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PETEE D. LAX* 

Problems Solved and Unsolved Concerning Linear 
and Nonlinear Partial Differential Equation 

Ouïrent research in partial differential equations is extensive, varied and 
deep. A single lecture, if it is not to be a mere catalogue, can present only 
a partial list of recent achievements, some comments on the modern 
style, i.e. the kinds of problems chosen and methods used for solution, 
and cautious speculations on future trends. The choice of examples is 
of course shaped by the personal taste of the speaker and limited by his 
expertise. 

The first part of this lecture is such an overview; it is followed by 
a more detailed discussion of two topics with which the speaker has some 
familiarity, one concerning a linear, the other a nonlinear problem in 
partial differential equations. 

la. Linear problems 

In the last few years a number of problems concerning linear partial 
differential operators on manifolds with boundaries have been solved or 
are nearing solution. Thanks to the researches of Melrose [30], Taylor 
[37], Ivrii and others we understand well the propagation of signals 
along reflected, glancing and gliding rays, the clue to many problems in 
diffraction and scattering. Microlocal analysis, the modern version of 
wave-ray duality, has provided the tools: pseudo-differential operators, 
Fourier integral operators, Hamiltonian flows and Lagrange manifolds. 
In his recent work Charles Eefferman [15] makes use of a sophisticated 
version of the uncertainty principle. Another versatile modern technique 
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is the use of trace formulas to link spectral and geometric information. 
The view from scattering theory has also been useful. 

Por a thorough documentation of the successes of the modern theory 
of linear partial differential equations we have to await the publication 
of Hörmander's 3-volume treatise [19], but it is clear that the successes 
have been so sweeping that they have radically altered the course of 
research in this field. I believe that in the future we shall see more appli­
cations of the methods and results of the theory of linear partial differ­
ential equations to other fields of mathematics ; examples from the past 
are of use of PDE methods in several complex variables and quasicon­
formal mappings. We are likely to see more special questions raised, from 
sources inside and outside mathematics, and more detailed answers given; 
mere preoccupation with existence and uniqueness questions is likely 
to diminish. 

Section 2 contains a brief description of wave propagation on complete 
manifolds of constant negative curvature. One of the tools used is the 
Kadon transform, less popular than its more glamorous sister, the Fourier 
transform, but more appropriate in some situations. See also [18]. 

lb« Nonlinear problems 

The strides that have been made recently in the theory of nonlinear 
PDE's are as great as in the linear theory. "Unlike the linear case, no 
wholesale liquidation of broad classes of problems has taken place; rather 
it is steady progress on old fronts and on some new ones, the complete 
solution of some special problems, and the discovery of some brand new 
phenomena. The old tools — variational methods, fixed point theorems, 
degree of mapping and other topological methods — have been augumented 
by some new ones. Preeminent for discovering new phenomena, is numeri­
cal experimentation; but it is likely that in the future numerical calcu­
lations will be part of proofs. 

We shall discuss, very briefly, three topics : 
(i) Viscous, incompressible flows. 

(ii) Hyperbolic systems of conservation laws and shock waves. 
(iii) Completely integrable systems. 

(i) Viscous, incompressible flows. In spite of a claim by Kaniel, [21], laid 
to rest by D. Michelson, the existence for all time of strong solutions of 
the JTavier-Stokes equation, and the uniqueness of weak solutions, in 



Problems Solved and Unsolved Concerning Linear and Konlinear PDE 121 

three-dimensional space are very much open questions. We have learned 
more about the singularities of weak solutions, in particular about the 
Hausdorff dimension of the singular set. Already Leray has shown that 
every solution is continuous if we eliminate a closed set of t with zero 
Hausdorff measure of dimension 1/2. B. Mandelbrot has raised the question 
of what the Hausdorff dimension of the possible singularities of weak 
solutions is in space and time. The first results on this important question 
were obtained by V. Scheffer [34] ; the latest word is the following the­
orem of Oaffarelli, Kohn and Nirenberg [6]: 

The one-dimensional Hausdorff measure of the set of singularities 
of a suitable weak solution in x, «-space is zero. 

Turbulence, surely one of the outstanding problems of mathematics, 
can be described by the long-time behavior of typical solutions of the IsTS 
equations. When viscosity is large compared to the force driving the 
flow there exists exactly one stationary flow to which all flows tend. 
As the force is increased, this stationary flow becomes unstable, i.e. any 
slight perturbation drives it away, perhaps to another, stable, stationary 
flow. When the force is increased still further, this too becomes unstable 
and the flow tends to yet another stationary flow or possibly to a periodic 
flow. As the force is increased further the flow becomes more and more 
chaotic. This chaotic flow is concentrated around a so-called attractor 
set, i.e. a set consisting of points of accumulation of a single flow driven 
by a force that is independent of t. Such sets are invariant under the 
Navier-Stokes flow; concerning these Foias and Temam have proved 
the following, see [17]: 

A bounded set that is invariant under the strong ÏTavier-Stokes flow 
in a bounded domain has finite Hausdorff dimension. 

The dimension of such sets may go to infinity as the viscosity tends 
to zero. 

Further results along these lines have been obtained by P. Constantin 
and 0. Foias. 

The simplest testing ground for ideas of instability and turbulence 
of viscous fluids are the Oouette-Taylor flows, i.e. flows between two 
concentric cylinders, the inner one rotating with some angular velocity a>. 
If the cylinders have infinite length, then there is a stationary flow that 
is independent of the angle 0 and distance z along the axis of the cylinders. 
For o low enough this flow is stable; as co increases, this flow becomes 
unstable, yielding stability to another, «-dependent, flow consisting of 
a stack of Taylor vortices, named after their discoverer. As co increases 
further this flow, too, becomes unstable and gives way to a 0-dependent, 
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periodic flow; further increase in co leads to more and more complicated 
flows. 

There is a wealth of experimental studies of Couette-Taylor flowsy 

revealing a bewildering variety of steady and unsteady flows, see e.g. 
Benjamin, [3]. The understanding of these (which must also take into 
account the finiteness of the cylinders) is a profound challenge to theor­
etical and computational fluid dynamicists. 

Flows without any driving force to maintain them decay because 
the viscous forces dissipate energy. Eecently Foias and Saut [16] have 
shown that the rate of decay is exponential, the same as for the correspond­
ing linearized Stokes flow; they have further shown that the Stokes 
and the Javier-Stokes flows are linked by a wave operator. 

When viscosity is zero, as in the Euler equation, no imposed force 
is needed to maintain the flow. Existence and uniqueness is known in 2 
dimensions but is doubtful when n = 3. Extensive calculations by S. Or-
szag and his colloborators on the Taylor-Green vortex problem, [31]y 

reveal a bewilderingly complicated flow; as time goes on, smaller and 
smaller scale features appear until the numerical method — a spectral 
method keeping track of more than 100 million Fourier coefficients — 
is unable to resolve them. Another set of calcinations by Orszag employs 
the Taylor series in time, up to order 88, summed in a cunning fashion 
to elude singularities in the complex «-plane; the features revealed in the 
two calculations are similar. 

Another set of calculations, not nearly so machine-intensive as Or-
szag's has been performed by Chorin, see e.g. [8]. He considers an initial 
value problem, periodic in space, where vorticity is initially confined to 
a narrow, slightly crooked tube. The basic variable is vorticity, and the 
calculation takes into account that the vorticity is confined to the tube, 
which stretches and twists with the flow. Using a number of bold simpli­
fications the calculation is carried out long enough to indicate that after 
a finite time the vortex tube will be stretched so thin that its Hausdorff di­
mension becomes ^2.5, a prediction of Mandelbrot's, [29]. Another 
calculation by Chorin, employing a rescaling reminiscent of the renor-
malization group of physicists, leads to the same conclusion. 

(ii) Hyperbolic systems of conservation laws and shock waves. A system 
of n conservation laws in one space variable x and in t is of the form 

Mt+fWx = <>> 
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u(x, t) in Rn\ the system is strictly hyperbolic if the matrix Vf(u) has 
real eigenvalues for every u in Rn. 

The basic problem is the initial value problem: given u(x, 0) = uQ(œ), 
show the existence of a solution u(oo91) for all t, in the class of discon­
tinuous functions, satisfying the conservation law in the sense of dis­
tributions, and an entropy condition of the form 

where s =s(u) is an entropy, g =g(u) entropy flux. The two satisfy 

Vs Vf - Vé, 

and s is required to be a convex function of u. 
Numerical evidence indicates strongly that various difference schemes 

for solving conservation laws converge; yet until recently no proof had 
been given for systems with more than one state variable u. Similarly, 
physics strongly suggests but mathematics had been unable to prove 
that if u = u8(x, t) solves the viscous equation 

«i+/(«)« = eI){u)xx, fi>0. 

U(X, 0) = M0(x), 

D an appropriate nxn viscosity matrix, then as e tends to 0, uB(x,t) 
converges to a solution of the system of conservation laws that satisfies 
an entropy condition. 

This year Eon Di Perna [12], succeeded in proving such convergence 
theorems for the equation governing the isentropic flow of a gas satisfying 
a polytropic equation of state, with the artificial viscosity D == I. Among 
the many ingredients are two beautiful general ideas of Tartar and Murat, 
[36]. One is a characterization of strong convergence in terms of weak 
convergence: 

Suppose Uj(y) is a sequence of mappings from Rk to Rm, uniformly 
bounded in L00; then there is a subsequence such that for every con­
tinuous function g in Rm the weak limits 

•w-limg (u^y)) 

exists. These limits can be represented as 

Jg(u)dvy(u), 

where vv is a probability measure in Rm parametrized by y in Rm. The 
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subsequence Uj converges strongly if the measures vv have, for each y, 
a single point as support. 

The second idea is compensated compactness: Let Vj and tty be two 
sequences of mappings from Rk to Rkm, if both converge weakly in the L2 

sense to v and w respectively, and if div^- and curl to, lie in compact sets 
in the fi^J topology, then 

lim f Vj'Wjdy = jvwdy. 

Tartar himself has used these ideas to prove the convergence of viscous 
solutions for scalar conservation laws; Di Perna has shown how to 
use them for systems with two variables. 

Very little is known about existence of discontinuous solutions in 
more than one space variable; even short time results are of recent origin, 
see A. Majda's report to this Congress. Tet numerical calculations, done 
with care and ingenuity, see e.g. Oolella and Woodward, [10], converge 
and give solutions consistent with experiements. 

In one-space dimension we know, at least for simple systems, that 
shock formation and interaction severely limit the amount of information 
that a one-dimensional flow field can contain. Something similar must be 
true in higher dimension, but the mechanism causing it is not understood. 

In his report to this Congress, S. Klainerman will describe some recent 
results on long term existence of regular solutions of the initial' value 
problem for non-linear hyperbolic equations in several space variables. 

The question of uniqueness, subject to an entropy condition, is not 
satisfactorily settled even in one-space dimension, not even for the equation 
of compressible flow, in spite of the important pioneering work of Oleinik, 
and more recent work of Di Perna. 

There are intriguing open problems concerning stationary transonic 
flows around given contours, with volocity prescribed at infinity. An 
ingenious method of Garabedian yields large families of aero-dynamically 
interesting smooth flows, but a basic theorem of Morawetz shows that 
for a generic contour no shockless flow exists. The basic problem is to 
prove the existence of a flow, with shocks, and to prove its uniqueness. 
Eecent numerical calculations of A. Jameson indicate that in the potential 
flow of approximation there may be many solutions. 

{iii) Completely integratile systems. This chapter in mathematics, barely 15 
years old, continues to fascinate analysts and algebraists, as well as physi­
cists. The effort has been truly international, and has paid off in the 
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discovery of new completely integrable systems, many of physical interst, 
.some containing two space variables, see Ablowitz and Fokas, [2], and 
JSakharov's report to this Congress. The algebraic classification of these 
systems has progressed, see van Moerbeke's report to this Congress, and 
new connections with other branches of mathematics and physics have 
been found, such as the r-function of Sato, Miwa and Jimbo, [33], see 
-Sato's and Takhtajan's reports to this Congress. Three books have ap­
peared recently on solitons and scattering theory [1], [7] and [41], and the 
work of Beals and Coifman, [4]. The speaker will restrict his remarks 
~fco a few scattered comments on the analytic side of the matter. 

(a) Solutions of completely integrable partial differential equations 
lie on infinite-dimensional tori. Numerical experiments with such equa­
tions, see e.g. [22], furnish numerical approximations that appear to lie 
•on tori, necessarily finite-dimensional. This indicates that some infinite-
dimensional analogue of the KAM theory might be true; no such result 
is known. 

(b) The sine-Gordon equation 

uu-uxx+smu = 0 

las explicit solutions 

,' % r m sW(l-m2«) 
u(x, t) = —4arctan —j==- -

|_|/l__m2 cosh ma? 
m< 1 

that decay exponentially in a? as |a?|->oo and are periodic in time. If the 
function sinw is replaced by g(u), Ooron [11] has shown that no such 
solution can exist when the time period T is < 27c/gr'(0); Ooron and Brezis 
•conjecture that there are no such periodic solutions of any period, except 
for very special functions g. 

(c) The explicit solution of the initial value problem for the KdV 
equation 

Ut--&UUx+e*Uœxx^0, 

u(x, 0) <= u(x) 

in terms of the scattering transform makes it possible to determine expli-
eitely the limit of the solution u(œ, t, e) as e->0. This rather interesting 
limit is described in Section 3. 
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These altogether too brief remarks on nonlinear PDE were confined 
mostly to problems arising in mathematical physics; it is the richest 
source of such material, but not the only one: geometry is another, see 
S. T. Tau's report to the Helsinki Congress [39]. The speaker has neither 
the knowledge nor the time to report on progress in this very active area­
in the last five years, but he cannot resist mentioning the very recent 
demonstration by Wente, Steffen, Struwe and Brezis and Coron of the 
existence of two surfaces of constant mean curvature spanning a pre­
scribed plane curve, not too large; the proof is a marvel of subtlety,. 
see Ambrosetti's report to this Congress. 

There hasn't even been enough time to mention all the subjects in 
mathematical physics that have been traditionally, but especially in 
the recent past, rich sources of problems in nonlinear PDE: elasticity 
theory, see Ball's report to this Congress, electromagnetic theory and,. 
more recently, magnetohydrodynamics. Two topics which need more 
help from mathematicians than they are getting now are multiphase 
flow and combustion, see e.g. [9] and [28]. In both it is of great import­
ance to understand the nature of turbulent regimes; but in multiphase 
flow, as in aero- and hydrodynamics, turbulence is detrimental; in com­
bustion it is beneficial since it promotes the mixing of fuel and oxydizer. 
On the other hand Shockwaves are detrimental for combustion, since 
they produce entropy which decreases the efficiency of conversion of 
heat into mechanical energy. 

2. The Laplace-Beltrami operator on complete Riemannian manifolds-
with constant negative sectional curvature 

In a series of papers, [24]-[27], E. S. Phillips and the speaker have ana-
lysed, fairly completely, the spectral properties of the Laplace-Beltrami 
operator on manifolds F as above in the case when F has infinite volume 
and is geometrically finite. This extends to all dimensions the previous 
work of Patterson, [32], in the case n = 2, and allows F to have cusps 
of all kinds. 

The universal cover of F is hyperbolic space Hn; F itself can be identi­
fied with the quotient Hn/r9 r a discrete subgroup of isometries of Hn. 
More concretely F can be identified with a fundamental polyhedron F 
of Hn mod R Conversely, if J1 is a discrete subgroup of the g^oup of all 
isometries, then BtJF = F is a complete Biemannian manifold with 
constant negative sectorial curvature; if F contains elliptic elements, F 
has harmless singularities along submanifolds. 
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We shall use the Poincaré model for Hn9 i.e. the upper half-space 
(x, y), x in Rn~l, y > 0, equipped with the metric 

The set of points at infinity, (ß9 0), oo, is denoted by B. 
The LP norm and Dirichlet integral, invariant under isometries of 

Hu, will be denoted by E(u) and D(u): 

*(*) =/ l* , l -^> -»(«0 = J(KI2+KI2)-
r 

The invariant Laplace-Beltrami operator L0 is defined in terms of these 
quadratic forms: 

S(u,L0v) =T—JD(u,v) 

for all 0JJ0 functions^ and v, 

L0 =y*(A+dy*)-(n-2)ydy, 

where A = ^dx2 is the Euclidean Laplace operator. Using the Friedrichs 
extension, L0 can be made into a nonpositive self-adjoint operator with 
respect to S. 

Similarly we denote the Z2 and Dirichlet integrals over F by SF(u) 
and BF(u)\ here u is any ÜJJ0 automorphic function with respect to a given 
discrete subgroup T of isometries, and JF is a fundamental polyhedron 
for F. In what follows we assume that F has a finite number of sides, i.e. 
that r is geometrically finite. 

Discrete subgroups can be classified by the geometric properties of 
their fundamental polyhedra F into the following classes : 

(i) JF is compact, 
(ii) JF is noncompact but has finite volume: 

V(F) « f dxäy 
=— < <*>> 

(iii) JF has infinite volume. 
The spectral properties of L0 are sharply different in these cases. 
In case (i) it follows by standard elliptic theory that the spectrum 

of L0 is standard discrete, i.e. pure point spectrum accumulating only 
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at —• oo. The present work is concerned mainly with case (iii); our results-
are: 

(a) L0 has absolutely continuous spectrum of infinite multiplicity-
in ( -00 , - i ( ^ - l ) 2 ) -

(b) L0 has at most a finite number of point eigenvalues, all located 
in the interval (—%(n—l)2, O). 

(c) L0 has no singular spectrum; even the point spectrum may be 
empty. However, Beardon and Sullivan [35] have shown that if JF contains 
a cusp of highest rank, then there is at least one point eigenvalue. We 
have a new proof of this result, Theorem 6.4 in [26]. 

Jßfrgensen, [20] has constructed interesting examples of groups of 
isometries of Jff3 whose fundamental polyhedron has infinitely many 
sides. For these, Epstein, [13], has shown that L0 has infinite-dimensionaî 
spectrum in (—1,0). 

Case (ii) is a curious mixture of (i) and (iii): L0 has absolutely con­
tinuous spectrum in ( — 00, —i(w—I)2)? but only of finite multiplicity^. 
which is equal to the number of cusps. There is no singular spectrum but 
there may be point spectrum, accumulating at —00. In many special 
cases it is known that this point spectrum is ample. In the general case,, 
Selberg has established a relation between the density of the point spectrum 
and the winding number of the determinant of the scattering matrix;, 
see also pages 205-216 of [24]. To give an absolute estimate of the number 
of point eigenvalues remains a challenging open problem. 

We return now to case (iii). Earlier studies of the continuous spectrum 
of L0 proceeded by constructing explicitly a spectral representation of L09\ 
the generalized eigenfunctions of L0 entering this spectral representation 
are Eisenstein series, constructed by analytic continuation. 

Our approach is entirely different; it is applicable to representing 
operators whose continuous spectrum has uniform multiplicity on the whole 
line. Let A be an anti-self-adjoint operator whose spectrum is of uniform 
multiplicity on the whole imaginary axis. Then the spectral representation 
for A can be thought of as representing the underlying Hilbert space JEC 
by L2(R,N), N some auxiliary Hilbert space whose dimension equals 
the multiplicity of the spectrum of A. 

Each / in S is represented by an L2 function K(a), a in R, the values 
of K lying in JT. Since A is anti-self-adjoint, Af is represented by ioK(a). 

Denote U(t) the unitary group whose generator is A: JJ(t) = expL4. 
Then 

U(t)f^eiaiK(a). 
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The Fourier transform of this representation with respect to a gives 
another representation of E by L2(R, N), where each / in JET is represented 
by 

jMfc(s), h =K. 

Then 

Af++-^Jc(s) 

and 
U(t)f*+1c(s-t), U(t) = expU. 

This is called translation representation. ' 
Of course, conversely, the Fourier transform of a translation repre­

sentation is a spectral representation. 
We show now how to construct a translation representation for the 

unitary group associated with the non-Euclidean wave equation 

îtti-Lu = 0 , 

where 

i = i o + m 
Note that if (a), (b), (c) hold then, apart of the finite point spectrum, L 
has continuous spectrum of uniform multiplicity on ( — 00, 0). 

The group associated with the wave equation consists of the operators 
mapping initial data into data at time t: 

U(t): {^(0),^(0)}^{^(^),^(«)}. 

The generator of U is 

A{u, <ut} = {ut, uu} = {%t, Lu} = {u, ut) L 0 J. 

Note that A2 = j _L thus L having continuous spectrum of uniform 

multiplicity on R_ is consistent with A having continuous spectrum of 
uniform multiplicity on iR. 
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Most properties of the non-Euclidean wave equation follow from 
standard hyperbolic theory: 

(i) The initial value problem is properly posed. 
(ii) Signals propagate with speed < 1. 

(iii) If the initial data are automorphic, so is the solution for all t. 
(iv) Energy is conserved, where 

/ w - l \ 2 

E = E(ut)-E(u, Lu) = E(ut)+D(u)- I—— 1 E(u). 

Finally we have the special property 
(v) For n odd the Huygens property holds, i.e. signals propagate 

with speed = 1. 
It is not hard to show by integration by parts that for 0£° data in Hn9 

the energy F is positive. We denote by E the completion in the energy 
norm of öjj° data. It follows from conservation of energy that U(t) is 
unitary for the energy norm. 

We define the Eadon transform of a function % in Hn by 

u == f udS. 

Here £(s,ß) is the horosphere centered at the point ß at oo, whose 
distance from the origin is s. It is well known that 

y\ n—1 n—1 

Lu = e~ 2 * d\e 2 8u. 

Now take the Eadon transform of the wave equation: 

0 = utt-Lu = % - e *~8 d2
se~* u. 

Introduce 

u = e 2 v; 

then 

0 = vH-v„ = (S]+ds) (vt-vs), 

from which it follows that vt —v8 is a function of s —f. We define now 

B+{u,ut} =P(vt-vs) =P(esô,-ôaesû), 
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P an appropriately chosen operator in s that commutes with translation. 
JB+ is a translation representation of E for U(t), i.e. 

(i) 22+{«C>, «*(*)} W = R+{u(0j,ut(0)}(s-t), 
(ii) J(E+{u,ut})2dsdm(ß) =E(u), 
(iii) E+ maps E onto X2(ß, JB). 
Of course (i) follows from the way JS+ was constructed; for (ii) and 

(iii), see Theorem 3.4 [25] when n = 3 and P = cds. 
We ton now to the automorphic case. Here energy, defined as before by 

hi—l\2 

FF(u) = EF(ut)+BF(u)-\——I EF(u)9 

is not necessarily positive. It was shown in Section 4 of [26] that one can, 
add a quadratic function K(u) to the energy so that G(u) = FF(u) +K(u) 
is positive, and that K is compact with respect to (?. It follows from this 
that if FF is negative on a subspace, that subspace is finite-dimensional. 
Since for ut = 0 the energy is —EF(u,Lu), it follows that the positive 
spectrum of L consists of a finite number of eigenvalues. It can be further 
shown, using the fact that JF contains full neighborhoods of points at oo, 
that L has no negative eigenvalues, see Theorem 4.8 of [26]; this is a non-
Euclidean version of a classical result of Bellich and Vekua. 

It follows from the form FF = EF(ut)—EF(u, Lu) that if u is ortho­
gonal to all the eigenfunctions of L, then FF^ 0. If u(0) and ut(0) are 
both orthogonal to all the eigenf unctions it follows that so is u(t) for any t. 
We denote this space of initial data by E0. Clearly Ec is invariant under 
the solution operators UF(t) for the automorphic solutions of the wave 
equation. 

We define now a translation representation E j of E0 for the group 
UF(t); it has J f+1 components, M being the number of cusps of maximal 
rank. The zeroth component of JB+ is B+, defined as before; each of the 
remaining components are associated with cusps of maximal rank as 
follows : 

Map the cusp to the point oo, so that it has the form Fœ x(a, oo), 
JFoo a fundamental polyhedron in Euclidean space of the parabolic sub­
group keeping oo fixed. Since the cusp is of maximal rank, JFTO has finite 
volume. Denote by u the mean value of u: 

i r 

13 — Proceedings... 
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Note that the integration is over a part of a horosphere centered at oo. 
Now integrate the wave equation over JFTO: 

/w-iVL 

Introducing w = y^-W2 û and y = es as new variables we' obtain 

w«-w5S = 0. ; 

We now define the j th component of the translation representation as 
wt—ws, i.e. 

ra+1 n—1 

Bj
+{u,ttt} = e [e 2 ût — ds

 2 s ü). 

In Part I of [27] we show that JBj is a partial translation representation 
of Ec for the group TJF (t); in Part I I we prove the completeness of this 
representation. JK+ is called the outgoing representation. One can define 
quite analogously the incoming representation B^. The relation of the 
two is the scattering operator SF, a notion introduced by Faddeev and 
Pavlov [14]. As pointed out in Section 4 of [25], the scattering operator 
is nontrivial already for the case of J1 = id, i.e. for the translation represen­
tations Bs over all of Hn. This is in sharp contrast to the Euclidean case. 

We wish to emphasize that the translation representations are construc­
ted here in purely geometrical terms, i.e. in terms of integrals over horo-
spheres. 

3 . The zero dispersion limit for the KdV equation 

The equation in question is 

Ut—6uux+e2u{exx = 0, 

and the question under discussion is this: if the initial values of u are 
fixed, 

u(x, 0; s) = u(x), 

how does the solution u(x, t-, s) behave as e tends to 0? 
When we set e = 0 in the equation, we obtain the reduced equation 

Uf-QuUx s=s 0 . 
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This equation has no solution for all t, only in the interval (Ç"1, t£), 

Ç = (ßMmux(x))^, tt = ( e i l ax« ,^ ) ) - 1 ; 

here u(œ) is the initial value of u. I t is reasonable to surmise that for t 
in (Ç, tff), w(a?, tf, e) tends as e-^0 to the solution of the reduced equation. 
What happens when t lies outside this interval? Numerical experiments 
indicate that over some part of the a?-axis, u(x, t, e) is oscillatory. As s 
tends to 0, the amplitudes of these oscillations remain finite, their wave­
lengths are of order e. Clearly, if we can talk of a limiting behavior as s 
tends to 0, this limit can exist only in the weak sense, e.g. in the sense 
of distributions. This indeed is the case; the speaker and O. D. Levermore 
have shown, [23], that u(x, t, s) tends in the sense of distribution to a limit 
u, provided that the initial value u(x) is nonpositive and tends to zero 
so fast that fxu(x)dx is finite. These papers show not only the existence 
of a limit but give a fairly explicit formula for the limit u. For simplicity 
we take the case when u(x) has a single minimum; then 

«(»I*) = dlQ*(x,t), 

where 

Q*(x,t) = Min Q(ip',x,t). 

Here Q is a quadratic functional of u: 

4 1 
Q(Vi <M) = — (a?v) (LV,V)i 

L the linear integral operator 

Ly)(v) = — J log 
V—fA 

V+fl 
y)(fi)d/A. 

The functions admissible in the minimum problem are restricted to« 
lie between 0 and <p, where y is defined in terms of the initial data as fol* 
lows : 

rjdy 

"«'-H'fl.MiAr' 0<" 
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The function a appearing in the linear term in Q depends linearly on x and 
t, and is defined as follows: 

a(rj9x,t) =rjX— àrjH — d+(rj), 

where 0+(rç) is a function defined in terms of the inital data. Using the 
KdV equation it follows that also u2(x91; s) has a limit u% in the distri­
bution sense, and that 

ut = 3u%. 

Multiplying the KdV equation by u and rewriting the resulting equation 
jis a conservation law shows that. 

hm(^3+ffî2^)==î^ 

exists in the distribution sense, and that 

Combining this with the explicitly form the u leads easily to the formulas 

The minimum problem defining Q* is a so-called quadratic program­
ming problem; it turns out that it can be solved explicitly. To see this 
it is convenient to extend the functions ip admitted in the minimum 
problem for all real rj as odd functions; as a result we may replace the 
kernel of the operator L by logfy— p\. One can show that L is negative 
definite, and that it is related to the Hilbert transform E as follows: 

dnL = E. 

We extend now ip to the upper half of the complex r\ plane as a harmonic 
function that vanishes at oo; ^ can be regarded as the real part of an 
analytic function of Hardy class. The variational condition for the mini­
mum problem can be regarded as prescribing the real and imaginary parts 
of the function on complementary subsets of the real axis; for details 
we refer the reader to [23]. Suffice it here to say that the resulting for­
mulas for u show: 

(i) For t in (%, t}}9 u is a solution of the reduced equation, and that 
in this time interval the convergence of u to u takes place not only in the 
sense of distributions but for each t in the L2 sense in x 
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(ii) For t outside the interval (Ç, t£), u can be described by Whit-
ham's averaged equations, or by the more general equations of Flaschka, 
Forest and McLaughlin based on multiphase averaging. 

(iii) For t tending to oo, u decays like f"1; more precisely 

*<•>*>-~h*[W7)+0{rl ) 

for 0 < <s/t < ém, where m = max[—«(«)]. Outside this range ü(<c,t) is 

0(r>). 
The formula for u(x, P, e) is obtained from Gardner, Greene, Kruskal 

and Miura's solution of the KdV equation by the scattering transform. 
We trace carefully the manner in which this solution depends on e, and 
show that as e tends to zero, it has a limit in the sense of distributions. 
The nonpositivity of the inital data makes the GGKM solution of the KdV 
equation particularly.simple. A more difficult case has been handled by 
Venakides [40]. 
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