, approaches to the proof of (1.1). Both approaches 
use essentially the computation of certain Ä'-cohomology groups of Severi-Brauer 
varieties. 

The first method, the original method of Merkurjev [16], works mostly for 
p = 2. Set provisionally fc2 = ÜT2/2. Suppose that E = F(^/a) is a quadratic 
extension of a field F and denote by x{a) € H1(F,p>2) the cohomology class 
corresponding to a under the Kummer isomorphism. The exact cohomology 
sequence 

H\F^2)
 x$ H*{F,to) - H*(E,„2)

 NT H*(F,rì 

shows that the validity of (1.1) implies the exactness of the sequence 

F*/F*2 A f c 2 ( F ) ^ f c 2 ( ^ ) J V ^ f c 2 ( i ^ ) . (1.1,1) 

Vice versa, if (1.1.1) is exact for any quadratic extension, then an easy inductive 
argument proves (1.1). Moreover, it is shown in [16] that even the exactness of 

k2(F)-> k2(E)-> k2(F) 

for any E/F is sufficient to finish the proof. Every element of fc2(i£) may be 
written in the form J2?=iixi + V^Vù^i] with Xi,yi,Zi G F. The norm of this 
element in fc2(i

r') is equal to J2?=iixi ~ aVÌ^zì\' ^ ls n o t difficult to write 
down explicitly when the last element is equal to zero: this is equivalent (after 
certain cosmetic changes, including possible enlargement of n) to the existence 
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of certain elements us, vs for every nonempty S c { l , . . . , n } such that, setting 

zs = Flies zi w e wiU have formulae 

x2i-yìa=Y[{u%-zsv%). (1.1.2) 
S3i 

Denote by Fo the prime subfield of F and set Fi = Fo(a). Equations (1.1.2) 
define an affine variety T over Fi, and elements Xi, yi, Zi, us, vs define an F-
valued point of this variety. Denoting the corresponding coordinate functions by 
Xi, Yi, Zi, USìVs G Fi(T), we get in fc2(Fi(T)(v^)) the "universal" element with 
trivial norm J27=ii^i + y/ôY^Zi). It is sufficient to show that this universal 
element lies in £2(^1 (T1))—the specialization argument finishes the proof. To 
prove the last statement it is sufficient to show that i?2 is an isomorphism for 
Fi(T) and Fi(T)(y/a). This is trivial for the second field since this field is purely 
transcendent over F±(y/a) (both kernel and cokernel of Rn do not change under 
purely transcendental extensions [4]). The field F2 = Fi(Zi,Us)Vs) is purely 
transcendental over Fi, and Fi (T) is obtained from F2 pasing several times to 
the function field on a conic, given by an equation of the form X2 — Y2a = *. 
So the theorem follows from 

PROPOSITION 1.2 [27]. Suppose that charfc 7e 2, a,b G fc*, and denote by 
F the function field on the conic, given by equation X2 — aY2 = b. If iï2jfc and 
^2,k{y/a) are isomorphisms, then i22|F is also an isomorphism. 

The proof of (1.2) is based on the computation of certain if-cohomology 
groups of the conic; it also uses extensively the theory of quadratic forms, which 
does not allow the use of this method for p / 2. 

The second approach to the proof of (1.1), developed in [17, 28, 30], is in a 
certain sense opposite to the one discussed above. The main technical result in 
this approach is 

PROPOSITION 1.3. Suppose that p ^ char F and F contains a primitive 
pth root of unity £. Let a,b G F* and denote by X the Severi-Brauer variety, 
corresponding to the cyclic algebra D = A$(a,b). The natural homomorphisms 
ker RpfF —* keri?Pi^(x) and cokerRPiF —• cokerfiPjip(x) are injective. 

Assuming (1.3), one can finish the proof of (1.1) as follows. It is well known 
that the maps ker i^ j r —• kerfip^, cokeriajr —• cokerßp^ are injective if E 
is algebraic over F of degree prime to p, so, using (1.3), one can construct an 
extension FjF such that 

(a) all cyclic p-algebras over F are trivial, 
(b) F has no extensions of degree prime to p, and 
(c) kerRp^ -̂> ke rß p ^, coker Rp^ *-* coker#pj , . 

A classical result of Milnor [19] shows that (a) is equivalent to the equality 
K2(F)/p = 0. Hence KevRpj, = 0. Moreover, it is easy to see that (a) and (b) 
imply that Br(.F) = 0 and hence coker R p, = 0. Now property (c) shows that 
ker Rp}F = coker Rp^p = 0-



ALGEBRAIC K-THEORY OF FIELDS 225 

The proof of (1.3), as well as the proof of (1.2), is based on the computation 
of /f-cohomology groups of Severi-Brauer varieties. 

PROPOSITION 1.4. In conditions of (1.3), H1(X,K2) = JV = NrdD* c F*, 
the natural map 0.2(F) —• H°(X,if2) is surjective. 

To prove this, one has to consider the spectral sequence E%* = Hl(X, K-j) =>> 
K-i-j(X). The theory of Chern classes and the Riemann-Roch theorem makes 
it possible to show that all differentials in this spectral sequence starting at or 
coming to E1*3 terms with i + j = 0,-1 are killed by (dimX)! In our case 
dimX = p — 1 and we know also that all differentials in this spectral sequence 
are killed by p (since D has splitting fields of degree p over F). This shows that 
there are no differentials starting at or coming to El>3 with i + j = 0, —1 and 
hence H1(X,K2) = E\~2 = E^~2 = K^X)1/2. if-theory of Severi-Brauer 
varieties was computed by Quillen [24]: 

Ki(X) = Ki(F)®Ki(D) © ... eKi(D®^p-^). 

Thus to finish the proof of the first statement it is sufficient to compute the 
topological filtration on Ki(X) = F © JV © • • • © JV, which is not difficult to do. 
Vanishing of all differentials starting at E°>~2 imply that the edge homomor­
phism 

K2(F) © K2(D) © • • • ©K2(D®^p-^) = K2(X) -> H°(X,K2) = E%~2 

is surjective. To finish the proof of the second statement we have to show that 
the image of Ä ^ ® * ) in H°(X,K2) C K2(F(X)) is contained in the image of 
if2(F). This requires additional information about ÜC2 for algebras of prime 
index; see (3.1) below. 

Proposition 1.4 is not yet sufficient for the proof of (1.3); one needs a more 
precise statement that K2(F) = H°(X,X2). This requires information about 
torsion in K2(F). The basic result in this direction is Hilbert 's Theorem 90 for 
if2. 

THEOREM 1.5. Let E/F be a cyclic extension of prime degree p and let a 
be a generator ofGail(E/F). The following sequence is exact 

K2(E) ^ K2(E) N^F K2(F). (1.5.1) 

The exactness of (1.5.1) is easily proved provided the norm map JV: E* —• F* 
is surjective—in this case, one constructs explicitly the homomorphism Ä"2(F) —* 
K2(E)/(1 - a)K2(E) inverse to NE/F by means of the formula {a,b} \-> {a,b} 
mod(l — a)K2(E), where N(ot) — a. Using the same trick as above we see now 
that we will be done if we are able to prove that if X is a Severi-Brauer variety, 
corresponding to a cyclic algebra (E/F, a, a), then the map 

kerNE/F/(1 - a)K2(E) -+ kevNE{x)/F{x)/(l - a)K2(E(X)) 

is injective. This problem is simplified by the fact that the algebra under con­
sideration splits over E and hence XE = P^ - 1- The proof uses, in fact, only the 
computation of H1(X,K2) fulfilled above, 
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Applying (1.5) to the universal Kummer extension F(tfT)/F(T) (T is tran­
scendental over F) or to the universal Artin-Schreier extension we get the fol­
lowing result, which was conjectured by Tate [37]. 

COROLLARY 1.6. If F contains a primitive nth root of unity Ç, then nK2(F) 
= {£, F*}, K2(F) does not have p-torsion with p = charF. 

To finish the description of torsion in Zf2, one needs the description of those 
elements x G F* for which {£, x} = 0. This question is settled by 

THEOREM 1.7 [28, 30]. Suppose that F contains a primitive nth root of 
unity £ and denote by FQ the subfield of constants in F (i.e., the algebraic closure 
of the prime subfield). For x G F* the following conditions are equivalent: 

(a )U,z} = 0 G X 2 ( n 
(b) x = x0y

n, where y G F*, x0 G FQ, and {£,x0} = 0 G #2(^0)-

COROLLARY 1.8. If E/F is an extension such that F is algebraically closed 
in E, then K2(F) ^ K2(E). 

The last corollary shows that in conditions of (1.4), K2(F) -^ i /°(X, Jff2). 
Using this and (1.4), one easily finishes the proof of (1.3); see [17, 30]. 

The proof of (1.7) is based on the study of certain Z-adic cohomology groups. 
The crucial role plays the following fact, related to Weil's theorem about eigen­
values of Frobenius substitution on a Tate module of an abelian variety. 

PROPOSITION 1.9. Suppose that F is finitely generated and I / charF. 
Then H^FcZtf)) ^ H^F,^)) and H2(F0,Zt(2)) -+ H2(F,Zt(2)). 

The above results have many important applications in algebra and algebraic 
geometry, some of which may be found in [30, 39, 40, 41]. We will only mention 
the following, for further use. 

PROPOSITION l . lO [28, 30]. If X/F is a complete rational variety, then 
H0(X,K2) = K2(F). 

2. Algebraically closed and local fields. Since the etale cohomology 
groups of an algebraically closed field are trivial, it is reasonable to expect that 
K-groups of such a field will also have a sufficiently simple structure. The fol­
lowing is one of the Quillen-Lichtenbaum conjectures (see [9, 23]). 

(2.1) If F is an algebraically closed field, then K{(F) is divisible for i > 
1, the torsion subgroup in Ki(F) being zero if i is even, and isomorphic to 
UitchzrFQi/Zi(n)iti = 2n-l. 

This conjecture is clearly true for i = 1 and may be easily proved for i = 2 
[2], Apart from these trivial cases, the conjecture was known to be true in the 
case where F is the algebraic closure of a finite field [22]. For fields of positive 
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characteristics, this conjecture was proved in [31]. The basic result of [31] is 

THEOREM 2.2. If F/FQ is an extension of algebraically closed fields, then 
for any integer n the induced maps K{(Fo)/n —* Ki(F)/n, nKi(Fo) —• nKi(F), 
Ki(F0,Z/n) —• Ki(F,Z/n) are bijective. 

This theorem is a particular case of a certain simple general principle. Let V 
be a contravariant functor on an appropriate category of schemes with values in 
the category of torsion abelian groups. Suppose further that for any finite flat 
morphism X —• Y we are given a transfer homomorphism NX/Y'- V(X) —> V(Y), 
satisfying the usual properties. Suppose finally that V is homotopy invariant, 
i.e., V(X x A1) = V(X) for any X. 

PROPOSITION 2.3 (RIGIDITY THEOREM). LetX/F be a connected variety 
over an algebraically closed field. Then for any two points x,y:Spec(F) —• X, 
the induced maps V(X) =} V(SpecF) = V(F) coincide. 

It is clearly sufficient to treat the case of a smooth affine curve. Consider 
the bilinear pairing Div(X) x V(X) —• V(F) given by x X u \—• x*(u). We have 
to show that its restriction on Div°(-X") x V(X) is trivial. Denote by X the 
smooth projective model of X and set XQQ = X — X. If / is a rational function 
on X, defined and equal to one on XQQ, then the principal divisor (/) lies in 
the kernel of our pairing: / defines a covering Xo —• AF = PF — 1, where 
XQ is obtained from X by deleting points where / is equal to one. The usual 
properties of transfer imply that the image of (/) x u in V(F) coincides with the 
image of (0 — oo) X NXQ/A1 (U\X0), which is zero in view of homotopy invariance. 
Thus our pairing factors through Pic0(X,X0 0)®V(X). The group Pic°(X,X^) 
coincides with the group of .F-points of the corresponding Rosenlicht jacobian 
of X (see [26]) and hence is divisible. Since V (X) is torsion we deduce that 
Pic°(X,Xoo)®V(X)=0. 

COROLLARY 2.3 .1 . LetF/Fo be an extension of algebraically closed fields 
and let Xo/F0 be a connected variety. If x, y}: Spec F —• XQ are any two Fo-
points, then the induced maps V(Xo) =4 V(F) coincide. 

COROLLARY 2.3 .2 . In conditions of (2.3.1) for any Fo-point x: Spec F —y 
Xo, the image of the corresponding homomorphism V(Xo) —* V(F) is contained 
in the image ofV(Fo). 

Choose a rational point Spec FQ -> XQ and apply (2.3.1) to x and y: Spec F —• 
Specify -> Xo. 

COROLLARY 2.3 .3 . Suppose, in addition, thatV commutes with limits: 

V(SveclimAi) = lim 7 (Spec A*). 

Then V(F) = V(FQ) for any extension F/FQ of algebraically closed fields. 
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F may be written as lim A where A runs through all finitely generated FQ-

subalgebras of F. Our conditions imply that V(F) = limV(Spec A). The ho­

momorphism V (Spec A) —• V(F) is induced by a Fo-point Spec F —• Spec A, 

corresponding to the imbedding A ^ F. In view of (2.3.2) the image of this 

homomorphism is contained in the image of V(Fo). Since this is true for any 

A we deduce that V(Fo) —> V(F) is surjective. The injectivity of this map is 

trivial. 
The present proof of (2.3), which is a slight modification of the original proof 

of the author [31], is due to Gabber, Gillet, and Thomason. The use of rela­
tive Picard groups instead of absolute ones allowed these authors to prove the 
following important generalization of (2.3). 

PROPOSITION 2.4. Let O be a henselian ring with field of fractions F and 
residue field k and let X/ Spec O be a smooth affine curve. Further, let x, y: 
SpecO —• X be two sections that coincide in the closed point of Spec O. Suppose, 
in addition, that 

(a) nV(X) = 0, where (n,charfc) = 1, 
(b)V(0)^V(F). 

Then the induced maps x*,y*:V(X) —• V(0) coincide. 

Choose a projective closure X of X and set XQQ = X — X. The sections 
x, y define relative divisors Dx, Dy on X (relative to XQQ). Their difference 
is divisible by n in Pic(X,XQQ) since Pic(X,Xoo)/n «-> H2

t(X,j\(p,n)) (where 
j : X «-* X) and H2

t(X,j\(p,n)) = H2
t(X0, (Jb)i(A*n))i where X0 is the closed fiber 

of X, in view of the proper base change theorem in etale cohomology. In view of 
condition (b) it is sufficient to prove the coincidence of maps V(Xp) =3 V(F), 
where XF is the generic fiber of X. The last fact follows in the same manner as 
in the proof of (2.3), since the difference of the corresponding points is divisible 
by n in the relative Picard group of Xp. 

REMARK 2.5. Condition (b) of Proposition 2.4 is often satisfied in algebraic 
if-theory in view of Quillen's theorem [24]. Moreover, this condition may be 
avoided in many cases of interest. 

Using induction and tricks similar to those used in the proof of (2.3.3) we 
deduce from (2.4) the following important 

T H E O R E M 2.6 ( G A B B E R (UNPUBLISHED), GILLET AND THOMASON 

[10] ) . Let V/F be a smooth variety and let v G V be a rational point. De­
note by Oy the henselization of a local ring Ov. For any m prime to char F, the 
natural homomorphism K*(Oy,Z/m) —• K*(F,Z/m) is bijective. 

Denote by 1% the maximal ideal of the local ring O j . It is not difficult to 
deduce from (2.6) that Hi(GL(0^,I^),Z/m) = 0 (t > 1); see [32]. Consider 
now the simplicial scheme BGLn/F and denote by X^{ the henselization of 
(BGLn)i = (GLn)* in unity; denote further by 0\ i the coordinate ring of X%ti 

and by 1% i its maximal ideal. Since face and degeneracy maps of BGLn respect 
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unity, we see that X^ i also form a simplicial scheme. The evident maps X\ i —• 
GL^ -̂f GLn define matrices ak G GL n (0^ i , /^J . We will denote by uUii 

the chain [ai,...,at-] G Ci(GLn(0^,I^^,Z/m). Now one constructs, using 
induction on i and the fact that i î i (GL(0^ , /^ ) ,Z/m) = 0, chains cn%i G 
C+i(GL(0*„J*<),Z/ro) such that 

i 

d(cn)i) = Un|< - 53(-l)i(di)*(cn,i-i). 

These considerations enable one to generalize (2.6): 

COROLLARY 2,7. Lei (.R,/) 6e a henselian pair, where R is an F-algebra. 
Then H*(GL(R, I), Z/m) = 0 and K*(R, Z/m) ^ K*(R/I, Z/m). 

The second statement follows from the first one. For the proof of the first 
statement it is sufficient to show that the imbedding (7*(GLn(jR,/),Z/m) e-* 
C* (GL(R, I), Z/m) is nul-homotopic. Consider matrices &i,.,., bi G GLn (R, I). 
These matrices define a morphism Specie —• GVn, taking SpecR/1 to unity. 
Since (R, I) is a henselian pair, this morphism factors uniquely through a mor­
phism /&: Spec J? —y X^{. The desired nul-homotopy may be defined now by a 
formula s([6i,... ,ôj) = (fb)*(cn,i)-

The same method of evaluation of "universal homotopy operators" cnji may 
be applied also in many other situations. The following results are proved in 
[32]. 

THEOREM 2.8. Let R be a henselian discrete valuation ring with maximal 
ideal I, fraction field F, and residue field fc. For any m prime to char F we have 
canonical isomorphisms of pro-groups: 

H*(GL(R),Z/m) -• {H*(GL(R/In),Z/m)}n, 
K*(R,Z/m) - {K+(R/In),Z/m)}n-

To deduce the second statement from the first one it is necessary to use a 
version of Hurewitz's theorem for pro-spaces, proved by Panin [43]. 

COROLLARY 2.8.1. In conditions of Theorem 2.8, 

K*(R,Z/m)^K*(k,Z/m) 

provided that (m,charfc) = 1. 

COROLLARY 2.8.2. Let k be an algebraically closed field of positive charac­
teristics p and let F be the algebraic closure of the fraction field of the ring of 
Witt vectors over fc. Then for any m prime to p there are canonical isomorphisms 
K*(k,Z/m) = K*(F,Z/m). 

This corollary together with Theorem 2.2 shows that the groups Ki(F, Z/m) 
do not depend on the algebraically closed field F (provided that m is prime to 
char i*1); this enables us to finish the proof of the Quillen-Lichtenbaum conjecture 
for fields of zero characteristics. It is more natural, however, to apply the method 
of universal homotopy operators to the proof of the following theorem. 
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THEOREM 2.9 [32]. Let F denote either the field R of real numbers or the 
field C of complex numbers. The natural morphism BGL(F)+ —y BGL(F)top 

induces isomorphisms on homology and homotopy groups with finite coefficients. 

Using, in addition, the Stability Theorem 4.6 (see below) we get the following 
result, confirming partially the isomorphism conjecture of Friedlander-Milnor 
[21]. 

COROLLARY 2.9.1. BGLn(F) -• BGLn(F) top induce isomorphisms on 
Hi(—, Z/m) with i < n. 

COROLLARY 2.9.2. Modulo uniquely divisible groups, the K-theory of the 
fields R and C is as displayed in the following table. 

i mod 8 

Ki(R) 

Ï 
Ki(C) 

0 
0 
0 
0 

1 
Z/2 
incl. 

Q/z 

2 3 
Z/2 Q/Z 

0 2 
0 Q/Z 

4 5 6 
0 0 0 
0 0 0 
0 Q/Z 0 

7 
Q/Z 
iso 

Q/z 

REMARK 2.10. A different and more algebraic approach to the proof of the 
Quillen-Lichtenbaum conjecture was proposed later by Jardine [42]. His method 
is also based on the use of (2.6). 

3. The üC-theory of division algebras. The ^-theory of division algebras 
was already used above in the proof of (1.4). The result that was necessary there 
looks as follows. If D/F is a central simple algebra and E/F is its splitting field 
of finite degree, then we can consider the canonical homomorphism gs' K2(E) = 

K2(DE)N%FK2(D). 

THEOREM 3.1 [17]. If index of algebra D is squarefree, then K2(D) is gen­
erated by images of K.2(E) over all finite splitting fields E/F. 

REMARK 3.1.1. It seems possible that the restriction on index is not really 
necessary for the validity of (3.1). This is a rather interesting problem. The 
same question may be asked for higher üf-groups. 

Let X/F be the Severi-Brauer variety corresponding to D. In view of (1.10) 
H°(X,K2) = K2(F) and we get a canonical homomorphism Nrd:if2(£>) —• 
K2(X)^H°(X,K2) = K2(F). 

THEOREM 3.2 [17]. Let D be an algebra of squarefree degree over a field F. 
(a) Ifc.d.F = 2, then Nrd: K2(D) ^ K2(F). 
(b) If F is a global field, then there is an exact sequence 0 —• K.2(D) -+ 

K2(F) —• ]\vZ/2 —y 0 where v runs through real points of F in which D is 
nontrivial. 

Theorem 3.2 follows easily from (3.1) and Hubert's Theorem 90 for K2. I 
am sure that the assumption about index is superfluous for its validity. The 
following important result of Merkurjev [18] is much deeper. 
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THEOREM 3.3. For any quaternion algebra D/F, the reduced norm Nrd: 
K2(D) —* K2(F) is injective.1 

For the proof of (3.3) Merkurjev uses his method of universal problems (cf. 
§1). In this case the field of definition of the universal problem is the function 
field on the product of three-dimensional quadrics. To prove the analog of (1.2) 
it is necessary to compute certain .D-operator if-cohomology groups of these 
quadrics. The first step in this direction is provided by the theorem of Swan 
[36], which computes the operator if-theory of an arbitrary quadric. Further, 
one has to study the differentials in the BGQ-spectral sequence. The theory 
of Chern classes does not help this time, but Merkurjev has invented a direct 
method to prove the vanishing of the necessary differentials. 

REMARK 3.4. (a) Merkurjev has given also the description of the image of 
reduced norm. 

(b) It is reasonable to expect that injectivity of reduced norm holds for any 
algebra of squarefree degree, but at present I do not see how to attack this 
problem. 

In the local case, to compute the ÜT-theory of a division algebra one can use 
a version of methods of the previous section. 

THEOREM 3.4 [35]. Let R be a henselian discrete valuation ring with frac­
tion field F and let D be a division algebra over F. Denote by A the maximal 
order in D and by I its maximal ideal. For any rn prime to char F there is a 
canonical isomorphism of pro-groups K((A,Z/m) —y {Ki(A/In,Z/m)}n. 

COROLLARY 3.4.1. If m is prime to charuì, then 

Ki(A,Z/m)^Ki(A/I,Z/m). 

COROLLARY 3.4.2. Let F be a usual local field (i.e., a finite extension of 
the field of p-adic numbers) and D/F a division algebra of degree prime to p. 
For all i>l there are canonical isomorphisms Nrd: Ki(D) -^ Ki(F). 

COROLLARY 3.4.3 [11]. In conditions of (3.4.2), Nrd:K2(D) ^ K2(F) for 
any division algebra D. 

Acting as in the proof of (2.9) we get, moreover, 

PROPOSITION 3.5. Denote by H the classical quaternion algebra over R. 
The natural map BGL(iJ)+ —• BGL(ü) top induce isomorphisms on homology 
and homotopy groups with finite coefficients. 

4. Milnor if-theory. For any field F, its Milnor ring K*f(F) is defined as 
a quotient ring of the tensor algebra T(F*) by a homogeneous ideal, generated 
by tensors a <8> (1 - a) e T2(F*) = F* ® F* [2]. The image of ai ® • • • ® an in 
Kn(F) will be denoted {oi,... ,an}- There is a canonical ring homomorphism 
K*?(F) —y K*(F), which is isomorphic in degrees < 2. The example of finite 

1 Remark added in proof: Theorem 3.3 was proved independently by M. Rost [47]. 
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fields shows that in degrees n > 3 the map K*f(F) —• Kn(F) is not in general 
surjective; however, I know of no examples where this map is not injective (cf. 
(4.7.1) below).2 The following conjecture is principal in the understanding of the 
structure of K*(F). 

CONJECTURE 4.1 . Denote by F0 the subfield of constants in F. The ring 
if*(F) is generated by K±(F) = F* and ÜC*(F0)-

3 

In positive characteristics, (4.1) would imply that the homomorphism K^(F) 
—> if* (F) is an isomorphism modulo torsion. 

The following conjecture is a particular case of the general conjectures of 
Beilinson (see §7). 

CONJECTURE 4.2. For any field F and any n prime to charF, the norm-
residue homomorphism K*?(F)/n -> Ui>o Hl(F,p,®%): {oi, . . . , a^} i-> Xnfai) U 
• • • U Xn(o>i) is an isomorphism of rings. 

Another interesting conjecture concerning K^(F) is Milnor's conjecture 
about quadratic forms [20]. Suppose that char F ^ 2 and denote by W(F) 
the Witt ring of nondegenerate quadratic forms over F. Let 1(F) denote the 
maximal ideal of W(F), consisting of even-dimensional forms. For any a G F* 
set ((a)) = 1 ± -a G 1(F) and ((au... ,an)) = (<ai)) (<an)). 1(F) is 
additively generated by ({a)) and hence In(F) is additively generated by n-fold 
Pfister forms ((ai,. . . ,an)}. It is easy to see that the discriminant defines an 
isomorphism I(F)/I2(F) ^ F*/F*2. Since the 2-fold Pfister form ({a, 1 - a)) is 
trivial we have a well-defined ring homomorphism 

K?(F)/2 -> J ] In(F)/In+l(F): {0l O „ } H « 0 l > . . . , an)> mod/"+1(F), 
n>0 

which is surjective by the remarks above. 

CONJECTURE 4.3 (MILNOR [20]). K*f{F)/2 ^ In(F)/In+1 (F). 

For n < 2 this conjecture was verified in [20]. 
Among the general properties of Milnor üT-groups we will note the following: 
(4.4) Let O be a discrete valuation ring with valuation v, fraction field F, and 

residue field k. Then there are canonical homomorphisms d: Kff(F) —y K^L^k), 
which are completely characterized by the formula 

9({Z1, . . . , Zn}) = V(xx) • {̂ 2, - - • ,Xn} (X2i . • . , Xn G O*) 

[2]-
REMARK 4.4.1. The following diagram commutes: 

K*{F) -> Kn(F) 
a I la 

* £ i ( * ) - *„-!(*) 
2Remark added in proof: Ch. Wiebel pointed out to me that the map Kff(Q) —> Kn{Q) 

is not injective for n > 4. 
3Remark added in proof: The formulation of this conjecture should be modified; in the 

present form it is easily seen to be false even in degree 4. 
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(4.5) Transfer (Bass and Tate [2], Kato [12]). If E/F is a finite extension, 
then it is possible to define canonical homomorphisms NE/F' Knfö) —• Kff(F), 
which satisfy the usual properties of transfer and are completely characterized 
by the following reciprocity formula: 

(4.5.1) If C/F is a complete regular curve, then for any u G ÜT7Ĵ _1((7) one has 
T<x<ECNF(x)/F(dx(u))=n. 

REMARK 4.5.2. The following diagram commutes: 

K*<{E) N%F K}f{F) 

l Ï 

Kn(E) "%F Kn(F) 

Milnor if-theory is closely related to homology properties of GLn. 

THEOREM 4.6 [29]. Let F be an infinite field. Then the homomorphisms 
Hn(GLn(F),Z) -• Hn(GLn+i(F),Z) - • • . . - > Hn(GL(F),Z) are isomor­
phisms. Moreover, the homology product 

F* ® • - - ® F* = ffi(GLi(F)) ® • • • ® H^GL^F)) -> Hn(GLn(F)) 

defines an isomorphism 

K™(F) - • frn(GLn(F))/irn(GLn-i(F)) = Hn(GL(F))/Hn(GLn-i(F)). 

The last theorem provides a homomorphism 

f:Kn(F) = 7rn(BGL(î )+) -+ Hn(BGL(F)+) 

= Hn(GL(F)) -> ün(GL(F))/ün(GLn_!(F)) = K™(F). 

PROPOSITION 4.5 [29]. (a) The composition K*f(F) -• Kn(F) -• K*f(F) 
coincides with multiplication by (—l)n-1(n — 1)! 

(b) The composition Kn(F) —• Kff(F) —• Kn(F) coincides with Ghern class 
cntn-

COROLLARY 4.7.1. The kernel of the homomorphism Kff —• Kn(F) is 
annihilated by (n — 1)\. 

COROLLARY 4.7.2. Suppose that O is a discrete valuation ring with fraction 
field F and residue field k. Then the diagram 

K3(F) ± KM{F) 
a[ la 

K2(F) 4 K2(F) 

commutes. 

In connection with Milnor's conjecture (4.3) we will mention also Proposition 
4.8. 
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PROPOSITION 4.8 [29]. The image of the homomorphism f:K3(F) - • 
K^(F) coincides with the kernel of Milnor1 s homomorphism 

K™(F)-+I3(F)/I4(F). 

5. Ks and Bloch's group. For any field F denote by D(F) the free abelian 
group with basis [x] (x G F* -1) and by r: D(F) —• F*®F* the homomorphism 
[x] »-• x®(l-x). There is an involution s on F*®F*, given by s(a®b) = -(6®a). 
It is easy to verify that the induced homomorphism D(F) —y (F* <8>F*)3 is trivial 
on elements of the form 

[x] - [y] + g ] - 1-aT 

U-r + 
1-x 
1 - 2 / 

(x^yGF*- 1). 

We will denote by T(F) the factor-group of D(F) by the subgroup, generated 
by the above elements. The kernel of the induced homomorphism T(F) —• 
(F* <8>F*)3 is denoted B(F) and is called the Bloch's group of JP. Thus we have 
an exact sequence 0 - • B(F) - • T(F) -* (F* ® F*)3 - • K2(F) -> 0. For x ^ 1 
put (x) = [x] + [a;-1]; put also (1) = 0. 

LEMMA 5.1 . (a) x i-+ (x) defines a homomorphism F* —• 2T(F); in partic­
ular, (x2) = 0. 

(b) TAe element c = [x] + [1 — x] G T(F) rfoes noi depend on the choice of 
xeF*-l. 

(c) 3c = < - ! > . 
(d) i / equation x2 + 1 = 0 Äas solutions in F, then 3c = 0; z/ equation x2 — 

x + 1 = 0 ftas solutions in F, then 2c = 0. 

The group J3(F) has the following relation to K3(F). Denote by GM(F) the 
subgroup of GL(F), consisting of monomial matrices. This group is quasiper-
fect, so one can apply to BGM(F) Quillen's plus-construction. The homotopy 
groups of BGM(F)+ coincide in view of the Barrat-Priddy-Quillen theorem with 
stable homotopy groups of BF* and hence are more or less understandable. The 
imbedding GM(F) ^ GL(F) induces a map BGM(F)+ - • BGL(,F)+ and hence 
homomorphisms irf(BF*) = 7r^(BGM(F)+) —• Ki(F). These homomorphisms 
are surjective in dimensions < 2. 

THEOREM 5.2 [33]. If the field F is infinite, then 

coker(7r3(BGM(F)+) -+ K3(F)) = B(F)/2c. 

The proof is done by means of homological methods. One proves first of all 
that 

coker(7r3(BGM(F)+) - • KS(F)) = coker(Hs(GM(F)) — HS(GL(F))). 

Next one computes U3(GL2(F))//Ì3(GM2(ir')). This step is very close to the 
proof of Bloch's theorem [6]. Consider the complex C*(F) with Ci(F) equal to 
the free abelian group, generated by (i + l)-tuples (XQ, ..., Xi) of distinct points 
of P 1 ( F ) . It is easy to see that all homology groups of this complex are zero, 
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except for Ho, which is equal to Z. The natural action of GL2CF) on C*(F) gives 
rise to a spectral sequence HP(GL2(F), Cq(F)) => Hp+q(GL,2(F), Z). The action 
of G1>2(F) on the basis of C{(F) is transitive for i = 0,1,2 and the stabilizers of 
(0), (0, oo), (0,oo, 1) are correspondingly equal to B2 = (FQ ^* ), T2 = (FQ j?„ ), 
and F*. Thus the term E1 of the spectral sequence looks as follows: 

* * 

H*(B2) H*(T2) H*(F*) U Z[x) U Z[x,y] 
scGPHJ'MO.oo.l} as^f/eP1 (^ - {0 ,00 ,1} 

where [a;] (resp. [x,y]) is the orbit of (0, oo, l,x) (resp. (0, oo, l,x,y)). Using 
the fact that ii*(S2) = Ü*p2)3 one computes easily the differential d\. The 
interesting ü^-terms look as follows (s is the involution induced in H*(T2) by 
the permutation of factors): 

H3(T2)s 
H2(T2)s = H2(F*)®(F*®F*)3 (F*®F*)a 0 
F* 0 0 
Z 0 0 T(F) 

The only nontrivial differential starting at T(F) is the differential d3:T(F) —• 
H2(F*) © (F* (g) F*)a , which is given by the formula d3([x]) = x A (1 - x) -
x <g> (1 - re) G A2(F*) + (F* ® F*)fl. It is clear that Effe = kercfe = B(F). 
Our spectral sequence defines a filtration on H3(GJJ2(F)). We have also a fil­
tration on H3(GM.2(F)) arising from the Hochschild-Serre spectral sequence, 
corresponding to the extension 1 —> T2 —• GM2CF) —• S2 —> 1. In both 
cases the zero's term of filtration coincides with the image of H3(T2). Thus 
the homomorphism H3(GM2(F)) - • H3(GL2(F)) takes i73(GM2(F))0 onto 
iif3(GL2(.F))0. Comparing the ü^i-terms °f the spectral sequences under con­
sideration, one shows easily that H3(GM2(F))1 is mapped onto H3(GL(F))1. 
Finally H3(GM2(F)) = H3(GM2(F))1 + H3(S2) and the image of H3(S2) in 
H3(GL2(F)) is clearly contained in H3(T2). Thus 

Ü3(GL2(F))/Ü3(GM2(F)) = H3(GU(F))/H3(GU(F))1 = E£3 = B(F). 

Next one checks that the kernel of H3(GIt2(F)) —• H3(GL3(F)) is contained 
in the image of Ü3(GM2). After that one has only to compute the intersec­
tion of H3(GL2(F)) and H3(GM(F)) in H3(GL(F)). In view of the isomor­
phism H3(GL(F))/H3(GL2(F)) = K^(F), this is equivalent to the compu­
tation of the kernel of H3(GM(F)) —• K$*(F). The answer is as follows: con­
sider on H3(GM(F)) the filtration, arising from the Hochschild-Serre spectral se­
quence; then H3(GM(F))2nH3(GL2(F)) = H3(GM2(F)). Since H3(GM(F)) = 
H3(GM(F))2 + H3(S) we deduce that 

H3(GL(F))/H3(GM(F)) = B(F)/lm(H3(S)) 

and it is sufficient to check now that lm(H3(S)) = 2c. 
To apply Theorem 5.2 it is necessary to know the group 7r3(BGM(F)+) and 

its image in K3(F). Using the spectral sequence Hi(F*,n?(pt)) =>• rf+^BF*) 
one easily proves Proposition 5.3. 



236 A. A. SUSLIN 

PROPOSITION 5.3. Denote byK3 (F) the image ofK^(F) inK3(F) and by 
G (resp. Gp) the subgroup of GM, consisting of monomial matrices with entries 
±1 (resp. with entries from the group p, of roots of unity). 

(a) Im(7T3(BGM(F)+) - K3(F)) = K3 (F) +lm((>K3(BGp)+) - K3(F)). 
(b) There is a canonical surjective homomorphism Tor(/u, p) = Tor(F*,F*) —y 

lm(ir3(BGM(F)+))/KM(F) + Im(7r3(BG+)).4 

COROLLARY 5 .3 .1 . The group B(F) does not change under purely transcen­
dental extensions. 

COROLLARY 5 .3 .2 . Denote by Fo the subfield of constants in F. Then 
K3(F)/K3(F0)+K™(F) = B(F)/B(FQ). 

In the case of K3, Conjecture 4.1 may be specified as follows: 

CONJECTURE 5.4. B(F) = B(FQ). 

We will need below two slightly different descriptions of B(F). 
(5.5) Denote by F* (g) F* the factor group of F* ® F* by the subgroup gen­

erated by elements a ® (—a), and by T"(F) the factorgroup of T(F) by the 
subgroup generated by elements (a). Since r({a)) = a® (—a) we get an induced 
homomorphism T'(F) —> F* ® F*, whose kernel we will denote by B'(F). 

LEMMA 5 .5 .1 . B'(F) = B(F)/(-l). 

(5.6) One can describe B(F) equally in terms of relations on a<8>(l —a) directly 
in F* ®F*. It is easy to verify that 

(w-w+[g-[££]+N) 
1-x 

= x®- + 
1-2/ 

£ ï « - ' ( ( 4 H ) - W - ( I H ) ) 
Thus the kernel of r contains elements 

~ l - a : H-w £]-[££ + 1 - 2 / 

-\x\-— ) + <*) + ( i - ^ ) 
\ \ - y / \l-J//(^j,^--i) 

(xyz) - {xy) - {xz) - {yz) + (x) + {y) + (z), 

(x*)-4(x) 
(where, as always, (1) = 0). Denote by TH(F) the factor group of D(F) by 
the above elements, and by Bn(F) the kernel of the homomorphism TU(F) —> 
F*®F*. 4Remark added in proof: More precisely, the relation between K3(F) and B(F) is given 
by the exact sequence 0 -» Tor(F*,F*)~ - • K3(F)ind - • B(F) - • 0 where K3(F)ind = 
K3{F)/K^(F) and Tor(F*,F*)~ is the unique nontrivial extension of Z/2 by means of 
Tor(F*,F*). 
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LEMMA 5 . 6 . 1 . Bn(F) = B(F). 

6. Divisibility in Bloch's group.5 All fields considered in this section are 
supposed to contain an algebraically closed subfield. 

Suppose that F is a discretely valuated field with valuation ring O and residue 
field k. Choose a local parameter TT. This choice defines a homomorphism 
Sn'.F* —• k*:x \-y X/IïV(<X) and induced homomorphisms F* <g> F* —• fc* ® fc*, 
F* ® F* —* fc* ® fc*. We will take a: = oo for x fi O and we will define elements 
[0],[oo],[l] eT'(fc) as zero. 

LEMMA 6.2. [x]t-+ [x] defines a homomorphism T'(F) A T'(fc). Moreover, 
the following diagram commutes: 

Tf(F) -y F*®F* 
si s„ I 

T'(k) -> fc*<g)fc* 

Hence s takes B'(F) to Bf(k). 

If E/F is a finite extension, then NE/F:K3(E) —> K3(F) defines in view of 
(5.3) and (4.5) the transfer NE/F:B(E) —y B(F). A slight modification of the 
proof of (2.3) now gives 

PROPOSITION 6.2. Let G be a smooth connected curve over an algebraically 
closed field F. For any two points x,y E G the specialization homomorphisms 
8x,sy:B(F(C)) —y B(F) coincide on B/n and nB. 

THEOREM 6.3. If F is algebraically closed, then B(F) is uniquely divisible. 

Since F* ®F* and K2(F) are uniquely divisible, it is sufficient to prove the 
unique divisibility of T'(F) = T(F). The divisibility of T(F) was proved in [6]. 
It follows from the formulae [xp] = p(J2çep [&]) (P 7̂  charF), [xp] = p2[x] 
(p = charF), which are valid for any field F. To prove these formulae consider 
the element [tp] - p ( £ € € p [#]) e B(F(t)). Since B(F(t)) = B(F) this element 
coincides with any of its specializations. But specializing at zero we get zero. 
Now, to prove the unique divisibility, we will define a homomorphism T'(F) —y 
T'(F) inverse to multiplication by p by means of the formula [x] —> J2yp=x[y]-
We have to check that the defining relation on [x] goes to zero, i.e., to check the 
formula (where u, v, w fi p,p U 0 and wp = (1 - up)/(l — vp)): 

E M - E M + £ [ * • « / « ] 
£e/2p Çepp tepp 

îefjip i€nP 

Note that this element lies in PB(F). Now fix w and consider the curve G, given 
by equation (1 — Vp)wp = 1 — Up. We can consider the universal element in 

5 Remark added in proof: A different and much more powerful approach to the study of 
divisibility in Ä3(-F)ind (and hence in B(F)) is developed in [46]. 
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pB(F(C)) for which the element under consideration is a specialization. Special­
izing this element in the point U = 1, V = 1 we will get zero and it is sufficient 
to apply Proposition 6.2. 

Suppose from now on that char F ^ 2. Let E/F be a quadratic extension: 
E = F(a), a2 = a e F*. Denote by A the image of E* ® F* ^ E* ® E*. 
One sees easily that NE/F <g> id: E* <8> F* —• F* ® F* induce a homomorphism 
N: A -> F* <g> F*. Let Tn(E/F) denote the inverse image of A in T " ^ ) . It is 
not difficult to find generators and relations for this group. The important point 
is that relations are of "rational character" (i.e., may be parametrized by means 
of F-rational varieties). 

PROPOSITION 6.4. There exists a canonical homomorphism ( given by ra­
tional formulae) LE/F:T"(E/F) —y T"(F), making the following diagram com­
mutative 

Tn(E/F) - A 

LE/F l N i 

T"[F) - • F*®F* 

and hence inducing the homomorphism LE/F:B(E) —> B(F). 

LE/F is given explicitly on generators. To check that relations go to zero one 
remarks that the image of any relation is a rationally parametrized element of 
B(F) and hence should be zero. 

THEOREM 6.5 . Denote by t the generator of Gsi(E/F). The following se­

quence is exact: B(E) x^> B(E) L^F B(F). 

As in the proof of (1.5) we reduce, first of all, the general case to the case 
where NE/F:E* —> F* is surjective. In the present situation this is trivial: to 
make 6 G F* a norm it is sufficient to pass to the function field on a conic G 
with equation X2 — aY2 = b. The field E(C) is purely transcendental over E 
and hence B(E(C)) = B(E). Thus 

ker LE/F/(1 - t)B(E) — ker L E ( C ) / F ( C ) / ( 1 - t)B(E(C)). 

Supposing now that NE/F:E* —> F* is surjective we define a map f:Tn(F) —* 
Tn(E/F)t by means of the formula 

/([*]) = ["*] + [(1 + *')*/(! + *)] - h ( l + **)/(! + *)], 
where z G E* is such that NE/F(z) = x and Tr(^) ^ - 2 . One verifies then that 
/ and LE/F are mutually inverse. Set M = lm(T"(E/F) —•A). We get two 
short exact sequences of ^-modules: 

0 -> B(E) - • Tn(E/F) — M - > 0 , 0 — M - » A - > K2(E) - 0. 

One computes easily the homology groups of G = Gal(E/F) with coefficients in 
A and K.2(F) (in the second case using essentially the results of §1). This makes 
it possible to compute homology with coefficients in M:Hi(G,M) = Z/2. Now 
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it is easy to check that Hi(G,TN(E/F)) —• H\(G,M) is surjective and hence 
(1 - t)T"(E/F) fi B(E) = (1 - t)B(E). 

Applying (6.5) to the universal Kummer Extension we get 

COROLLARY 6.6. For any F (containing an algebraically closed subfield) of 
characteristics ^ 2 the group B(F) does not have 2-torsion. 

THEOREM 6.7. In conditions of (6.6) the group B(F) is uniquely 2-divisible.6 

(6.7.1) Let C be a conic over F. If B(F) is 2-divisible then B(F(C)) is also 
2-divisible. 

Let E be a quadratic extension of F splitting C. If u G B(F(C)) then 
2u = NE(C)/F{C)(U>E(C)) = NE/F(UE(C))F{G) (since B(E(G)) = B(E)). We 
can write NE/F(uE^c)) — 4v and hence u = 2vF(c)-

COROLLARY 6 .7 .2 . If F is a function field on a product of conies defined 
over an algebraically closed field, then B(F) is 2-divisible. 

Using the description of the 2-torsion in K2 one can easily prove the exactness 
of the sequence 0 - • B(F)/2 - • Tf(F)/2 - • A2(F*/F*2). This makes it possible 
to write down the universal elements of B/2. Fields of definition of these univer­
sal elements are function fields on products of conies, so we deduce from (6.7.2) 
that these universal elements are zero. The specialization argument finishes the 
proof. 

COROLLARY 6 .8 . Let F be as above and let Fo denote its subfield of con­
stants. Then K3(F) = K3(F0) + K^(F) + 2K3(F). 

COROLLARY 6.9 . For F as above, K$*(F)/2 ^ I3(F)/I4(F). 

In fact, ker(K$*(F) - • I3/I*) = lm(K3(F) - • K$*(F)) but the image of all 
three terms, which appear in (6.8), is clearly contained in 2K3

Î(F). 

COROLLARY 6.10. Let F be as above and let X/F be a smooth variety. 
Then the images of (K3(F(X)) -> L L d i m ^ i K2(F(x))) and (K™(F(X)) -
Ucodims=i^2CF(z))) coincide.1 

REMARK 6.11. It seems that (6.10) together with Merkurjev's Theorem 3.3 
are sufficient to prove Hubert's Theorem 90 for K^1 (for quadratic extensions) 
and, in particular, to prove that K3

s(F)/2 = H3(F,p,2); but we have not yet 
checked all the details.8 

7. Higher Chow groups. To visualize the relations between if-theory and 
etale cohomology Beilinson [3] conjectured the existence of a certain "universal" 
cohomology theory on the category of schemes, which is directly related both 
to üf-theory and to etale cohomology (this theory should be analogous to the 

6Remark added in proof: The group B(F) is uniquely divisible for any F, containing an 
algebraically closed subfield [46]. 

7 Remark added in proof: Statements 6.9 and 6.10 are true for any field F [46]. 
8Remark added in proof: Hilbert's Theorem 90 for K$f(F)/2 = H3(F,ß2) are proved in 

[45, 48]. 
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integral singular cohomology theory in topology). A closely related list of con­
jectures was proposed by Lichtenbaum [15]. According to Beilinson there should 
exist complexes of sheaves T(i) on the big Zariski site, satisfying (among others) 
the following properties: 

(a) T(i) = 0 for i < 0, T(0) = Z, T(l) = 0*[-l]. 
(b) For % > 1 the complex T(i) is acyclic outside 1,... ,i\ for a smooth X, 

Hl(T(i)) coincides with the sheaf of Milnor groups Kf1. 
(c) For any n invertible on a "good" smooth X one has T(i) ®L Z/n = 

T<iRir*Z/n[i], where 7r:Xet —> Xzar is the canonical morphism. 
(d) There exists a spectral sequence Hl(X,T(j)) =>> K^^X), which is split 

up to standard factorials by means of Chern classes. The resulting filtration on 
if'-theory coincides with 7-filtration. 

Recently Bloch has constructed a theory which satisfies properties (a) and 
(d). There is no doubt that this is the expected theory, but it is very difficult to 
attack the remaining properties. We will work in the category of quasiprojective 
varieties over a field. Define the standard simplex An as a hyperplane in An+1, 
defined by the equation to + • • • + tn = 1. An form a cosimplicial variety. For 
any variety X define zl(X,n) to be a subgroup in the group Z%(X x An), con­
sisting of those cycles which properly intersect X x Am for any face Am C An. 
z%(—,—), is clearly a complex (of degree —1) of sheaves in any reasonable topol­
ogy; the expected complex T(i) is obtained from z%(—, —) by reindexing. Bloch 
set CEP (AT, n) equal to the nth homology group of zl(X, -) (the group CIP (X, 0) 
coincides evidently with Chow groups of cycles of codimension i modulo rational 
equivalence). The groups G&(X, n) are contravariant functors of X with respect 
to flat maps; one can define the inverse image on CB.l(X,n) with respect to ar­
bitrary maps if one restricts to the subcategory of smooth varieties. The groups 
GTXi(X,n) are covariant functors of X with respect to proper maps. Bloch has 
also proved the following properties of GR%(X, n): 

(7.1) Cff(X,n) are homotopy invariant: Clf (X,n) = G&(X xA\n). 
(7.2) Localization. If Y C X is a closed subvariety of pure codimension d, then 

there is an exact sequence Cff (X - Y,n + 1) -+ Cff_d(y,n) -> Cff(X,n) -• 
CH*(X -Y,n)-> y GW(X - Y,0) -• 0. 

(7.3) Products. For any X, Y there are canonical pairings GHl(X,n) ® 
CR3 (Y,n) —• CH2+J(X xY,n + m). Combining these products with inverse 
image along the diagonal one gets on CH*(X, *) (for X smooth) a structure of 
bigraded ring. 

(7.4) 

Î
PicX, q = 0, 

T(X,a*x), q=l, 
0, q = 2. 

(7.4) Relations to K-theory. Bloch shows that GR*(X,*) satisfy the Gillet 
axioms [44] and hence there is a theory of Chern classes with values in CH* (X, *). 
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He proves that these Chern classes define isomorphisms 

Cff(X,n)®Q = gr*Kn(X) ®Q. 

(7.5) Gersten conjecture is true for GHl(X,n). 
The spectral sequence relating higher Chow groups to if-theory was con­

structed earlier by Landsburg [13]. 
Consider the case of a field. It is clear that C£P (Spec F, n) = 0 when n < i. 

One can easily verify also that CHn(SpecF, n) = Kff(F). These facts corre­
spond exactly to the properties conjectured by Beilinson in (b) above. However, 
the remaining point of (b) means that CH1 (Spec F,n) = 0 when n > 2%. This 
seems to be an extremely difficult question for i > 1. Finally, we mention that 
the group CH2 (Spec i*1,3) coincides with K3(F)/K^(F) and thus is very close 
to Bloch's group B(F). 

8. Etale if-theory. For any simplicial scheme X one can construct a certain 
pro-space Xet—its etale topological type [1, 8]. X H+ Xet is a functor from 
schemes to pro-spaces. The main property of Xet is that its fundamental group 
coincides with the fundamental group of X as defined by Grothendieck, and its 
cohomology groups with finite coefficients coincide with etale cohomology groups 
oîX. 

For a variety over G its etale if-theory may be defined as complex if-theory 
of the pro-space Xet. In the general case, one can proceed as follows [7]. Fix a 
prime integer I and denote Zty-1] by R. We will consider only schemes over R. 
For any X one has morphisms of pro-spaces 

Xet - • ( S p e c Ä ) e t <- (BGL„)ot . 

Consider now the space of relative Z-adic functions [7, 8] 

Hom,(Xet,(BGLn)et)fiet 

and set 
Kf(X) = lnn7ri(Hom,(Xet,BGLn)et)ßet) 

n 

and 
Kf(X, Z/n = limTT^Hom êt, (BGLn)et)Ret,Z/n. 

n 

Etale üf-theory is easy to compute in view of spectral sequences relating it to 
etale cohomology (which are strongly convergent if X has finite Z-cohomological 
dimension) 

E?« = H^XeuMqß)) => Kf_p(X), 

E™ = H*>(XeU Z/l"(q/2)) * Kf_p(X, Z/F), 

(E^9 is zero if q is odd). 

For X quasiprojective over a noetherian iî-algebra there are natural maps K{(X) 
-> iff (X), Ki(X, Z/n - K?{X, z/n. 
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THEOREM 8.1 [7]. Let A be the ring of integers in an algebraic number field 
F and let I be a prime integer. If I = 2 assume, in addition, that F 3 y/—ï. 
Then the natural map 

Ki(A)®Zl^Kf(A[l/l]) 

is surjective. 

It should be mentioned that Quillen-Lichtenbaum conjectures for number 
fields are equivalent to the fact that the homomorphism considered in (8.1) is 
bijective. 

Let A be an iü-algebra, containing a primitive P t h root of unity £. The 
group TT2(BA*,Z/lu) coincides with the group \»A of Z^th roots of unity in A. 
The image of £ under a canonical homomorphism ^(BA? ,Z/lv) —• K2(A, Z/V) 
(induced by the evident morphism BA* —> BGL(A)+) is denoted by ß and is 
called the Bott element. Let X be a scheme of finite /-cohomological dimension 
over A. It is easy to see that etale if-theory of X, Ket(X, Z/T), is 2-periodical 
and this periodicity is given by multiplication by ß. Thus we get an induced map 
KtiXtZ/l^lß-1] - • Kf(X,Z/lv) (one has to be more careful when / = 2 or 
3 since in these cases there are difficulties with ring structure on K*(X,Z/lv)). 
The fundamental result, relating algebraic and etale if-theory is the following 
theorem of Thomason [38]. 

THEOREM 8.2. Under mild additional hypotheses (see [38] for the exact 
formulation) the induced map 

K.frz/ni/r1]^ K?(x,z/n 
is an isomorphism. 
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