
Chapter 1

Vorticity and Potential Vorticity

In this chapter we use potential vorticity to unify a number of the concepts we have previously
encountered. We derive the general form of potential vorticity conservation, and then appropriate
approximate forms of the potential vorticity conservation law, corresponding to the familiar quasi-
geostrophic and planetary geostrophic equations. In order to keep the chapter essentially self-
contained, there is some repetition of material elsewhere.

1.1 Vorticity

1.1.1 Preliminaries

Vorticity is defined to be the curl of velocity, and normally denoted by the symbolω. Thus

ω = ∇ × v (1.1)

Circulation is defined to be the integral of velocity around a closed loop. That is

C =
∮

v · dl. (1.2)

Using Stokes’ theorem circulation is also given by

C =
∫

ω · dS (1.3)

The circulation thus may also be defined as the integral of vorticity over a material surface. The
circulation is not a field like vorticity and velocity. Rather, we think of the circulation around a
particular material line of finite length, and so its value generally depends on the path chosen. IfδS

is an infinitesimal surface element whose normal points in the direction of the unit vectorn̂, then

n · ∇ × v = 1

δS

∮
v · dl (1.4)

1
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where the line integral is around the infinitesimal area. Thus the vorticity at a point is proportional
to the circulation around the surrounding infinitesimal fluid element, divided by the elemental area.
(Sometimes the curl isdefinedby an equation similar to (1.4).) A heuristic test for the presence of
vorticity is then to imagine a small paddle-wheel in the flow: the paddle wheel acts as a ‘circulation-
meter’ and so rotates if vorticity is non-zero.

1.1.2 Simple axisymmetric examples

Consider axi-symmetric motion, in two dimensions. That is, the flow is confined to a plane. We use
cylindrical co-ordinates(r, φ, z) wherez is the direction perpendicular to the plane. Then

uz = ur = 0 (1.5)

uφ 6= 0 (1.6)

(a) Rigid Body Motion

The velocity distribution is given by
uφ = �r (1.7)

Explicitly,

ω = ∇ × v = ωz · k

ωz = 1

r

∂

∂r
(ruφ) = 1

r

∂

∂r
(r2�)

= 2� (1.8)

That is, the vorticity of a fluid in solid body rotation is twice the angular velocity of the fluid.

(b) The ‘vr ’ vortex

This vortex is so-called because the tangential velocity distribution is such that the productv r is
constant. That is:

uφ = K

r
(1.9)

whereK is a constant determining the vortex strength. Evaluating the z–component of vorticity
gives

wz = 1

r

∂

∂r
(ruφ) = 1

r

∂

∂r

(
r
K

r

)
= 0 (1.10)

except whenr = 0, when the expression is singular and the vorticity is infinite. Obviously the paddle
wheel rotates when placed at the vortex center.
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Figure 1.1:Evaluation of circulation in the axi-symmetricvr vortex. The circulation around patha−b−c−
d − a is zero. This result does not depend on the size of the path; thus the circulation around any infinitesimal
path not enclosing the origin is zero, and thus the vorticity is zero everywhere except at the origin.

We can obtain the result another way by calculating the circulation
∮

u · dl around an appropriate
contour, the contour a-b-c-d-a in fig. 1.1. Over the segments a-b and c-d the velocity is orthogonal
to the contour, and so the contribution is zero. Over b-c we have

Cbc = K

r2
θr2 = Kθ (1.11)

and over d-a we have

Cda = −K
r1
θr1 = −Kθ (1.12)

Thus the net circulationCbc + Cda is zero. The result is independent ofr1 andr2 andθ , so we may
shrink the contour to an infinitesimal size so that it encloses an infinitesimal surface element. On
this, by Stokes’ theorem, the vorticity is zero. Thus the vorticity is everywhere zero, except at the
origin, and circulation aroundanyclosed contour not enclosing the origin is zero.

1.2 The Vorticity Equation

Recall that the momentum equation may be written

∂v

∂t
− v × ω = − 1

ρ
∇p + ν∇2v (1.13)

Taking its curl gives the vorticity equation

∂ω

∂t
− ∇ × (v × ω) = 1

ρ2
(∇ρ × ∇p)+ ν∇2ω (1.14)
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(For the rest of the chapter we will neglect viscosity.) If the density is constant, or if the density is a
function only of pressure (a ‘homentropic’ fluid) the right-hand-side vanishes, for then

1

ρ2
(∇ρ × ∇p) = 1

ρ2
∇ρ × ∇ρ dp

dρ
= 0 (1.15)

The second term on the right hand side of (1.13) may be written

∇ × (u × ω) = (ω · ∇)v − (v · ∇)ω
−ω∇ · v + v∇ · ω (1.16)

As vorticity is the curl of velocity its divergence vanishes, whence we obtain

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)v − ω∇ · v + 1

ρ2
(∇ρ × ∇p) (1.17)

The last term on the right-hand-side is sometimes called thebaroclinicterm, but we shall call it the
non-homentropicterm. The divergence term may be eliminated with the aid of the mass-conservation
equation

Dρ

Dt
+ ρ∇ · v = 0 (1.18)

to give
Dω̃

Dt
= (ω̃ · ∇)v + 1

ρ3
(∇ρ × ∇p) . (1.19)

whereω̃ = ω/ρ. (There is no commonly-used name for this quantity.) For a homentropic fluid
p = p(ρ), ∇p × ∇ρ vanishes and we have the simple and elegant form,

D

Dt
ω̃ = (ω̃ · ∇)v. (1.20)

If the fluid is also incompressible, then∇ · v = 0 and, directly from (1.17), the vorticity equation is,

Dω

Dt
= (ω · ∇)v. (1.21)

The terms on the right-hand-side of (1.20) or (1.21) are conventionally divided into ‘stretching’
and ‘twisting’. Consider a single Cartesian component of (1.21),

Dωx

Dt
= ωx

∂u

∂x
+ ωy

∂u

∂y
+ ωz

∂u

∂z
. (1.22)

The first term on the right-hand-side acts to intensify the x-component of vorticity if the velocity is
increasing in the x-direction — that is, if the fluid is being ‘stretched.’ In order that mass be conserved,



1.2. THE VORTICITY EQUATION 5

stretching in one direction corresponds to contracting in one or both of the other directions, and,
because the conservation of angular momentum demands faster rotation as the moment of inertia
falls, the vorticity increases. The second and third terms involve the other components of vorticity
and are called twisting terms: vorticity in the x-direction is being generated from vorticity in the y-
and z-directions. We return to an informative topological interpretation of vorticity evolution shortly.

The results derived above apply to the absolute vorticity, or the vorticity measured in an inertial
reference frame. Sinceωa = ωr + 2� and� is a constant, the vorticity equation in a rotating frame
of reference is

Dωr

Dt
= [(ωr + 2�) · ∇]v − (ω + 2�)∇ · v + 1

ρ2
(∇ρ × ∇p) (1.23)

or
D

Dt

(
ωr

ρ

)
=

(
1

ρ
(ωr + 2�) · ∇

)
v + 1

ρ3
(∇ρ × ∇p) (1.24)

1.2.1 Two-dimensional flow

In two-dimensional flow the velocity field is confined to a plane. The velocity normal to the plane,
and the rate of change of any quantity normal to that plane, are zero. Let this be the z-direction.
Then the velocity, denoted byu, is

v = u = ui + vj , w = 0. (1.25)

Only one component of vorticity non-zero; this is given by

ω = k
(
∂v

∂x
− ∂u

∂y

)
. (1.26)

We letη = ωz = ω · k Both the stretching and twisting terms vanish in two-dimensional turbulence,
and the two-dimensional vorticity equation becomes, for incompressible homentropic flow,

Dζ

Dt
= 0, (1.27)

whereDζ/Dt = ∂ζ/∂t+u ·∇ζ . Thus, in two-dimensional flow vorticity is conserved following the
fluid elements; each material parcel of fluid keeps its value of vorticity even as it is being advected
around. Furthermore, specification of the vorticity completely determines the flow field. To see this,
we use the incompressibility condition to define a streamfunctionψ such that

u = −∂ψ
∂x
, v = ∂ψ

∂y
, (1.28)

and
ζ = ∇2ψ. (1.29)
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Given the vorticity, the Poisson equation (1.29) is solved for the streamfunction, and the velocity
fields obtained through (1.28).

Similarly, numerical integration of (1.26) is a process of time-stepping plus ‘inversion.’ The
vorticity equation may then be written entirely in terms of the streamfunction

∂ζ

∂t
+ J (ψ,∇2ψ) = 0 (1.30)

plus (1.29). The vorticity is stepped forward one time-step using a finite-difference representation
of (1.30), and the vorticity ‘inverted’ using (1.29) and (1.28). The notion that complete or nearly
complete information about the flow may be obtained by ‘inverting’ one field plays a very important
role in geophysical fluid dynamics, both in the numerical solution and in diagnostic analysis, as we
see in later sections and chapters.

Finally, we note that in the presence of rotation the vorticity equation becomes

∂ζ

∂t
+ u · ∇(ζ + f ) = 0 (1.31)

wheref = 2� · k. If f is a constant, then (1.31) reduces to (1.30), and background rotation plays
no role.

1.3 Kelvin’s Circulation Theorem

Kelvin’s circulation theorem states that under certain circumstances the circulation around a material
fluid parcel is conserved, or the circulation is conserved ‘following the flow.’ That is

D

Dt

∮
v · dl = 0 . (1.32)

The primary restrictions are that the flow be inviscid, that body forces be representable as potential
forces, and that the flow be homentropic. Of these, the last is the most important for geophysical
fluids. The circulation is defined with respect to the inertial frame of reference. That is, the velocity
in (1.32) is the velocity relative to the inertial frame; the material derivativeD/Dt is reference-frame
indifferent. We will give a straightforward proof, beginning with the inviscid momentum equation:

Dv

Dt
= 1

ρ
∇p − ∇φ, (1.33)

where∇φ represents the body forces on the system. Applying the material derivative in (1.32)
through the integral gives

D

Dt

∮
v · dl =

∮
Dv

Dt
· dl + v · D dl

Dt

=
∮ [(

− 1

ρ
∇p + ∇φ

)
· dl + v · dv

]
(1.34)
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using the momentum equation andD(δl)/Dt = δv (see next section). The second and third terms
vanish separately, because they are integrals around a closed loop. The first term vanishes for a
homentropic fluid; for such a fluid we may define a functionG such thatdG/dp ≡ 1/ρ and then∮

1

ρ
∇p · dl =

∮
dp

ρ

=
∮
dG

dp
dp (1.35)

=
∮
dG = 0.

Using Stokes’ theorem, the circulation theorem may be written

D

Dt

∫
ω · dS = 0 (1.36)

That is, the flux of vorticity through a material surface is constant. In some ways this is the more
natural form of Kelvin’s circulation theorem because it is really a consequence of the topological
properties of vorticity.

In a rotating frame of reference, the appropriate forms of the circulation theorem are

D

Dt

∮
(vr + � × r) · dl = 0, (1.37)

and
D

Dt

∫
(ωr + 2�) · dS = 0. (1.38)

wherevr andωr are the velocity and relative vorticity as measured in the rotating frame.
In non-homentropic flow, the circulation is not generally conserved. However, itis conserved if

the material path is in a surface of constant entropy,s, and ifDs/Dt = 0. Since the equation of state
is of the general formp = p(ρ, s), then ifs = constant around the loop the density is a function only
of pressure and the integral in (1.35) vanishes. Further, ifDs/Dt = 0, entropy remains constant on
that same material loop as it evolves and so circulation is preserved.

1.3.1 The ‘frozen-in’ property of vorticity

At a slightly deeper level Kelvin’s circulation can be seen as a consequence of the topological
character of the vorticity field, and in particular that vortex lines are tied to material lines. Avortex-
line is a line drawn through the fluid which is everywhere in the direction of the local vorticity.
This definition is analogous to that of a streamline, which is everywhere in the direction of the local
velocity. A material-linesimply connects material fluid elements.

We can draw a vortex line through the fluid. Such a line obviously connect fluid elements and
therefore we can define a co-incident material lines. As the fluid moves the material lines deform,
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Figure 1.2: Evolution of an infinitesimal material lineδl from time t to time t + δt . It follows from the
diagram thatD δl /Dt = δv. See text for details.

and the vortex lines evolve in a manner determined by the equations of motion. The remarkable
property of vorticity is that at later times the vortex lines remain co-incident with the same material
lines that they were initially associated. Put another way, a vortex line always contains the same
material elements — the vorticity is ‘frozen’ to the material fluid. Consider how an infinitesimal
material line elementδl evolves,δl being the infinitesimal material element connectingl with l + δl.
The rate of change ofδl following the flow is given by

D

Dt
δl = 1

δt

(
δl(t + δt)− δl(t)

)
, (1.39)

which follows from the definition of the material derivative in the limitδt → 0.
From fig. 1.2 it is apparent that

δl(t + δt) = l + δl + (v + δv)δt − (l + vδt)

= δl + δvδt (1.40)

Substituting into (1.39) gives
D

Dt
δl = δv (1.41)

But sinceδv = (δl · ∇)v we have that

D

Dt
δl = (δl · ∇)v (1.42)

Comparing this with (1.19), we see that vorticity evolves in the same way as a line element. To see
what this means, at some initial time we can define an infinitesimal material line element parallel to
the vorticity at that location, i.e.,

δl(x, t) = Aω(x, t) (1.43)
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Figure 1.3: Stretching of material lines leads to vorticity amplification. However, because the volume of
fluid is conserved, the material lines converge, the surface shrinks, and the integral of vorticity over a material
surface (the circulation) remains constant.

whereA is a (dimensional) constant. Then, for all subsequent times, the magnitude of the vorticity
of that fluid element (wherever that particular element may be in the fluid) remains proportional to
its length, and is in that direction, i.e.,

ω(x ′, t ′) = A−1δl(x ′, t ′). (1.44)

1.3.2 Implications for circulation.

The vorticity equation tells us that vorticity is enhanced if the velocity is in the direction of vorticity is
increasing. We can now see why. If, say∂u/∂x > 0, then material lines in the x-direction are being
stretched. Since the vorticity is amplified in proportion to the length of the physical line element,
vorticity is amplified. (This mechanism is important in the dynamics of tornadoes.) Now consider a
vortex tube (a collection of vortex lines) passing through a surface whose normal vector is parallel
to the direction of vorticity (that is, the plane of the surface is orthogonal to the vorticity. See fig.
1.3). Let the volume of a small material box around the surface beδV , the length of the material
lines beδl and the surface area beδS. Then

δV = δl δS (1.45)

But the vorticity through the surface is proportional to the length of the material lines. That isω ∝ δl,
and

δV ∝ ωδS (1.46)

The right hand side is just the circulation around the surface. If the corresponding material tube is
stretched, then of course vorticity is amplified. But the volume of the material,δV , must remain
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constant if the fluid is incompressible (recall that the constancy of density implies the constancy
of a material volume), and the circulation remains constant. Thus, although vorticity has been
amplified by stretching, the vortex lines are closer together and the productωδS remains constant
and circulation is conserved.

We will verify the circulation theorem for incompressible, homentropic flow one other way,
directly from the vorticity equation. At some point choose the z-direction to be parallel to the
vorticity. Thus,

ω = (0,0, ζ ) (1.47)

Then the vorticity equation is
Dζ

Dt
= ζ

∂w

∂z
(1.48)

which, using the mass conservation equation, may be written

Dζ

Dt
= −(∂u

∂x
+ ∂v

∂y
) = −ζ∇2 · u (1.49)

where∇2 · u = ∂u/∂x + ∂v/∂y is the two-dimensional divergence. Multiply (1.48) by the area of
the infinitesimal material surface elementδS

δS
Dζ

Dt
= −δSζ∇2 · u (1.50)

Now, the rate of change of the surface area is given by

D

Dt
δS = δS∇2 · u (1.51)

(This is analogous to the result for rate of change of a volume element,DδV/Dt = δV∇ · v.) Using
(1.51) in (1.50) gives

δS
Dζ

Dt
= −ηDδS

Dt
(1.52)

or
D

Dt
(ζδS) = 0 (1.53)

verifying the circulation theorem.

1.4 * Vortex Stretching and Viscosity: a Simple Example

In this section we take a slight detour from our main theme and give a simple example of how vortex
stretching and the associated amplification of vorticity can be balanced by dissipation (viscous
effects) leading to a steady state. This kind of balance occurs in tornadoes and other similar natural
phenomena, including the common-or-garden bath plug vortex.
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1.4.1 Posing the Problem

We suppose that there is an axi-symmetric swirling flow, around some center, or core. The flow is
converging toward the center, and to satisfy mass continuity it is accelerating upward at a constant
rate. The azimuthal velocity is unspecified, except that we shall suppose that it is only a function of
the radial co-ordinate. If the given rate of convergence isα, then the velocity field is in cylindrical
co-ordinates(r, φ, z):

v = (−1

2
αr, uφ, αz) (1.54)

The first term represents the radial converge, the second term the ‘swirl,’ and the third term the
upward motion which will produce vortex stretching. The vortex stretching term will produce vortex
amplification, and we may expect that only through the introduction of viscosity may be achieve a
steady state. Our goal is to find the form ofuφ produced by a balance between vortex stretching and
dissipation.

Mass Conservation

This velocity field is consistent in that it satisfies the constant density form of the mass conservation
equation. Explicitly,

∇ · v = 1

r

∂vφ

∂φ
+ ∂vz

∂z
+ 1

r

∂

∂r
(urr)

= 0 + α − 1

2r

∂

∂r
(αr2) = 0 (1.55)

This holds no matter the form of the azimuthal field, provided it is a function only ofr.

Vorticity

The vorticity is only non-zero in the vertical direction:

ωφ =
(
∂ur

∂z
− ∂uz

∂r

)
= 0

ωr =
(

1

r

∂uz

∂φ
− ∂uφ

∂z

)
= 0

ωz =
(

1

r

∂

∂r
(ruφ)− ∂ur

∂φ

)
= ζ(r) (1.56)

In words, the radial velocity depends only on the radial co-ordinate and the vertical velocity
depends only on the vertical co-ordinate; therefore only the radial dependence of the azimuthal
velocity produces a vorticity, this in the vertical direction.
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1.4.2 The solution

The vertical component of the vorticity equation contains only the stretching term, and is,

Dζ

Dt
= ζ

∂uz

∂z
+ ν∇2ζ (1.57)

or
∂ζ

∂t
+ ur

∂ζ

∂r
+ uφ

r

∂ζ

∂φ
+ uz

∂ζ

∂z
= ζ

∂uz

∂z
+ ν∇2ζ (1.58)

In the steady state and using (1.54) this simplifies to

−1

2
αr
∂ζ

∂r
= ζα + ν

1

r

∂

∂r

(
r
∂ζ

∂r

)
(1.59)

Combining the vortex stretching and advection terms, we find

−1

2
α
∂

∂r
(ζ r2) = ν

∂

∂r

(
r
∂ζ

∂r

)
(1.60)

which integrates once to

−1

2
αζr2 = νr

∂ζ

∂r
+ C (1.61)

To avoid a singularity at the origin, the constantC must be zero, whence

ζ = ζ0 exp
[
−αr

2

4ν

]
(1.62)

This is the steady state, radially symmetric, vorticity distribution in which amplification due
to vortex stretching is balanced by viscous dissipation. Vorticity falls very quickly away from a
rotational core whose thicknessro, as determined by an e-folding scale, is given by

ro = 2
( ν
α

)1/2
(1.63)

As viscosity tends to zero, or as the intensity of the convergence increases, the flow becomes irro-
tational away from a delta function at the origin. Might this model apply to a tornado? Using a
molecular viscosity,ν ∼ 10−5 m2 s−1, and supposing a convergence rate ofα = 1 cm s−1 per meter,
then we findro ∼ 3 cm, which is rather small. Aside from uncertainties in the convergence rate, the
main error here is supposing that vortex stretching is balanced by molecular diffusion of momentum.
In fact, there are likely to be small scale turbulent motions which in some ill-defined way greatly
enhance the effective viscosity and thicken the rotational core.
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Velocity Field

Integrating the expression (1.56) for vorticity, we find the radial velocity field to be

uφ(r) = −1

r

2ν

α
ζ0 exp

[
−αr

2

4ν

]
+ A

r
(1.64)

whereA is a constant of integration. Requiringuφ = 0 at the origin givesA = 2νζ0/α. Since the
first term decays much faster than the second, forr >> ro (or for ζ0 = 0) the swirling velocity field
goes as 1/r, which is indeed irrotational.

Interestingly, the distributions (1.62) and (1.64) turn out to be the final steady solutions of the
initial value problem for almost any initial vorticity distributions. The main restrictions are that
ζ → 0 faster than 1/r2 asr → ∞, and that the initial circulation is finite and non-zero (its value
determiningζ0). Thus, no matter how diffuse the initial vorticity, the process of convergence and
the associated vortex stretching produce a very tightly bound vorticity distribution. The process of
vortex stretching is very common. It is important not only in obvious cases of vortex intensification,
like tornadoes, but is believed to be responsible for the cascade of energy to small scales in three-
dimensional turbulent motion.

1.5 Potential Vorticity Conservation

Although Kelvin’s circulation theorem is a general statement about vorticity conservation, it is not
always veryuseful statement for two reasons. First, it is a not a statement about afield, such
as vorticity itself. Second, it is not satisfied for non-homentropic flow, such as is found in the
atmosphere and ocean. (Of course non-conservative forces and viscosity also lead to circulation
non-conservation, but this applies to virtually all conservation laws and does not diminish them.) It
turns out that it is possible to derive a beautiful conservation law that overcomes both of these failings
and one, furthermore, that is extraordinarily useful in geophysical fluid dynamics. This ispotential
vorticity. The basic idea is that we can use a scalar field that is being advected by the flow to keep
track of, or to take care of the evolution of fluid elements. For non-homentropic flow this scalar field
must be chosen in a special way (it must be a function of the entropy alone), but the restriction to
homentropic flow can then be avoided. Then using the scaler evolution equation in conjunction with
the vorticity equation gives us a scalar conservation equation.

1.5.1 Homentropic flows.

(i) From Kelvin’s theorem

for an infinitesimal volume we write Kelvin’s theorem as:

D

Dt
[(ω · n)δA] = 0 (1.65)
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δh

δΑ

Χ+δΧ

Χ

n

Figure 1.4:An infinitesimal fluid element, bounded by two isosurfaces of the conserved tracerχ .

wheren is a unit vector normal to an infinitesimal surfaceδA (see fig. 1.4). The volume is bounded
by two isosurfaces of valuesχ andχ + δχ , whereχ is a conserved tracer satisfying

Dχ

Dt
= 0. (1.66)

Sincen = ∇χ/|∇χ | and the infinitesimal volumeδV = δhδA we have that

ω · nδA = ω · ∇χ
|∇χ |

δV

δh
(1.67)

Sinceχ is conserved on material elements, and the massρδV of the volume element is also conserved,
(1.65) becomes

ρδV

δχ

D

Dt

(
ω

ρ
· ∇χ

)
= 0 (1.68)

or
D

Dt
(ω̃ · ∇χ) = 0 (1.69)

whereω̃ = ω/ρ.

(ii) From the frozen-in property

From (1.66), the difference betweenχ between two infinitesimally close fluid elements is conserved,
that is

D

Dt
(χ1 − χ2) = Dδχ

Dt
= 0 (1.70)
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But δχ = ∇χ · δl whereδl is the infinitesimal vector connecting the two fluid elements. Thus

D

Dt
(∇χ · δl) = 0 (1.71)

But since the line element and the vorticity (divided by density) obey the same equation, we can
replace the line element by vorticity (divided by density) in (1.71) to obtain again

DQ

Dt
= 0 (1.72)

whereQ = (ω̃ · ∇χ) is thepotential vorticity.
The vorticity in the potential vorticity conservation law is theabsolutevorticity. In a rotating

frame of reference, the conserved potential vorticity isQ = (ω + 2�)/ρ whereω is the relative
vorticity and� the rate of rotation of the coordinate system.

1.5.2 Nonhomentropic flow

For nonhomentropic flow the potential vorticity equation becomes,

DQ

Dt
= 1

ρ3
∇χ · (∇ρ × ∇p). (1.73)

However, if the equation of state can be written in the formp = p(s, ρ) wheres is the entropy, and
if we demand that the conserved scalar be a function of entropys alone then we recover

D

Dt
(ω̃ · ∇θ) = 0 , (1.74)

where
Dθ

Dt
= 0 (1.75)

andθ = θ(s). For atmospheric and oceanic applications, (1.74) is the most useful and form of
potential vorticity conservation, and the equation has profound consequences. It turns out that
potential vorticity is a much more useful quantity fornonhomentropicflow than for homentropic
flow, because the required use of a special conserved scalar imparts more information to the potential
vorticity conservation law. In homentropic flow the very generality and ubiquity of the conservation
law seems to make it less useful.

1.5.3 Potential vorticity in isentropic coordinates

Following Salmon (1998) suppose there are three independent scalarsχi , i = 1,2,3 that each satisfy

Dχi

Dt
= 0. (1.76)
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Then, for a homentropic fluid, there are three conserved potential vorticities,

Qi = (ω̃) · ∇χi (1.77)

.
Now, if we use the∇χi to define a coordinate system, and let

v = A1∇χ1 + A2∇χ2 + A3∇χ3 (1.78)

then (see problem 2) the potential vorticity field (1.77) may be equivalently written

Q = (Q1,Q2,Q3) = ∇θ × A (1.79)

where

∇θ =
(

∂

∂θ1
,
∂

∂θ2
,
∂

∂θ3

)
. (1.80)

The conservation law may then be written

D

Dt
(∇θ × A) = 0 (1.81)

That is, the conserved potential vorticity is the curl of the velocity inθ coordinates.
For a nonhomentropic fluid, the conservation law is lost. However, take the entropys as one of

the coordinates. Then, the potential vorticity in direction of increasings (i.e., the direction parallel
to ∇s) is still conserved, and

D

Dt
(∇θ × A · ∇s) = 0. (1.82)

Often, atmospheric and oceanic models are cast in a ‘semi-Lagrangian’ form, in which the vertical
coordinate is a function of entropy (typically density in the ocean or potential temperature in the
atmosphere). In this case the potential vorticity conservation takes a useful and simple form, and we
shall discuss this case more later on.

1.6 Potential Vorticity Conservation in Approximate Models

As we saw in previous chapters, the full Navier-Stokes equations are far too complex to be of direct
use for ocean-atmosphere modelling. However, appropriate approximate forms of potential vorticity
are conserved by the respective approximate models — Boussinesq, hydrostatic and so on. We
consider a few such cases here, and leave others as problems for the reader.
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1.6.1 The Boussinesq equations

Recall that the Boussinesq equations are an incompressible set (by our definition, that∇ · v = 0.)
Thus, density need not play a role in the definition of a conserved potential vorticity, since the
equation for vorticity itself is isomorphic to that for a line element if volume is conserved.

However, the Boussinesq equations are not homentropic, for the equation of state is typically of
the form

ρ = ρ0(1 − α(T − T0)). (1.83)

The thermodynamic equation is often written as an equation for the buoyancyb = −gδρ/ρ0, i.e.,

Dρ/Dt = 0 (1.84)

(in the absence of heat sources).
From these two considerations, it is plain that the appropriate form for potential vorticity is

Q = ω · ∇b, (1.85)

or equivalently
Q = ω · ∇T (1.86)

and that this is a Lagrangian conserved quantity for unforced, inviscid, adiabatic flow. Expanding
(1.85) in Cartesian coordinates we obtain,

Q = (vx − uy)bz + (wy − vz)ρx + (uz − wx)ρy (1.87)

1.6.2 The hydrostatic Boussinesq equations

In the hydrostatic approximation the vertical momentum equation is

∂φ

∂z
= b (1.88)

whereφ = p/ρ0 andb = −gδρ/ρ0 is the buoyancy.
It can be shown that (problem 3) that the appropriate potential vorticity is, in Cartesian coordi-

nates,
Qh = (vx − uy)ρz − vzρx + uzρy, (1.89)

and that this is quasi-conserved (i.e., conserved if the flow is inviscid and adiabatic) when advected
by the three-dimensional velocity.

This can be transformed into a more revealing form by writing it as

Qh = ρz

[(
vx − vz

ρx

ρz

)
−

(
uy − uz

ρx

ρz

)]
. (1.90)
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But the terms in the inner brackets are just the horizontal velocity derivatives at constantρ. To see
this, note that

∂v

∂x

∣∣∣∣
ρ

= ∂v

∂x

∣∣∣∣
z

+ ∂v

∂z

∂z

∂x

∣∣∣∣
ρ

= ∂v

∂x

∣∣∣∣
z

− ∂v

∂z

∂ρ

∂x

∣∣∣∣
z

/
∂ρ

∂z
, (1.91)

with a similar expression for∂u/∂y|ρ . (These relationships follow from standard rules of partial
differentiation. Derivatives with respect toz are implicitly taken at constantx andy.) Thus, we
obtain

Qh = ∂ρ

∂z

(
∂v

∂x

∣∣∣∣
ρ

− ∂u

∂y

∣∣∣∣
ρ

)

= ∂ρ

∂z
ζρ (1.92)

Thus, potential vorticity is simply the horizontal vorticity evaluated on a surface of constant density,
multiplied by the vertical derivative of density. Note that we could replace density by buoyancyb

in the above derivation. This is a ‘semi-lagrangian’ version of potential vorticity, sincex andy are
Eulerian coordinates whereas the ‘vertical’ coordinate,ρ or b, is Lagrangian.

1.7 Quasi-geostrophy, revisited

Rather than deriving the quasi-geostrophic approximation from the momentum equations, it is re-
vealing (and easier) to begin with potential vorticity, and make the corresponding approximations.1

We will do this in the Boussinesq approximation, although the extension to the compressible case is
straightforward, and also assume hydrostasy. As before, the three assumptions we will have to make
are, written informally,

(i) Small Rossby number.

(ii) Basic state stratification that does not vary in the horizontal.

(iii) Variations in the Coriolis parameter are small.

The second and third assumptions are peculiar to quasi-geostrophy. Other geostrophic models (e.g.,
planetary geostrophy, frontal geostrophy) may be derived with other assumptions replacing (ii) and
(iii).

The basic idea is that we begin with the potential vorticity equation and make approximations
both to the potential vorticity and to the advecting velocity. Scaling theory guides the approximations,
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and these may be formalized by the use of nondimensionalization and asymptotics, although some
find such formalities obfuscating. Since in chapter?? we proceeded asymptotically, here we shall
be more informal.

Without approximation, we write the stratification as:

b = b̂(z)+ b′(x, y, z, t). (1.93)

Then, in Cartesian coordinates (purely for simplicity) in a rotating frame of reference the potential
vorticity is

Q = (f0 + βy + ζ )(b̂z + b′
z)− (vzb

′
x − uzb

′
y)

=
[
f0b̂z

]
+

[
(βy + ζ )b̂z + f0b

′
z

]
+ [
(βy + ζ )b′

z − (vzb
′
x − uzb

′
y)

]
. (1.94)

We will subsequently drop the primes on the perturbationb, and writeN2(z) = −b̂z. From the
assumptions above, we anticipate that the terms on the second line are in decreasing order of size,
and that, since the first term is constant in space and time, the dynamically important part of potential
vorticity is given by,

q = (βy + ζ )N2 + f0b
′
z, (1.95)

and indeed this is correct. More formally we scale the equations and perform an asymptotic expansion
in powers of the Rossby number. At low Rossby number geostrophic balance (f ×u ≈ −∇φ) gives
the for pressure scaling

φ ∼ fUL (1.96)

Using geostrophic and hydrostatic balance (∂φ/∂z = b) gives thermal wind balance

f0 × ∂u

∂z
= −∇b (1.97)

with associated scaling

b ∼ fUL

H
(1.98)

Note that this only applies to the perturbation buoyancy, because the basic state is unvarying in the
horizontal. Geostrophic and thermal wind balance imply if we define a streamfunctionψ by

ψ = φ

f0
(1.99)

then
ug = k × ∇ψ (1.100)

and

b = f
∂ψ

∂z
. (1.101)
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The ratio of the size of the perturbation buoyancy to the basic state buoyancy is then given by∣∣∣∣bz
b̂z

∣∣∣∣ = |bz|
N2

∼ fUL

H 2N2
= F 2

Ro
(1.102)

whereF = U/NH is theFroude number. [This expression is sometimes written

|bz|
N2

∼ 1

RoRi
(1.103)

whereRi = N2/(∂u/∂z)2 is theRichardson number. However, I prefer to think of this expression
in terms of the Froude number, because it not the shear of the flow that is central here. Rather, it
is the effects of stratification.] To derive the quasi-geostrophic approximation,F 2/Ro is assumed
small, as indeed it is for large-scale flows in the ocean and atmosphere, although to demand that it
be small may seem a little unmotivated for it has little to do with geostrophic balance; rather, it is a
demand that the stratification be strong. We return to this point shortly.

Assuming thatβy ∼ ζ/f ∼ Ro then, in the low Rossby number limit, the potential vorticity is:

Q = [
f0N

2
] + {Ro}

[
(βy + ζ )N2 +

{
F 2

R2
o

}
f0b

′
z

]
+ {Ro}

{
F 2

R2
o

} [
(βy + ζ )bz − (vzb

′
x − uzb

′
y)

]
,

(1.104)
where the terms in curly brackets indicate the scales of the terms multiplying them relative to the first
term. This can be formalized by nondimensionalizing all of the variables using (1.96), (1.98), (1.102).
The terms in (1.104) are then allO(1)nondimensional quantities, save for the nondimensional factors
in curly brackets.

Since the first term in (1.104) is a constant, the lowest order approximation toQ that will
contribute to its dynamical evolution is,

q =
[
(βy + ζ )N2 +

{
F 2

R2
o

}
f0bz

]
(1.105)

We see that ifF 2/R2
o is notO(1), that is ifF 2/Ro is not small, then the termf0bz will dominate the

evolution of potential vorticity. In this limit (which arises in the planetary geostrophic approximation)
all dynamics involving relative vorticity are absent. This approximation relates to the scale of the
motion. The conditionF 2/Ro ∼ Ro is equivalent to

RoL
2

λ2 = O(Ro).
(1.106)

whereλ = NH/f is theradius of deformation. Thus, condition on stratification is equivalent to
demanding that the horizontal scale of the motion must be the deformation scale or smaller; it cannot
be larger than the deformation scale byO(R−1

o .
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Similarly, if |βy| ∼ f , then the dominant dynamically active term isβyN2 and the leading
order term in the evolution equation would becomeβv = 0. Although this graphically illustrates
the constraining effect that theβ–effect has on meridional motion, it is not a very dynamically rich
equation.

Let us now consider how the advecting velocity should be approximated. The potential vorticity
equation is thus

Dq

Dt
+ w

∂q̂

∂z
= 0 (1.107)

whereq̂ = f0N
2 and the advective derivative is (at this stage) fully three-dimensional. Now, since

f is nearly constant, the horizontal velocity is nearly non-divergent. That is

∂u

∂x
+ ∂v

∂y
∼ Ro

U

L
� U

L
(1.108)

Thus the proper scaling for the vertical velocity is,

w ∼ Ro
UH

L
. (1.109)

and the vertical advection in (1.107) is important only in advecting the basic state potential vorticity
q̂. This equation becomes, after divinding byN2,

∂q

∂t
+ ug · ∇q + w

∂q̂

∂z
= 0 (1.110)

where

q = (βy + ζ )+ f0

N2
bz. (1.111)

is the approximation to (perturbation) potential vorticity in the quasi-geostrophic limit.
We can simplify this further with the help of the thermodynamic equation,

∂b

∂t
+ ug · ∇b + w

∂b̂

∂z
= 0 (1.112)

Eliminatingw between (1.110) and (1.112) (left as an exercise for the reader: problem 4) gives the
quasi-geostrophic potential vorticity equation,

∂qg

∂t
+ ug · ∇qg = 0 (1.113)

where

qg = (βy + ζ )+ ∂

∂z

(
f0

N2
b

)
(1.114)
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or, in terms of streamfunction,

qg = (βy + ∇2ψ)+ ∂

∂z

(
f 2

0

N2

∂ψ

∂z

)
(1.115)

There are a number of important points to be made:

1. The so-called quasi-geostrophic potential vorticity given by (1.114) or (1.115) isnot an ap-
proximation to the Ertel potential vorticity. That approximation is given by (1.111).

2. Nevertheless, (1.114) (or (1.115)) is more useful than (1.111) because it is conserved when
advected by the horizontal geostrophic velocity and because

3. qg may be written as the three-dimensional divergence of a vectorJ whereJ = ∇ψ +
k (f 2

0 /N
2)∂ψ/∂z.

4. The streamfunction may be diagnosed from the potential vorticity by the solution of the three-
dimensional elliptic equation:

(
∇2 + f 2

0

N2

∂

∂z

)
ψ = qg − βy. (1.116)

5. From the streamfunction, the velocity and buoyancy are easily diagnosed as elements of the
vector:

(u, v, b) = (−ψy,ψx, fψz). (1.117)

Notes

1. Charney and Stern (1961) were the first to clarify the relationship between quasi-geostrophic potential
vorticity and Ertel potential vorticity, and derive quasi-geostrophic theory in isentropic coordinates.
Vallis (1996) gives a derivation similar to, if a little more formal, that here.

Further Reading

Batchelor, G. K. 1967.An Introduction to Fluid Dynamics.Cambridge University Press.
This contains an extensive discussion of vorticity and vortices.

Salmon, R. S. 1998.Geophysical Fluid Dynamics.Oxford University Press.
Chapter 4 contains a brief discussion of potential vorticity, and chapter 7 a longer discussion of Hamil-
tonian fluid dynamics, in which the particle relabelling symmetry that gives rise to potential vorticity
conservation is discussed.
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Problems

1. For thevr vortex, choose a contour of arbitrary shape (e.g. a square) with segments neither parallel
nor orthogonal to the radius, and not enclosing the origin. Show explicitly that the circulation around
it is zero. (Some may think this problem is perverse.)

2. Show that potential vorticity defined by (1.79) is the same as that defined by (1.77).Hint: begin with
(1.77).

3. Show, beginning with the momentum equations, that in the hydrostatic Boussinesq approximation the
quantity given by (1.89) is quasi-conserved (i.e., conserved if the flow is adiabatic and inviscid) when
advected by the three-dimensional flow.

4. Eliminate the vertical velocity between the thermodynamic and potential vorticity equations ((1.110)
and (1.112)) to obtain the so-called quasi-geostrophic potential vorticity equation (1.113).

5. Derive the quasi-geostrophic potential vorticity equation appropriate in the atmospheric case — i.e.,
allow density to vary byO(1) in the vertical. You may do this either using pressure coordinates, or the
‘quasi-Boussinesq’ approximation in height coordinates, or some other way.
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Chapter 2

Basic Theory of Incompressible
Turbulence

A turbulent flow is one that is dominated by eddies with a spectrum of sizes between some upper
and lower bounds.1 The individual eddies come and go, and are intrinsically unpredictable. Loosely,
turbulence is high Reynolds number fluid flow, dominated by nonlinearity, with both spatial and
temporal disorder.

The circulation of the atmosphere and ocean is of course, to a large degree, simply motion of a
forced-dissipative fluid subject to various constraints such as rotation and stratification. The scales
of much motion of interest are certainly significantly larger than the dissipation scale (the scale at
which molecular viscosity becomes important) by several orders of magnitude and, at may if not all
scales, the motion is highly nonlinear. This seems to accord with our definition of turbulence. What
this means precisely, and how the motion of the atmosphere and ocean connects to the standard
and some more modern theories of turbulence is the subject of the next two chapters. First, and
before considering turbulence in a geophysical context, in section 2.1, we ask ‘what is the problem?’
Then we will consider the classical scaling theories of turbulence in both two and three dimensions.
These have their origins in classical papers by Kolmogorov and Oboukhov in 1941, and, for the
two-dimensional case, Kraichnan in 1967. We won’t consider many of the variations and subtleties
associated with the classical theory (such as the effects of intermittency) except in so far as they may
affect geophysical flows. Following this we will discuss geophysical issues.

2.1 The Closure Problem

Although it is impossible to predict the detailed motion of each eddy, the mean state may not be
changing. For example, consider the weather system, in which the storms, anti-cyclones, hurricanes,
fronts etc.—constitute the eddies. Although we cannot predict these very well, we certainly have
some skill at predicting their mean state—the climate. For example, we know that next summer will

25
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be warmer than next winter, and that in California summer will be drier than winter. We know that
next year it will be colder in Canada than in the Mexico, although there might be an occasional day
when this is not so.

We would obviously like to be able to predict the mean climate without necessarily trying to
predict or even simulate all the eddies. We might like to know what the climate will be like one
hundred years from now, without trying to know what the weather will be like on February 9 2056,
plainly an impossible task. Even though we know what equations determine the system, this task
proves to be very difficult because the equations are nonlinear, and we come up against the ‘closure’
problem.

Let us try to write an equation for the mean flow. The program would be to first decompose the
velocity field into mean and fluctuating components,

v = v + v′ (2.1)

Herev is the mean velocity field, andv′ is the deviation from that mean. The mean may be a time
average, in which casev is a function only of space and not time. It might be a time mean over
a finite period (e.g a season if we are dealing with the weather). Most generally it is an ensemble
mean. Note that the average of the deviation is, by definition, zero; that isv′ = 0.We then substitute
into the momentum equation and try to obtain a closed equation forv.

To visualize the problem most simply, we carry out this program for a model nonlinear system
which obeys

du

dt
+ uu+ νu = 0 (2.2)

The average of this equation is:
du

dt
+ uu+ νu = 0 (2.3)

The value of the termuu is not deducible simply by knowingu, since it involves correlations
between eddy quantitiesu′u′. That is,uu = uu+u′u′ 6= uu. We can go to next order to try (vainly!)
to obtain a value. First multiply (2.2) byu to obtain an equation foru2, and then average it to yield:

1

2

du2

dt
+ uuu+ νu2 = 0 (2.4)

This equation contains the undetermined cubic termuuu. An equation determining this would
contain a quartic term, and so on in an unclosed hierarchy.

Most current methods of ‘closing the hierarchy’ make assumptions about the relationship of
(n+1)’th order terms to n’th order terms, for example by supposing that:

uuuu = uu uu− αuuu (2.5)

whereα is some parameter. Such assumptions require additional, and sometimes dubious, reasoning.
Nobody has been able to close the system without introducing physical assumptions not directly
deducible from the equations of motion.
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In the constant density (sayρ = 1) Navier-Stokes equations, the x-momentum equation for an
averaged flow is

∂u

∂t
+ (v · ∇)u = −∂p

∂x
− ∇ · v′u′. (2.6)

Written out in full in Cartesian co-ordinates, the last term is

∇ · v′u′ = ∂

∂x
u′u′ + ∂

∂y
u′v′ + ∂

∂z
u′w′ (2.7)

These terms, and the similar ones in the y- and z- momentum equations, represent the effects of
eddies on the mean flow. They are known asReynolds stressterms. The ‘problem’ of turbulence
might be considered to be to find a representation of such Reynolds stress terms in terms of mean flow
quantities. However, it is not at all clear that any reasonable general solution (or parameterization)
even exists, short of computing the terms explicitly.

2.2 The Kolmogorov Theory

2.2.1 The physical picture

Consider high Reynolds number incompressible flow which is being maintained by some external
force. Then the evolution of the system is governed by

∂v

∂t
+ (u · ∇)v = − 1

ρ
∇p + F + ν∇2v (2.8)

and
∇ · v = 0 (2.9)

Here,F is some force we apply (i.e., we are stirring the fluid). A naïve scale analysis of these
equations indicates that the relative sizes of the inertial terms on the left-hand-side to the viscous
term is the Reynolds numberUL/ν. To be explicit let us consider the ocean, and takeU = 0.1 m/s,
L = 1000 km andν = 10−6m2s−1. ThenRe ∼ 1011, and apparently we can neglect the viscous
term on the right hand side of (2.8). But this can lead to a paradox. The fluid is being forced, and this
forcing is likely to put energy into the fluid. We obtain the energy budget for (2.8) by multiplying
by v and integrating over a domain. If there is no flow into or out of our domain, the inertial terms
in the momentum equation conserve energy and we obtain,

d

dt

∫
ρv2 dV =

∫ (
F · v + νv · ∇2v

)
dV (2.10)

or
dÊ

dt
=

∫ (
F · v − νω2

)
dV (2.11)
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whereÊ is the total energy. If we neglect the viscous term we are led to an inconsistency, since the
forcing term puts energy in (F · v > 0), but there is nothing to take it out! Thus, energy keeps on
increasing.

What is amiss? It is true that for motion with a 1000 km length scale and a velocity of a
few centimetres per second we can neglect viscosity when considering the balance of forces in the
momentum equation. But this does not mean that there is no motion at much smaller length scales—
indeed we are led to the inescapable conclusion that theremustbe some motion at smaller scales
in order to remove energy. Where and how does this motion occur? Boundaries are one important
region. If there is high Reynolds number flow above a solid boundary, for example the wind above
the ground, then viscositymustbecome important in bringing the velocity to zero in order that it can
satisfy the no-slip condition at the surface.

In the ‘boundary layer’ the viscous terms must be at least of the same order as the inertial terms,
that is

u
∂u

∂x
+ v

∂u

∂y
∼ ν

∂2u

∂y2
(2.12)

which implies the viscous terms may be important in boundary layer of approximate size

L ∼ ν

U
(2.13)

This is a very small number for geophysical fluids, of order millimetres or less.
The other way that energy may be dissipated is through energy dissipation in the interior of the

fluid. In order to do this the fluid must somehow generate motion on very small time and space
scales. How might this happen? Suppose the forcing acts only at large scales, and its direct action is
to set up some correspondingly large scale flow, composed of eddies and shear flows and such-like.
Then typically (a mathematician would like to say ‘generically’) there will be an instability in the
flow, and a smaller eddy will grow. At first it will grow exponentially, because during the period the
eddy is small the large scale flow may be treated as an unchanging shear flow, and the disturbance
while still of small amplitude will obey linear equations of motion similar to those applicable in
idealized Kelvin-Helmholtz instability. The exponential instability clearly must be drawing energy
from the large scale quasi-stationary flow, and it will eventually saturate at somefinite(as opposed to
infinitesimal) amplitude. Although it has grown in intensity, it is still typically smaller than the large
scale flow which fostered it (remember how the growth rate of the shearing instability got larger as
wavelength of the perturbation decreased). As it reaches finite amplitude, the perturbation itself may
become unstable, and smaller eddies will feed off its energy and grow, and so on. The process has
been encapsulated in the following ditty, attributed to L. F. Richardson,

Greater whorls have lesser whorls,
which feed on their velocity.

And lesser whorls have smaller whorls,
and so on to viscosity.
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Figure 2.1:Schema of a ‘cascade’ of energy to smaller scales: eddies at a large scale break up into smaller
scale eddies, thereby transferring energy to smaller scales. If the transfer occurs between eddies of similar
sizes (i.e., it is ‘spectrally local’) the transfer is said to be a cascade. The eddies in reality are embedded in
each other.

The picture which emerges if of a large scale flow which is unstable to eddies somewhat smaller
in scale. These eddies grow, and develop still smaller eddies. Energy is transferred to smaller and
smaller scales in a cascade-like process (fig. 2.1). Finally, eddies are generated which are sufficiently
small that they feel the effects of viscosity, and energy is drained away. There is a flux of energy
from the large scales to the small scales, where it becomes dissipated.

It seems that this picture of turbulence was envisioned by Richardson in the first part of this
century, and was quantified by Kolmogorov and Oboukhov.2

2.2.2 Inertial range theory

Given the above picture, it is possible to predict what the energy spectrum is, i.e. the intensity of
the motion as a function of wavenumber. Let us suppose that the flow is statistically isotropic and
homogeneous; the latter condition precludes the presence of solid boundaries but can be achieved in
a periodic domain (see e.g. fig. 2.2). (This naturally puts an upper limit, sometimes called the outer
scale, on the size of eddies which can be achieved.)
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y
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ƒ=ƒo+ßy

Figure 2.2:A Cartesian periodic domain, in two dimensions. Fluid that leaves on one side enters with the
same properties on the other side, allowing a statistically homogeneous flow. Ifβ 6= 0 the flow will not be
isotropic, but may still be homogeneous.

If we decompose the velocity field into Fourier components, then we may write

u(x, t) =
∫
ũ(k, t)eik·x dk (2.14)

whereũ is the coefficient of the k’th wavenumber —i.e. the Fourier transformed field—with similar
identities forv andw. The energy in the fluid is given by (assuming density is unity)

Ê =
∫
E dV = 1

2

∫
(u2 + v2 + w2) dV

= 1

2

∫
(ũ2 + ṽ2 + w̃2) dk (2.15)

using Parseval’s theorem. HerêE is the total energy,E the energy per unit volume, andE is the
energy spectral density. We suppose that the turbulence is homogeneous and isotropic. We write
(2.15) as

Ê =
∫

E(k) dk (2.16)

whereE(k) is the modal energy, and, because of the assumed isotropy,k is a scalar wavenumber
given byk2 = k2

x + k2
y + k2

z .
We calculate the energy spectrum of a turbulent fluid by a simple physical assumption, first

articulated by Kolmogorov. The idea is to suppose that the forcing scale is much larger than the
dissipation scale. Then we assume that there is a range of scales intermediate between the large
scale and the dissipation scale where neither forcing nor dissipation are explicitly important. This
assumption, known as the locality hypothesis, depends on the nonlinear transfer of energy being
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Table 2.1:

Quantity Dimension
Wavenumber,k 1/L
Energy per unit mass,E U2 ∼ L2/T 2

Energy spectrum,E(k) EL ∼ L3/T 2

Energy Flux,ε E/T ∼ L2/T 3

sufficiently local (in spectral space). Given this, this intermediate range is known as the inertial
range, because the inertial terms and not the forcing of dissipation must dominate in the momentum
balance here. If the rate of energy input per unit volume by stirring is equal toε, then if we are in a
steady state there must be a flux of energy from large scales to small also equal toε, and an energy
dissipation rate, alsoε.

In the inertial range, by assumption, no physical processes are important except inertial ones.
The energy spectrum must, therefore, be a functiononly of the energy fluxε and the wavenumber
itself. That is,

E(k) = f (ε, k). (2.17)

Dimensional analysis then gives us the form of this function (see table 2.1) . In (2.17), the left hand
side has dimensionalityL3/T 2; the dimensionT −2 on the left-hand-side can only be balanced by
ε2/3 sincek has no time dependence, i.e.

E(k) ∼ ε2/3g(k)

L3

T 2
∼ L4/3

T 2
g(k). (2.18)

We see thatg(k) must have dimensionsL5/3 and the functional relationship wemusthave, if the
assumptions are right, is

E(k) = Kε2/3k−5/3 . (2.19)

This is the famous ‘Kolmogorov -5/3 law’, enshrined as one of the cornerstones of turbulence theory
(see fig. 2.3). The parameterK is a dimensionless constant, undetermined by the theory. It is known
as Kolmogorov’s constant and experimentally is found to be approximately 1.5.

Another, perhaps slightly more physical, way to derive this is to note that we may define an eddy
turn-over timeτ(k), which is the time taken for a parcel with energyE(k) to move a distance 1/k.
Thus,

τ(k) = (k3E(k))−1/2 (2.20)



32 CHAPTER 2. TURBULENCE, BASIC THEORY

K
E

ne
rg

y

Wavenumber

ε
stirring

transfer

dissipation

ε 

ε

⇑

⇑

⇑

ε 32/ K 3-5/

υ

Figure 2.3: The energy spectrum in three-dimensional turbulence, in the theory of Kolmogorov. Energy
is supplied at some rateε; it is transferred (‘cascaded’) to small scales, where it is ultimately dissipated by
viscosity.

Kolmogorov’s assumptions are then equivalent to setting

ε ∼ kE(k)
τ (k)

(2.21)

which, since we demand thatε be constant, again yields:

E(k) = Kε2/3k−5/3, (2.22)

This spectral form has been verified many times observationally, the first time using some very high
Reynolds number oceanographic observations [17].

Now, the assumptions of homogeneity and isotropy are really ansatzes — we make them because
we want to have a tractable model of turbulence. Certainly we can conceive of a thought experiment
which is homogeneous and isotropic. The essential physical assumption is that there exists an inertial
range in which the energy flux is constant. Lacking a more comprehensive or fundamental theory we
can test it only through experiment. It requires that the energy be cascaded from large to small scales
in a series of steps, for then the energy spectra will be determined by spectrally local quantities.
Without this, we could conceivably have

E(k) = Cε2/3k−5/3h(k/ko) (2.23)

whereh is an unknown function andko the wavenumber at the forcing scale. This is just as dimen-
sionally consistent as (2.19). We essentially postulate that at some wavenumber much smaller than
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the forcing scale there is no functional dependence of the energy spectra on the forcing scale, and
h(k/ko) = 1. In fact in high Reynolds turbulence, the−5/3 spectra is observed to a fairly high
degree of accuracy — it is perhaps better observed than one might expect.

The viscous scale

At some small length-scale we should expect viscosity to become important and the scaling theory
we have just set up will not work. The Kolmogorov theory allows us to determine this scale.

In the inertial range friction is unimportant because the timescales on which it acts are too long
for it be important—dynamical effects dominate instead. However, at smaller timescales the viscous
timescale decreases. In the momentum equation we have

∂u

∂t
+ . . . = ν∇2u (2.24)

and so a viscous or dissipation timescale is

τd ∼ 1

k2ν
(2.25)

The eddy turnover time in the Kolmogorov spectrum is

τ(k) = ε−1/3k−2/3 (2.26)

The wavenumber at which dissipation becomes important is given by equating these, yielding the
dissipation wavenumber,

kd ∼
( ε
ν3

)1/4
(2.27)

or the associated length-scale

Ld ∼
(
ν3

ε

)1/4

(2.28)

Ld is sometimes called the Kolmogorov scale. It is theonly quantity which can be created from the
quantitiesν andε with the dimensions of length.

These are very sensible formulae; as the stirring rate (ε) increases orν decreases the frictional
scale decreases. ForL >> Ld , τi << τd and inertial effects dominate. ForL << Ld , τd << τi
and frictional effects dominate. (In fact for length-scales smaller than the dissipation scale, (2.26)
is inaccurate; the energy spectrum falls off more rapidly thank−5/3 and the ‘inertial’ timescale falls
off less rapidly than (2.26) implies, and dissipation dominates even more.)

How big isLd in the atmosphere? It is rather complicated because the largest scales of motion
in the atmosphere are two-dimensional, and (2.19) does not apply. Further, we need to estimate
the value ofε. In the atmosphereε is ultimately determined by how much energy is received by
the sun; however, not all of this goes to stir the atmosphere—some of it is simply radiated back
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to space as infra-red radiation. A very crude estimate ofε, likely to be wrong by a factor of ten,
comes from noting thatε has units ofU3/L. At length-scale of 100m in the atmospheric boundary
layer we estimate velocity fluctuations of order 1 cm/s, givingε ≈ 10−8m2s−3. Using (2.28) we
find the dissipation scale to beLd ≈ 1 − 10 mm. So dissipation becomes important at millimetre
scales in the atmosphere. If we try to simulate the atmosphere on a computer by resolving all scales
from the global to the Kolmogorov scale, we would end up with about 1027 degrees of freedom—a
number greater than Avogadro’s number. Thus trying to model turbulence is akin to trying to model
an ideal gas by following the motion of each individual molecule. How should we model it? This,
in a nutshell, is the (unsolved) problem of turbulence.

2.2.3 Scaling arguments for inertial ranges

Kolmogorov’s spectrum, as well as some other useful scaling relationships, can be obtained in a
slightly different, but essentially equivalent, way as follows. If we for the moment ignore viscosity,
the Euler equations are invariant under the following scaling transformation:

x H⇒ xλ v H⇒ vλr t H⇒ tλ1−r (2.29)

wherer is an arbitrary scaling exponent. So far there is no physics. Now make the following
physical assumptions: First we make the locality hypothesis, namely that the energy flux through a
wavenumberk depends only on local quantities, namely the wavenumber itself and the energyE(k)
or velocityv(k). Second, the flux of energy from large to small scales is assumed finite and constant.
Third we assume that the scale invariance (2.29) holds, on a time-average, in the intermediate scales
between the forcing scales and dissipation scales. This is likely to be strictly valid only in the limit
of infinite Reynolds number, but for finite Reynolds number it is made plausible by the locality
hypothesis. (It is important to note that the infinite Reynolds number limitis a limit, and is different
from simply neglecting the viscous term in (1.1), which gives the so-called Euler equations. This is
because, as we shall see, this term contributes even in the zero-viscosity limit.) The time average in
practice need be no longer than a few longest eddy turn-over times, and depending on how local the
energy transfer actually is we do not need an infinite Reynolds number for the scaling to be valid in
the inertial range.

Dimensional analysis then tells us that the energy flux scales as

ε ∼ v3

l
∼ λ3r−1 (2.30)

from which the assumed constancy ofε givesr = 1/3. This has a number of interesting conse-
quences. The velocity then scales as

v ∼ ε1/3k−1/3, (2.31)

and he velocity gradient scales as∇v ∼ ε1/3k2/3, as does the vorticityω = ∇ × v. These quantities
thus blow up (i.e., become infinite) at very small scales, but this is in fact avoided in any physical
situation by the presence of viscosity.
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We can now recover (2.22) easily since dimensionally

E ∼ v2k−1 ∼ ε2/3k−2/3k−1 ∼ ε2/3k−5/3. (2.32)

The structure functionsSm of orderm, which are the average of them′th power of the velocity
difference over distancesl ∼ 1/k, scale as(δvl)m ∼ εm/3lm/3 ∼ εm/3k−m/3. In particular the
second-order structure function, which is the Fourier transform of the energy spectra, scales as
S2 ∼ ε2/3k−2/3.

The viscous effects become important at a range given by equating the viscous and inertial terms
in the momentum equation, that is when

νk2v ∼ kv2 (2.33)

which yields

kν ∼
( ε
ν3

)1/4
. (2.34)

The scalelν ∼ k−1
ν is called theKolmogorov scale. In the limit of viscosity tending to zero,lν tends

to zero, but the energy dissipation does not. The energy dissipation is given by

Ė =
∫
νv · ∇2v dx (2.35)

Since the length at which dissipation acts is the Kolmogorov scale, using (2.31) this expression scales
as (for a box of unit volume)

Ė ∼ νk2
νv

2 ∼ ν
ε2/3

k
2/3
ν

knu
2 ∼ ε (2.36)

with k = kν . This result is demanded by the phenomenology. Energy is input at some large scales,
and the magnitude of the stirring largely determines the energy input and cascade rate. The scale
at which viscous effects become important is determined by the value of the molecular viscosity by
(2.34). If viscosity tends to zero, this scale becomes smaller and smaller in such a way as to preserve
the constancy of the energy dissipation.

Finally, the time scales ast ∼ l2/3 implying that for smaller scales the ‘eddy-turnover time’ on
which structures at that scale deform becomes smaller and smaller.

2.3 Two-Dimensional Turbulence

In two dimensions the situation is complicated by another quadratic invariant, the enstrophy. In two
dimensions, the vorticity equation is:

∂ζ

∂t
+ u · ∇ζ = ν∇2ζ (2.37)

whereu = ui + vj andζ = k · ∇×u. It is easily verified that whenν = 0 (4.7) conserves not only
the energy but also the enstrophyZ = ∫

1
2ζ

2 dx = ∫
k2E(k)dk.

We now ask, how does the distribution of energy and enstrophy change in a turbulent flow?
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Figure 2.4: In incompressible two-dimensional flow, a band of fluid (hatched region) will generically be
elongated, but its area (proportional to the fluid mass) will be preserved. Since vorticity is tied to fluid parcels,
the vorticity over the hatched area is also preserved; thus, vorticity gradients must increase and the enstrophy
distribution is thereby moved to smaller scales.

2.4 Energy and Enstrophy Transfer in Two-Dimensional Turbu-
lence

Two-dimensional turbulence differs from three-dimensional turbulence in that energy is expected to
be transferred tolarger scale. This behaviour arises from the twin integral constraints of energy and
enstrophy. The following three arguments illustrate why this should be so.

I. Vorticity Elongation

Consider a band or a patch of vorticity, as in fig. 2.4, in a nearly inviscid fluid. The vorticity of each
element of fluid is conserved as the fluid moves. Now, we should expect that quasi-random motion
of the fluid will act to elongate the band but, since its area must be preserved, vorticity gradients will
increase. This is equivalent to the enstrophy moving to smaller scales. However, the energy in the
fluid is

E = −1

2

∫
ψζ dx (2.38)

Now the streamfunction is obtained by solving the Poisson equation∇2ψ = ζ , and if the vorticity
is elongated primarily only in one direction (as it must be to preserve area) the integration involved
in solving the Poisson equation is such that scale of the streamfunction will normally become larger
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Figure 2.5: In two-dimensional flow, the ‘center of gravity’ of the energy spectrum will move to large
scales (smaller wavenumber) provided that the width of the distribution increases, which can be expected in
a nonlinear, eddying flow

in all directions. As a consequence, the cascade of enstrophy to small scales is accompanied by a
transfer of energy to large scales.

II. An energy-enstrophy conservation argument

A moments thought will reveal that the distribution of energy and enstrophy in wavenumber space
are are analogous to the distribution of mass and moment of inertia of a lever respectively, with
wavenumber playing the role of distance from the fulcrum. Any rearrangement of mass such that
its distribution also becomes wider must be such that the center of mass moves toward the fulcrum.
Thus, energy would move tosmallerwavenumbers and enstrophy to larger. We may formalize this
argument, as follows. Suppose we start with some given distribution of energy in wavenumber space
and by way of nonlinear interactions we redistribute the energy. The total energy and enstrophy are,
respectively

E =
∫
E(k) dk (2.39)

Z =
∫
k2E(k) dk (2.40)

Any rearrangement which preserves both quantities, and which causes the distribution to spread
out in wavenumber space, will tend to move energy to small wavenumbers and enstrophy to large.
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Let

ke =
∫
kE(k) dk∫
E(k) dk

(2.41)

and, for simplicity, we normalize units so that the denominator is unity. The spreading out of the
energy distribution is formalized by setting

dI

dt
= d

dt

∫
(k − ke)

2E(k) dk > 0. (2.42)

Expanding out the integral gives

I =
∫
k2E(k) dk − 2ke

∫
kE(k) dk + k2

e

∫
E(k) dk

=
∫
k2E(k) dk − k2

e

∫
E(k) dk, (2.43)

where the last equation follows becauseke = ∫
kE(k)dk is, from (2.41), the energy-weighted

centroid. Because both energy and enstrophy are conserved, (2.43) gives

dk2
e

dt
= − 1∫

E(k) dk

dI

dt
< 0. (2.44)

Thus, the centroid of the distribution moves to smaller wavenumber and to larger scale (see fig.
2.5).

An appropriately defined measure of the center of the enstrophy distribution, on the other hand,
moves to higher wavenumber. The proof of this3 is analogous, except that we work with the inverse
wavenumber, which is a direct measure of length. Letq = 1/k and assume that the enstrophy
distribution spreads out by nonlinear interactions, so that

dJ

dt
> 0, (2.45)

where

J =
∫
(q − qe)

2Z(q) dq, (2.46)

whereZ(q) is the enstrophy distribution and

qe =
∫
qZ(q) dq∫
Z(q) dq

. (2.47)

Expanding the integrand in (2.46) using (2.47) gives

J =
∫
q2Z(q) dq − q2

e

∫
Z(q) dq, (2.48)
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But
∫
q2Z(q)dq is conserved, because this is the energy. Thus,

dJ

dt
= − d

dt

∫
q2
e Z(q) dq (2.49)

whence
dq2

e

dt
= − 1∫

Z(q) dq

dJ

dt
< 0 (2.50)

Thus, the length scale characterizing the enstrophy distribution gets smaller, and the corresponding
wavenumber gets larger.

III A similarity argument

This argument is based on two physical requirements:

1. That there is no externally imposed length-scale in the problem;

2. That the energy is conserved.

It is the first of these that suggests a similarity argument be used.
Write the total energy (per unit mass) of a fluid as

U2 =
∫

E(k)dk (2.51)

whereE(k) is the energy spectrum — i.e.,E(k)δk is the energy in the small wavenumber interval
δk. Thus, solely on dimensional considerations, we can write

E(k, t) = U2LÊ(k̂, t̂) (2.52)

whereÊ , and its arguments, are nondimensional quantities, andL is a length-scale. However, on
physical considerations, the only parameters available to determine the energy spectrum areU , the
(square root of the) total energy,t , the time, andk, the wavenumber. There isa priori no ‘external’
length-scale, and soE should not depend explicitly onL. To make this so, let

E(k, t) = t̂g(k̂t̂ ) (2.53)

whereg is an arbitrary function of its arguments. Then

Ê = Ut

L
g(kLt

U

L
)

= Ut

L
g(Ukt). (2.54)
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Therefore,
E(k, t) = U2LÊ = U3tg(Ukt). (2.55)

which is independent ofL.
It is the choiceÊ = t̂g(k̂t̂ ) is crucial here. If we were to choose (say)Ê = t̂g(k̂/t̂) then we

would not obtain a form for (2.55) that is independent ofL xxxx. This choice is asimilarity solution,
and is due to Batchelor (1969). A little thought will show that it is the most general solution for the
energy spectrum that does not depend on the parameterL.

Conservation of energy now implies that the integral

I =
∫
tg(Ukt)dk (2.56)

not be a function of time. Definingϑ = Ukt then this requirement is met if∫ ∞

0
g(ϑ)dϑ = Constant. (2.57)

(The constant may be chosen to be one.) The spectrum is a function ofk only through the combination
ϑ = Ukt . Thus, as time proceeds features in the spectrum moves to smallerk. Suppose that the
energy is initially peaked at some wavenumber. If the wavenumber of the energy peak is denoted
kp, thentkp is preserved, andkp must diminish with time, and the energy move to larger scales.
Similarly, the energy weighted mean wavenumber (sayk) moves to smaller wavenumber, or larger
scale. To see this explicitly, we have

k =
∫
kE dk∫ E dk

=
∫
ktg(Ukt) dk∫
tg(Ukt) dk

= 1

Ut

∫
ϑg(ϑ) dϑ∫
g(ϑ) dϑ

= 1

Ut
A (2.58)

where all the integrals are over the interval(0,∞) andA = ∫
ϑg(ϑ) dϑ/

∫
g(ϑ) dϑ is a constant.

Thus, the mean wavenumber decreases with time. Defining a characteristic scalel = 1/k then a
measure of the rate of increase of scale is given by

1

l

dl

dt
= Uk(B/A). (2.59)

The quantity 1/Uk is the ‘eddy-turnover time’ of an eddy of characteristic size 1/k, that is the time
taken for a parcel of fluid to travel a distance 1/k. Thus, modulo the constantA, the eddy turnover
time is also the typical time it takes for the eddy containing scales to double in size.

The total enstrophy in this similarity argument isnot conserved.
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Figure 2.6:The putative energy spectrum in two-dimensional turbulence. Energy supplied at some rateε

is transferred tolarge scales, whereas enstrophy is transferred to small scales at a rateη where it may be
dissipated by viscosity. If the forcing is localized at a scalek)f theη ≈ k2

f η.

2.4.1 Inertial ranges in 2D turbulence

We now consider how energy and enstrophy might be distributed in forced-dissipative two-
dimensional flow. It is easy to show that energy dissipation goes to zero as Reynolds number
rises. The total dissipation of energy is, from (2.37),

dE

dt
= −ν

∫
ζ 2 dx (2.60)

Since vorticity itself is bounded from above we see that energy dissipation goes to zero as viscosity
goes to zero, and hence also in the infinite Reynolds number (but finite energy) limit. Thus, unlike
the three dimensional case, there is no mechanism for the dissipation of energy at small scales in
high Reynolds number two-dimensional turbulence. On the other hand, we do expect enstrophy to
be dissipated at large wavenumbers.

These arguments lead one to propose the following scenario in two-dimensional turbulence
(fig. 2.6). Energy and enstrophy are input at some scaleLI and energy is transferred to larger scales
(toward the fulcrum) and enstrophy is cascaded to small scales where ultimately it is dissipated. In the
enstrophy inertial range the enstrophy cascade rateη is assumed constant. Using the dimensionally
correct scaling

η ∼ k3E(k)
τ (k)

(2.61)
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yields the prediction
E(k) = K′η2/3k−3, (2.62)

whereK′ is also, it is supposed, a universal, order one, constant. It is of course also quite possible
to obtain (2.62) from scaling arguments identical to those following equation (2.29). The scaling
transformation (2.29) still holds, but now instead of (2.34) we assume that the enstrophy flux is
constant with wavenumber. Dimensionally we have

η ∼ v3

l3
∼ λ3r−3 (2.63)

which givesλ = 1. The exponentn determining the slope of the inertial range is given, as before,
by n = −(2r + 1) yielding the−3 spectra of (4.12). The velocity now thus scales asv ∼ η1/3k−1,
and the time scales with distance as

t ∼ l/v ∼ η−1/3. (2.64)

Thus, it is length-scale invariant. The appropriate Kolmogorov scale is given by equating the inertial
and viscous term in (1.1) or (2.37), which gives, analogously to (2.34)

kν ∼
(η1/3

ν

)1/2
(2.65)

The energy dissipation is easily calculated to got to zero asν → 0. The enstrophy dissipation,
analogously to (2.36) goes to a finite limit given by

Ż = d

dt

∫
1

2
ζ 2 dx = ν

∫ kν

0
ζ∇2ζ

∼ νk4
νv

2 ∼ η (2.66)

2.4.2 Difficulties with the phenomenology

The phenomenology of two-dimensional turbulence is unfortunately not quite as straightforward as
it might seem. We will not delve into these issues, but we will mention only the most egregious. To
begin, note that timescale (2.64) is apparently independent of scale. If the spectra were any steeper
then turnover times would actually increase with wavenumber, which seems unphysical. A useful
refinement of the estimate of the inertial timescale is:

τ =
{∫ k

k0

(p2E(p))dp
}−1/2

, (2.67)

wherek0 is a lower wavenumber cut-off. This formula recognizes the straining effects of all velocity
scales larger than the scale of interest. Using this in (2.61) yields the log-corrected range

E(k) = K′η2/3(log(k/k0))
−1/3k−3. (2.68)
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This spectrum is nevertheless likely to be observationally indistinguishable from the uncorrected
range.

However, this has not fixed the underlying problem with the two-dimensional phenomenology,
which is as follows. The inertial range predictions are based on the assumption of locality, in
spectral space, of energy and enstrophy transfers. Now, a useful measure of this locality is given by
the straining at a particular wavenumber, sayk, from other wavenumbers. The total strainT (k) atk
is given by

T (k) =
{ ∫ k

0
E(p)p3d logp

}1/2
(2.69)

The contributions to the integrand from each octave are given by

E(p)p31 logp (2.70)

In three dimensions, use of the−5/3 spectra indicates that the contributions from each octave below
k increase with wavenumber, being a maximum close tok, implying locality anda posterioribeing
consistent with the locality hypothesis. However, in two-dimensions each octave makes the same
contribution. The strain, and possibly the enstrophy transfer, are hardly local after all! This very
heuristic result implies that the two-dimensional phenomenology is on the verge of not being self-
consistent, and suggests that the−3 spectral slope is the shallowest limit that is likely to be actually
achieved in nature or in any particular computer simulation, rather than a very robust result. Why?
Well, suppose the detailed dynamics attempt in some way to produce a shallower slope; using (2.70)
the strain is then local and the shallow slope is forbidden by the Kolmogorovian scaling results.
However, if the dynamics organizes itself into structures with a steeper slope (sayk−4) the strain
is quite nonlocal. The fundamental assumption of Kolmogorov scaling is not satisfied, and there is
no inconsistency. In fact numerical simulations do reveal a slope steeper thank−3, often dominated
by isolated vortices. However, the dynamical processes leading to their formation, and their precise
relationship with the enstrophy cascade, are not at this time fully understood.

There is one other aspect of the phenomenology which is superficially a problem. In the limit of
zero viscosity (2.66) implies that enstrophy dissipation remains constant, and therefore that palinstro-
phy (mean square curl of the vorticity) is infinite somewhere. However, it has been shown rigorously
that the inviscid equations — (2.37) with the right-hand-side set to zero — have no singularities
and enstrophy dissipation remains zero. This is not really a contradiction, firstly because we are
concerned with the zero viscositylimit in (2.66). Even if we were to suddenly ‘turn off’ the viscosity
in an infinitely high resolution simulation of (2.37), then the enstrophy inertial range (assuming it
exists) would slowly spread to larger and larger wavenumbers; during this period of adjustment the
fluid has indeed zero enstrophy dissipation. It takes the fluid an infinite time to come to equilibrium
with an infinitely long inertial range. Only then is the enstrophy dissipation non-zero, which is not
an inconsistency with the rigorous results which only prohibit singularities forming in finite time.
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2.5 Predictability of Turbulence

One of the central properties of turbulence is its unpredictability due to nonlinear interactions. Some
authors will draw a distinction between ‘sensitive dependence on initial conditions’ and ‘unpre-
dictability’. The former’s meaning is unambiguous, and it is normally applied to deterministic
systems. The latter is sometimes applied only to indeterminism arising out of stochasticity, when
the equations of motion are not known. However, here we take them to be synonymous, and use the
latter (since it is but one word) to mean unpredictability arising from chaos. Actually, the difference
between chaos and stochasticity lies not so much in the underlying dynamics, but in our knowledge
of them. Whereas chaos is essentially but a word for deterministic unpredictability and ‘random-
ness’, stochasticity describes randomness arising from incomplete knowledge of the system, as for
example in Brownian motion. In most cases the difference between stochasticity and chaos is merely
a difference in our knowledge of the dynamics. For example, most computers have ‘random number
generators’ built in, and these are often used in the simulation of stochastic systems. However, the
algorithm producing the random numbers is completely deterministic, and if we regard that algorithm
as part of the system, we have chaos, not stochasticity.

The modern ideas of nonlinear dynamics and chaos have not, interestingly enough, had at this
time much impact on theories of, or ideas of how to cope with, strong turbulence. Even prior to the
classical paper of Lorenz (1963) and Ruelle and Takens(1971) it was believed that turbulence was
truly unpredictable (see e.g., Thompson 1959, and Novikov 1961) notwithstanding the picture of
Landau of turbulence as a large collection of periodic, and presumably predictable, motions. The
unpredictability was thought to arise from the utter complexity of the flow. The reasons for the loss
of predictability were probably only properly understood when it was realized that even systems with
a small number of degrees of freedom could be unpredictable. Assuming that the dynamical systems
arguments applicable to weak turbulence apply to strong turbulence, and hence that a turbulent fluid
is in fact unpredictable, then just using the scaling laws we can heuristically obtain estimates of the
predictability time for a turbulent fluid.

The physical space fieldsζ(x) may be expressed as an infinite Fourier sum or integral, for
exampleζ = ∑

ζ̂k exp(ix · k) or ζ = ∫
ζ̂k exp(ix · k)dk. The former is appropriate in a bounded

domain (where the wavenumbers are quantized), the latter in an infinite domain. We are usually
concerned with a finite domain, but will nevertheless often replace sums by integrals where it will
simplify things. In two-dimensions (for simplicity) the inviscid vorticity equation may be written,
in spectral form

∂ζk

∂t
+

∑
akpqζpζq = −νk2ζk (2.71)

whereakpq are geometrical coupling coefficients which arise when (2.37) is Fourier transformed.
The hats over transformed quantities have been dropped. At any given instant the equation of motion
may be linearized about its current state, and the subsequent motion would then be described by an
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equation, valid for short times, of the form:

∂ζ ′
k

∂t
+ Akqζ

′
q = 0 (2.72)

and the eigenvalues of the matrixAkq (whose explicit form does not concern us here) determine the
short term growth of errors in the system. Because the system is chaotic,Akq has positive (growing)
eigenvalues. If spectral interaction in the inertial range are sufficiently local, it becomes meaningful
to inquire as to the growth of errors at any particular scalek, for then the matrixAkq is dominated by
terms close to its diagonal. In particular, the rate of error growth at any particular scale is then given
by the size of the appropriate coefficient ofAkq , which iskuk whereuk is just a typical velocity at
scalek. This of course is just the inverse of the eddy turnover time (4.2). After a timeτk, errors
will have grown sufficiently that a linear approximation is no longer valid; at that scale errors will
saturate but at the same time will begin to contaminate the ‘next larger’ (in a logarithmic sense) scale,
and so on. Thus, errors initially confined to a scalek at t = 0 will contaminate the scale 2k after
a timeτk. The total time taken for errors to contaminate all scales fromk′ to the largest scalek0 is
then given by, treating the wavenumber spectrum as continuous,

T =
∫ k′

k0

τk d(lnk)

=
∫ k′

k0

d(lnk)√
k3E(k)

(2.73)

If the energy spectrum is a power law of the formE = C ′k−n this becomes

T = [C ′k(n−3)/2]k′k0

2

(n− 3)
. (2.74)

As k′ → ∞ the estimate diverges forn > 3, but converges ifn < 3.
What does these heuristic results mean? Taken them at face value they imply that two-dimensional

turbulence is indefinitely predictable; if we can confine the initial error to smaller and smaller scales
of motion, the payoff is that the ‘predictability time’ (the time taken for errors to propagate to all scales
of motion) can be made longer and longer, indeed infinite. This is consistent with what has been
rigorously proven about the two-dimensional Navier-Stokes equations, with or without viscosity,
namely that they exhibit ‘global regularity’, meaning they stay analytic for all time provided the
initial conditions are sufficiently smooth. This doesnotmean that two-dimensional flow is in practice
necessarily predictable. Two-dimensional turbulence is almost certainly chaotic and an arbitrarily
small amount of noise will render a flow truly unpredictable sometime in the future. It is just that
we can put off that time indefinitely if we know the initial conditions well enough, and can reduce
the amount of external noise sufficiently.

In three dimensions, on the other hand, things are more worrisome. The predictability time
estimate from (2.74) converges ask′ → ∞ So that even if we push our initial error out to smaller
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and smaller scales, the predictability time does not keep on increasing. The time it takes for errors
initially confined to small scales to spread to the largest scales is simply a fewlarge eddy turnover
times (because the eddy turnover times of the small scales are so small). This is an indicator that
something is awry, either with our methodology or with the Euler equations, since because the system
is classical we do not expect such finite time catastrophes. If one were able to prove global regularity
for the three-dimensional Euler equations then we would know our analysis were wrong, but such
a proof is lacking, and may not exist. The phenomenology thus suggests that the three dimensional
Euler equations are not well-posed. If the Euler equations were ill-posed, it would mean that they do
not correctly describe a physically realizable system. However, no classical flow is inviscid, and the
correct equations for a classical fluid are the Navier-Stokes equations, with viscosity. No matter how
small viscosity, if not zero, then at some small wavenumber the local Reynolds number will be small
and viscous effects will start to dominate over inertial effects. Beyond the viscous wavenumber, the
energy spectrum gets steeper, and as soon as the asymptotic spectra is steeper than−3 we are again
assured of indefinite predictability. If the Navier-Stokes equations themselves were shown to have
finite-time singularities, it would be a more serious matter.

What does this mean about the weather? In the troposphere the large scale flow behaves more
like a two-dimensional fluid, or at least a quasi-geostrophic fluid, than a three-dimensional fluid.
At scales smaller than about 100km, the atmosphere starts to behave three-dimensionally. Now
the current atmospheric observing system is such that over continents the atmosphere is fairly well
observed down to scales of a couple of hundred kilometers. If we knew the enstrophy cascade rate
through the atmosphere we could evaluate the predictability time using the formulae derived above,
but we may do the sum manually, Fourier transforming in our heads, as it were. Suppose then we
have no knowledge of the dynamical fields at scales smaller than 200km. Aside from certain rather
intense small scale phenomena, the atmosphere is not especially energetic at these scales and we
could estimate a typical velocity of about 1 m s−1 giving an eddy turnover time of about 2 days. So
in 2 days motion at 400 km scales is unpredictable. The dynamics at these scales is a little more
intense, sayU ∼ 2 m s−1. Coincidentally (?), this also gives a 2 day eddy turnover time, so after
4 days motion at 800 km is unpredictable. Continuing the process, after about 12 days motion at
6000 km is completely unpredictable, and our weather forecasts are essentially useless. This is
probably a little better than our experience suggests as to how good weather forecasts are in practice,
but of course our models of the atmosphere are certainly not perfect. (Actually, I’ve fudged the
numbers so they come out reasonable; more careful calculations, as well as computer simulations,
do give similar results though.) In principle, we could make forecasts better if we could observe the
atmosphere down to smaller scales of motion. Observing down to 100, 50 and 25 kilometres would
(if the atmosphere remained two-dimensional) each add about a couple of days to our forecast times.

However, at small scales of motion the atmosphere starts behaving three-dimensionally. Here,
the eddy turnover times decrease rapidly with scale and the predictability time is largely governed by
the predictability time of the largest scale of motion. Thus, thetheoreticallimit to predictability is
governed by the scale at which the atmosphere turns three-dimensional, probably about 100 km. So
we see that we can’t increase the length of time we can make good weather forecasts for longer than
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about two weeks, no matter how good our models and no matter how good our observing system.
This is the theoretical predictability limit of the atmosphere. The so-called butterfly effect has its
origins in this argument: a butterfly flapping its wings over the Amazon is, so it goes, able to change
the course of the weather a week or so later.

One other point may be apposite. The predictability of a system is sometimes characterized
by its spectrum of Lyapunov exponents. In a turbulent system the largest Lyapunov exponent is
likely be associated with the smallest scales of motion, and the error growth associated with this
effectively saturates at small scales. The timescales of error growth affecting the larger scales, which
are the timescales of most interest, are determined by slower, larger scale processes whether or not
the cascade-like growth of error described above is correct. This means that the largest Lyapunov
exponents probably have nothing whatever to do with the growth of error at the larger scales in a
turbulent fluid.

2.6 Spectrum of a Passive Tracer

Let us now consider, phenomenologically, the spectrum of a passive tracer, such as a dye, that obeys
the equation

Dφ

Dt
= F + κ∇2φ, (2.75)

whereF is the ‘forcing’ or injection of the dye, andκ is its diffusivity. In generalκ differs from
the kinematic molecular viscosityν; their ratio is thePrandtl numberσ = ν/κ. We assume that the
tracer is injected as some well-defined scalek0, and thatκ is sufficiently small that dissipation only
occurs at very small scales. (Note that dissipation only reduces the tracervariance,not the amount
of tracer itself.) The turbulent flow will generically tend to stretch patches of dye into elongated
filaments, in much the same way as vorticity in two-dimensional turbulence is filamented — note
that fig. 2.4 applies just as well to a passive tracer in either two or three dimensions as it does to
vorticity in two dimensions. Thus we expect a transfer of tracer variance from large-scales to small.
If the dye is injected at a rateχ then, by analogy with our treatment of the cascade of energy, we
have

χ ∝ P(k)k

τ(k)
(2.76)

whereP(k) is the spectrum of the tracer,k is the wavenumber andτ(k) is the timescale of the
turbulent flow. If the spectral slope of the turbulence is−3 or shallower, then

τ(k) = [k3E(k)]−1/2 (2.77)

Suppose that the turbulent spectrum is given by

E(k) = Ak−n (2.78)
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then

χ ∝ P(k)k

[Ak3−n]−1/2
(2.79)

and
P(k) = BA−1/2χk(n−5)/2 (2.80)

whereB is a constant. Note that the steeper the energy spectrum the shallower the tracer spectrum.
If the energy spectrum is steeper than−3 then the estimate (2.77) should be replaced by

τ(k) =
[∫ k

k0

p2E(p)dp

]−1/2

(2.81)

wherek0 is the low-wavenumber limit of the spectrum. If the spectrum is shallower than−3 then the
integrand is dominated by the contributions from high wavenumbers and (2.81) effectively reduces
to (2.77). If the spectrum is steeper than−3 then the integrand is dominated by contributions from
low wavenumbers. Indeed fork � k0 then we can approximate the integral by[k3

0E(k0)]−1/2, or the
eddy-turnover time at large scales,τ(k0). The energy spectrum then becomes

P(k) = Cχτ(k0)
−1k−1 (2.82)

whereC is a constant.
In all these cases the tracer cascade is to smaller scales even if, as may happen in two-dimensional

turbulence, energy is cascading to larger scales.
The scale at which diffusion becomes important (the diffusive microscale) is given by equating

the turbulent time-scaleτ(k) to the diffusive time-scale(κk2)−1. This is independent of the flux of
tracer,χ , essentially because the equation for the tracer is linear, Determination of expressions for
these in two and three dimensions are left as problems for the reader.

2.6.1 Examples

1. Inertial range flow in three dimensions

Consider a range of wavenumbers over which neither viscosity nor diffusivity directly influence
the turbulent motion and the tracer. Then in (2.80)A = Cε2/3 whereε is the rate of energy
transfer to small scales andC the Kolmogorov constant, andn = 5/3. The tracer spectrum
becomes

P(k) = Dε−1/3χk−5/3. (2.83)

(This result dates to Oboukhov (1949) and, independently, Corrsin (1951).) It is interesting
that the−5/3 exponent appears in both the energy spectrum and the passive tracer spectrum.
Using (2.77), this is the only spectral slope for which this occurs. Experiments show that this
range does, at least approximately, exist with a value ofD of about 0.5.
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2. Enstrophy range in two-dimensional turbulenceIn the forward (enstrophy) inertial range the
timescale is just

τ(kν) = η−1/3 (2.84)

(assuming of course that classical phenomenology holds). Directly from (2.76) the corre-
sponding tracer spectrum is then

P(k) = Bη−1/3χk−1. (2.85)

The passive tracer spectrum now has the same slope as the spectrum of vorticity variance (i.e.,
the enstrophy spectrum), which is perhaps comforting since the tracer and vorticity obey the
same equation in two dimensions.

3. Inverse energy-cascade range in two-dimensional turbulenceNow we are supposing that the
energy injection occurs at a smaller scale than the tracer injection, so that there exists a range
of wavenumbers over which energy is cascading to larger scales while tracer variance is
simultaneously cascading to smaller scales. The tracer spectrum is then

P(k) = D′ε−1/3χk−5/3, (2.86)

the same as (2.83), althoughε is now a cascade to larger scales andD′ does not necessarily
equalD.

4. The viscous range of large Prandtl number flow

If σ = ν/κ � 1 then there may exist a range of wavenumbers in which viscosity is important
but not tracer diffusion. The energy spectrum is then very steep, and (2.82) will apply. The
appropriate low wavenumber is the dissipation wavenumber, so that in three dimensions

k0 = kν =
( ε
ν3

)1/4
(2.87)

and

τ(kν) =
(ν
ε

)1/2
(2.88)

The tracer spectrum is then

P(k) = D
(ν
ε

)1/2
χk−1. (2.89)

This is sometimes called theBatchelor spectrum.

In two dimensions the spectral slope in the corresponding (high wavenumber) viscous but
non-dissipative range is the same. However, the appropriate timescale at the dissipation scale
is given not by (2.88) but by (2.84). Even in the viscous range then, the tracer spectrum is
given by (2.85) and the phenomenology predicts that there is no break in the spectral slope
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of a passive tracer in two dimensions when the viscous range is reached at the dissipation
wavenumber,

kν =
( η
ν3

)1/6
(2.90)

5. Small Prandtl number flow

For small Prandtl number the energy inertial range may co-exist with a range over which
tracer variance is being dissipated. The flux of the tracer is now no longer constant; rather it
diminishes according to

dχ

dk
= −2κk2P(k). (2.91)

However, we may still assume thatχ andP(k) are related by

χ = P(k)k

τ(k)
. (2.92)

In the energy inertial range of three dimensional flow we have

τ(k) = (k2ε)−1/3 (2.93)

so that

P(k) = χ(k)ε−1/3k−5/3 (2.94)

and (2.91) becomes
dχ

dk
= −2κχε−1/3k1/3. (2.95)

Solving this gives

χ = χ0 exp(−3

2
κε−1/3k2/3), (2.96)

whereχ0 is the tracer flux at the beginning (low wavenumber end) of the tracer dissipation
range. The tracer spectrum is then

P(k) = χ0ε
−1/3k−5/3 exp(−3

2
κε−1/3k2/3). (2.97)

The tracer spectrum thus falls exponentially in this range.

The spectra in a number of these cases are illustrated in figure (xxx) (not yet available).
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2.7 Spectra in the Time Domain

Let Ẽ(ω) be the frequency spectrum in the time-domain, such that the total energy (per unit mass) is
given by

E = 1

2
u2 =

∫
E(ω) dω. (2.98)

We can proceed analogously to the case in wavenumber space, supposing that the energy spectrum
is a function ofε, the energy transfer rate. (Note that the dimensions ofε,L2/T 3, makes no specific
reference to it being an energy transfer throughwavenumberspace.) For the energy inertial range,
in either two or three dimensions, dimensional analysis then yields

E(ω) ∼ L2

T
∼ εω−2 (2.99)

So the spectrum is
Ẽ(ω) = Cεω−2 (2.100)

whereC is a non-dimensional constant. We can also obtain this result, along with an estimate for C
in terms of the Kolmogorov constant, if we suppose that the angular frequency corresponding tok

is given by

ω = [E(k)k3
]1/2 = K1/2ε1/3k2/3 (2.101)

whereK is Kolmogorov’s constant. TheñE(ω) = E(k)∂k/∂ω and we find that

Ẽ(ω) = 3

2
K3/2εω−2 (2.102)

However, the equality in (2.101) cannot really be justified.
In the enstrophy inertial range of two dimensional turbulence such dimensional analysis is of

little use. For if we suppose that the energy spectrum is a function of the enstrophy cascade rateη

and the frequencyω we have that

Ẽ(ω) ∼ L2

T
∼ ηaωb ∼ T −3aT −b (2.103)

wherea andb are putative powers to make the equation dimensionally consistent. Clearly, this is not
possible. Physically, the problem arises because each wavenumber in the enstrophy inertial ranges
has the same time-scale.

2.7.1 The space-time spectrum

We might suppose that there exists the general space-time spectrumÊ such that

E = Ê(k, ω) dω dk (2.104)
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If we write
Ê(ω, k) = ε2/3k−5/3f (ω, k) (2.105)

wheref (ω, k) is some function of its arguments, then by simple similarity (i.e., dimensional) argu-
ments we must have

f (ω, k) = g(ωtk)tk (2.106)

wheretk is the time-scale at wavenumebrk. We further require that∫ ∞

0
g(ωtt )tk dω = 1 (2.107)

which is satisfied if ∫ ∞

0
g(α) dα = 1, (2.108)

α(= ωtk) is just the argument ofg.
The time-spectrum̃E is given by

Ẽ(ω) =
∫
ε2/3k−5/3g(α)tk dk. (2.109)

Using turbulence phenomenology, for the energy inertial rangetk = (k2ε)−1/3, so thatdtk/dk =
−2/3k−5/3ε−1/3 and

1

ω

dα

dk
= −2/3k−5/3ε−1/3 (2.110)

Thus,

Ẽ(ω) =
∫
ε2/3k−5/3g(α)tk dk

=
∫

−3

2

1

ω
εg(α)tk dα

=
∫

−3

2

1

ω
εg(α)

α

ω
dα

= =
∫
εω−2

∫
h(α)dα (2.111)

whereh(α) is an undetermined function.

2.7.2 Eulerian Spectra

Suppose that a probe that measures velocity fluctuations is put in a turbulent fluid. What energy
spectrum would result from its measurements? It would not be theω−2 derived above, because the
velocity variations at a fixed point are due to the sweeping past the probe of small eddies by large
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eddies. That is, the probe serves to map the spatial frequency of the turbulence into the time-frequency
by the relationship

ω = Uk (2.112)

whereU is the rms velocity of the energy containing scales. Note that this does not violate the
locality hypothesis, which says that small eddies are torn apart by eddies of comparable scale. Here
we are saying that small eddies are swept by eddies at the energy containing scales. The difference
is between the contribution to the integral of the shear spectrum

Shear2 ∝
∫ l

k0

ε2/3p1/3 dp (2.113)

which is dominated by contributions to the integrand from neark itself, and the velocity spectrum

Velocity2 ∝
∫ l

k0

ε2/3p−5/3 dp (2.114)

which is dominated by contributions from neark0. Using (2.112) is equivalent to Taylor’sfrozen
field hypothesis, since one is supposing that the small-scale turbulent structure is frozen as it is swept
past the probe. Using it in the Kolmogorov−5/3 spectrum (2.19) gives

Ẽ(ω) = Kε2/3U2/3ω−5/3 (2.115)

In the enstrophy inertial range of two-dimensional turbulence a similar argument gives

Ẽ(ω) = Kη2/3U2/3ω−3 (2.116)

Using these transformations is often the simplest way to measure the energy spectrum in a
fluid. To directly measure the spectrum in wavenumber space requires measurements of the velocity
correlation between two points, a more difficult measurement.

If (2.115) is the spectrum measured at a point, what does theω−2 spectrum physically represent?
Tennekes and Lumley argue that this is a ‘lagrangian’ time spectrum, related to the temporal evolution
‘seen by an observer moving with the turbulent velocity fluctuations.’ This is a little unsatisfactory,
and a reader who gives a better explanation will win a small prize.
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Notes

1. A precise definition of turbulence is hard to come by, and in that sense turbulence is like pornography:
hard to define, but easy to recognize when we see it!

2. Lewis Fry Richardson (1881–1953) was a British scientist best known as the person who envisioned
weather forecasting in its current form — that is, numerical weather prediction. However, instead
of an electronic computer performing the calculations, he envisioned a hall full of people, performing
calculations in unison all directed by a conductor at the front. He is also well-known for the ‘Richardson
number.’ Remarkably, he also made contributions to the theory of war. He was a known as a pacifist.

A. N. Kolmogorov was a Russian theoretical physicist, who made seminal contributions to turbulence
(in three papers in 1941 and another in 1962), statistics, and classical mechanics through the well-known
but less-understood Kolmogorov-Arnol’d-Moser theorem.

3. This form of the proof arose in discussion with Isaac Held.

Further Reading

Tennekes and Lumley 1972.A First Course in Turbulence.
This book remains the classical introduction to the subject.

Monin and Yaglom 1966.Statistical Fluid mechanics.
This two volume book is encyclopaedic in content and contains a wealth of information. It is the
ultimate reference on the subject.

Frisch 1995.Turbulence: the legacy of A. N. Kolmogorov.
This is modern account of turbulence, written in a slightly personal but readable style.

Doering and Gibbon.
This is perhaps as readable account as one can get on the mathematics of regularity and well-posedness
of the Navier-Stokes and Euler equations.



Chapter 3

Geostrophic Turbulence

Geostrophic turbulence is, loosely speaking, turbulent flow that exists in flows that are in near-
geostrophic balance. Typically, such motions are described by the quasi-geostrophic equations but
this is not strictly necessary; we can envision highly nonlinear flow in the frontal geostrophic equa-
tions and perhaps even in the planetary geostrophic equations. Nevertheless, the quasi-geostrophic
equations have been the home for most theoretical and numerical studies, and we focus on them. The
two physical effects that pervade these notes, namely rotation and stratification, continue to provide
basic constraints on the flow; indeed their effects are so pervasive that, perhaps ironically, it becomes
easier to say something interesting about geostrophic turbulence than about incompressible two-
or three-dimensional turbulence. In those problems, there is nothing else to understand other than
the problem of turbulence itself; the basic problem rears its head immediately, and unless one can
‘solve’ that problem there is little else to say. On the other hand, rotation and stratification give one
something else to hang to, and it becomes possible to address geophysically interesting phenomena
without having to solve the whole problem. Our plan is consider the effects of rotation first, then
stratification.

3.1 Rotational Effects in Two-Dimensional Turbulence

We have seen that one of the effects of rapid rotation on a fluid is its ‘two dimensionalisation,’ captured
by the Taylor-Proudman theorem. In the limit of motion of a scale much shorter than the deformation
radius, the quasi-geostrophic potential vorticity equation reduces to the two-dimensional equation,

Dq

Dt
= 0 (3.1)

whereq = ζ+f . This is the simplest equation with which to study the effects of rotation. The effects
of rotation are of course already playing a role in enabling us to reduce a complex three-dimensional
flow to two-dimensional flow. Further, suppose that the Coriolis parameter is constant. Then (3.1)

55
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becomes simply the two-dimensional vorticity equation

Dζ

Dt
= 0. (3.2)

Thus, ironically, constant rotation hasno effecton purely two-dimensional motion. Flow which is
already two-dimensional—flow on a soap film, for example—is unaffected by rotation.

Suppose, though, that the Coriolis parameter is variable, as inf = f0 + βy. Then we have

D

Dt
(ζ + βy) = 0 (3.3)

or
Dζ

Dt
+ βv = 0 (3.4)

If the dominant term in this equation is the one involvingβ, then we obtainβv = 0. That is, there
is no flow in the meridional direction. The flow, presuming it exists, will be organized into flow in
thezonaldirection. [An aside:From the point of view of the quasi-geostrophic asymptotics used in
deriving (3.3), one assumes that variations in Coriolis parameter are small, i.e., thatβy = O(Ro)f .
However, this doesnot preclude theβ term being the dominant one in any subsequent equation, so
long as it is not supposed to be 1/O(Ro) bigger than the other terms. Alternatively, one might have
posited two-dimensionality, and (3.1),ab initio in which there is no asymptotic restriction on the
size off .] This constraint may be interpreted as a consequence of angular momentum and energy
conservation, as discussed further in chapter (xx). A ring of fluid encircling the earth at a velocityu

has an angular momentum per unit massa cosθ(u + � cosθ) whereθ is the latitude. Moving this
ring of air polewards (i.e., giving it a meridional velocity) while conserving its angular momentum
requires its velocity and hence energy to increase. Unless there is a source for that energy the flow
is constrained to remain zonal.

3.1.1 Organization of turbulence into zonal flow

Heuristics

Let us now consider how flow can become organized into zonal bands, from the perspective of
two-dimensional turbulence. Re-write (3.1) in full as

∂ζ

∂t
+ u · ∇ζ + βv = 0. (3.5)

If ζ ∼ U/L and if t ∼ T then the terms in this equation scale as

U

LT
: U2

L2
: βU (3.6)
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How time scales (i.e., advectively or with a Rossby wave frequency scaling) is determined by
which of the other two terms dominates, and this in turn is scale dependent. For large scales the
β-term will be dominant, and at smaller scales the advective term is dominant. The cross-over scale,
or the ‘β-scale’Lβ , is given by

Lβ =
√
U

β
. (3.7)

This is not a unique definition of the cross-over scale, since we have chosen the same length
scale to connect vorticity to velocity and to be theβ-scale, and it is by no meansa priori clear that
this should be so. If the scale is different, the various terms scale as

U

LT
: UZ

L : βU (3.8)

whereZ is the scaling for vorticity (i.e.,ζ ∼ Z). Then

LβZ = Z

β
. (3.9)

In any case, (3.7) and (3.9) both indicate that at somelargescale the vorticity equation Rossby waves
are likely to dominate whereas at small scales advection, and turbulence, dominates.1 The cross-over
is reasonably sharp, as indicated in fig. 3.1.

Another heuristic way to derive (3.7) is by a direct consideration of timescales. The Rossby wave
frequency isβ/k and an inverse advective timescale isUk, wherek is the wavenumber. Equating
these two gives the well-known equation for theβ-wavenumber

kβ =
√
β

U
(3.10)

This equation is the inverse of (3.7), but note that factors of order unity, and evenπ , cannot be
revealed by simple scaling arguments such as these.

Turbulence Heuristics

Can we be more precise about the scaling using the phenomenology of turbulence? Let us suppose
that the fluid is stirred at some well-defined scalekf , producing an energy inputε. Then, energy
cascades to large scales at that same rate. At some scale, theβ term in the vorticity equation will
start to make its presence felt. By analogy with the procedure for finding the dissipation scale in
turbulence, we can find the scale at which linear Rossby waves dominate by equating the inverse of
the turbulent eddy turnover time to the Rossby wave frequency. The eddy-turnover time is

τ(k) = ε−1/3k−2/3 (3.11)
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Figure 3.1:Theβ–turbulence cross-over. The thick solid curve is the frequency of Rossby waves, proportional
to 1/k. The other curves are various estimates of the inverse turbulence timescale, or ‘turbulence frequency.’
These are the turbulent eddy transfer rate, proportional tok2/3 in a k−5/3 spectrum; the simple estimateUk
whereU is an rms velocity; and the mean vorticity, which is constant. Where the Rossby wave frequency
is larger (smaller) than the turbulent frequency, i.e., at large (small) scales, then Rossby waves (turbulence)
dominates the dynamics.

Equating this to the inverse Rossby wave frequencyk/β gives theβ-scale

kβ =
(
β3

ε

)1/5

. (3.12)

From a practical perspective this is less useful than (3.10), since it is generally much easier to measure
velocities than energy transfer rates, or even vorticity. Nonetheless, it is a little more fundamental
from the point of view of turbulence since one can often imagine thatε is determined by processes
largely independent of theβ, whereas the magnitude of the eddies (i.e.U ) at the energy containing
scales is likely to be a function ofβ.

Generation of anisotropy

None of the measures discussed so far take into account the anisotropy inherent in Rossby waves, nor
do they suggest how the flow might organize itself into zonal structures. Now, energy transfer will be
relatively inefficient at those scales where linear Rossby waves dominate. But the wave-turbulence
boundary is not isotropic; the Rossby wave frequency is quite anisotropic, being given by

ωβ = − βkx

k2
x + k2

y

. (3.13)
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Figure 3.2:The anisotropic wave-turbulence boundarykβ , in wave-vector space calculated three different
estimates of the turbulent frequency: (a) The turbulent eddy transfer rate, proportional tok2/3 in a k−5/3

spectrum; (b) the simple estimateUk whereU is an rms velocity; (c) the mean vorticity, which is constant.
All produce qualitatively similar shapes. Within the ‘dumb-bells’ Rossby waves dominate and enstrophy
transfer is inhibited. The inverse cascade thus leads to a predominance of zonal flow.

If, as a first approximation, we suppose that the turbulent part of the flow remains isotropic, the wave
turbulence boundary is given from the solution of

ε1/3k2/3 = −βkx
k2

(3.14)

wherek is the isotropic wavenumber. Solving this gives differing expressions for the x- and y-
wavenumber components of the wave-turbulence boundary, namely

kxβ =
(
β3

ε

)1/5

cos8/5 θ

kyβ =
(
β3

ε

)1/5

sinθ cos3/5 θ (3.15)

where the polar co-ordinate is parameterized by the angleθ = tan−1(ky/kx).
This rather uninformative-looking formula is illustrated in fig. 3.2. If the ‘turbulence frequency’

is parameterized by the simple expressionUk then the wave turbulence boundary is given from

Uk = −βkx
k2
, (3.16)

which has solutions

kxβ =
(
β

U

)1/2

cos3/2 θ

kyβ =
(
β

U

)1/2

sinθ cos1/2 θ (3.17)
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Figure 3.3:Evolution of the energy spectrum in an unforced, inviscid two-dimensional simulation on the
β-plane. The panels show contours of energy in wavenumber(kx, ky) space. The initial spectrum (a) is
isotropic. Panels (b) and (c) show the spectrum at later times.

The region inside the dumb-bell shapes in fig. 3.2 is dominated by Rossby waves, where the
natural frequency of the oscillation ishigher than the turbulent frequency. If the flow is stirred at
a wavenumber higher than this, energy cascades to larger scales, but it will be unable to efficiently
excite modes in the dumb-bell. Nevertheless, there is still a natural tendency of the energy to seek
the gravest mode, and it may do this by cascading toward thekx = 0 axis, i.e., toward zonal flow. In
this way a turbulent flow can produce zonally elongated structures.

Does this putative mechanism actually work? Fig. 3.3 shows the freely evolving (unforced,
inviscid) energy spectrum in a simulation on aβ–plane, with an initially isotropic spectrum. The
energy cascades to larger scales, ‘avoiding’ the region inside the dumb-bell and piling up atkx = 0.

Consistently, forced-dissipative simulations show a robust tendency to produce zonally-elongated
structures and zonal jets (fig. 3.4).

3.2 Stratified Geostrophic Turbulence

3.2.1 Quasi-geostrophic flow as an analogue to two-dimensional flow

Now let us consider stratified effects in a simple setting, namely the quasi-geostrophic equations with
constant Coriolis parameter and constant stratification. The (dimensional) unforced and inviscid
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Figure 3.4: (a) Gray-scale image of zonally average zonal velocity as a function of time and latitude,
produced in a simulation forced around wavenumber 80 and withkβ = √

β/U ≈ 10. (b) Values of∂2U/∂y2

as a function of latitude, whereU is the zonally averaged zonal velocity.

governing equation is then

Dq

Dt
= 0

(3.18)

q = ∇2ψ + λ2∂
2ψ

∂z2

whereλ = f0/N andD/Dt = ∂/∂t + u · ∇ is the two-dimensional material derivative. If we
rescale the vertical co-ordinate byH , the height of the domain, thenλ = (f0/NH) is the inverse
first deformation radius.

These equations are strongly analogous to the equations of motion for purely two-dimensional
flow. In particular, with appropriate boundary conditions there are two quadratic invariants of the
motion, the energy and the enstrophy, which are obtained by multiplying (3.18) byψ andq and
integrating over the domain. The conserved quantities are

E =
∫ {

(∇ψ)2 + λ2

(
∂ψ

∂z

)}2

dV (3.19)
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and

Z =
∫
q2dV =

∫ {
∇2ψ + λ2

(
∂2ψ

∂z2

)}2

dV (3.20)

where the integral is over athree-dimensionaldomain. (However, we continue to use the convention
that∇ψ = i∂ψ/∂x + j∂ψ/∂y and∇2ψ = ∂2ψ/∂x2 + ∂2ψ/∂y2). Horizontal boundary conditions
of either no-normal (ψ = constant) or periodic flow will suffice for this. The energy integral in
addition requires a horizontal boundary condition at the top and bottom of the domain, and setting
∂ψ/∂z = 0 will suffice. The enstrophy integral in fact holds for each horizontal layer, because
potential vorticity in the quasi-geostrophic equations is conserved when advected by the horizontal
flow.

The analogy with two-dimensional flow is even more transparent if we further rescale the vertical
co-ordinate by 1/λ; i.e., letz → z/λ. Then the energy and enstrophy invariants are:

E =
∫
(∇3ψ)

2dV (3.21)

and

Z =
∫
q2dV =

∫
∇2

3ψdV (3.22)

where the subscript ‘3’ makes explicit the three-dimensional nature of the derivative. The invariants
have exactly the same form as the two-dimensional invariants.

Given that, we should expect that any dynamical behaviour that occurs in the two-dimensional
equations,and that depends solely on the energy/enstrophy constraints,should have an analogy
in quasi-geostrophic flow. The arguments surrounding the transfer of energy to large-scale, and
enstrophy to small scale, are based on the existence of such constraints. Thus, classical quasi-
geostrophic turbulence will be characterized by a cascade of energy to large-scale with ak−5/3

spectrum and a cascade of enstrophy to small-scales with ak−3 spectrum. However, the wavenumber
is the nowthree-dimensionalwavenumber, appropriately scaled by the deformation radius in the
vertical. Interestingly, the energy cascade to larger horizontal scales is accompanied by a cascade
to larger vertical scales—abarotropizationof the flow. We will come across this again, for it is an
important and robust process in geostrophic turbulence.

In two-dimensional turbulence the equation of motion is isotropic in those two-dimensions. In
quasi-geostrophic turbulence, the governing equation (3.18) is decidedly non-isotropic even though
some of invariants—the energy and enstrophy—are. Thus, the dynamics of quasi-geostrophic tur-
bulence cannot in general be expected to be isotropic in three-dimensional wavenumber.

Very small horizontal scales

Consider very small horizontal scales, such that

L2
H � L2

ZN
2

f 2
0

(3.23)
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whereLH andLZ are the horizontal and vertical scales of motion, respectively. The governing
equation now reduces to the two-dimensional vorticity equationDζ/Dt = 0 whereζ = ∇2ψ. If
the vertical scale of motion remains that of the domain size, then this criterion is satisfied for scales
much smaller than the deformation radius, but this cannot be guaranteed, especially given the notion
of a forward cascade of enstrophy to smaller horizontal and vertical scales.

Very large horizontal scales

Now consider scales for which

L2
H � L2

ZN
2

f 2
0

. (3.24)

The evolution equation is
D

Dt

{
λ2∂

2ψ

∂z2

}
= 0 (3.25)

Temperature advection at the boundary. More here....
To examine the detailed dynamical behaviour of quasi-geostrophic turbulence, we turn to a

simpler model, that of two-layer flow.

3.2.2 Two-layer quasi-geostrophic flow

We will consider flow in two layers, governed by the quasi-geostrophic equations:

∂qi

∂t
+ J (ψi, qi) = 0 (1 = 1,2) (3.26)

where

J (a, b) = ∂a

∂x

∂b

∂y
− ∂b

∂y

∂a

∂x

q1 = ∇2ψ1 + λ2
1(ψ2 − ψ1) (3.27)

q2 = ∇2ψ2 + λ2
2(ψ1 − ψ2)

These equations may be considered as either a crude finite difference approximation to the continuous
equations (3.18), with a rigid-lid boundary condition (w = 0) at the top and bottom. This is probably
the most appropriate interpretation for the atmosphere, where the sharp increase in stratification at
the tropopause inhibits vertical motion.

Alternately, they may be considered a physical model of two immiscible fluid layers of differing
density, which is perhaps a better interpretation for the ocean where the thermocline separates the two
fluids. In this case the two layers should be on unequal thickness, since the depth of the thermocline
is rarely greater than 1 km. In either case the parametersλi are given by the expressions

λ2
i = f 2

0

g′Di

(i = 1,2) (3.28)
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whereDi is the layer depth andg′ is the reduced gravity.
Let us further simplify to the case of two equal layer depths,D, possibly thereby foregoing for

the moment an easy oceanic relevance. Thenλ1 = λ2 = λ = f0/
√
g′D = (f0/ND). Thus,λ−1 is

simply related to the first baroclinic or internal radius of deformation.
The equations then conserve the total energy,

E =
∫
(∇ψ1)

2 + (∇ψ2)
2 + λ2(ψ1 − ψ2)

2 dA (3.29)

and the enstrophy

Z =
∫ (∇2ψ1 + λ(ψ1 − ψ2)

)2
dA, (3.30)

both of which may be thought of as finite difference analogs of the continuous invariants. The first
two terms in the energy expression represent the kinetic energy, and the last term is the potential
energy, proportional to the variance of temperature. The enstrophy is conserved layer-wise, as well
as volume integrated.

Baroclinic and barotropic decomposition

Define the barotropic and barotropic streamfunctions by

ψ := 1

2
(ψ1 + ψ2)

τ := 1

2
(ψ1 − ψ2) (3.31)

Then the potential vorticities for each layer may be written:

q1 = ∇2ψ + (∇2 − λ2)τ (3.32)

q2 = ∇2ψ − (∇2 − λ2)τ (3.33)

and the equations of motion may be rewritten as evolution equations forψ andτ as follows:

∂

∂t
∇2ψ + J (ψ,∇2ψ)+ J (τ, (∇2 − λ2)τ ) = 0 (3.34)

∂

∂t
(∇2 − λ2)τ + J (τ,∇2ψ)+ J (ψ, (∇2 − λ2)τ ) = 0 (3.35)

We immediately note the following:

1. ψ andτ are vertical modes.ψ is the barotropic mode with a ‘vertical wavenumber,’kz, of
zero, andτ a baroclinic mode with a ‘vertical wavenumber,’kz, of one.
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2. Just as purely two dimensional turbulence can be considered to be a plethora of interact-
ing triads, whose two-dimensional vector wavenumbers sum to zero, geostrophic turbulence
may be considered to be similarly comprised of a sum of interacting triads, whose vertical
wavenumbers must also sum to zero. The types of triad interaction are:

(ψ,ψ) → ψ (3.36)

(τ, τ ) → ψ (3.37)

(ψ, τ) → τ (3.38)

3. Wherever the Laplacian operator acts onτ it is accompanied by−λ2. That is, it isas if the
effective horizontal wavenumber (squared) ofτ is shifted, so thatk2 → k2 + λ2.

Conservation properties

Multiply (3.35) byψ and (3.35) byτ and horizontally integrating over the domain, assuming once
again that the domain is either periodic or has solid walls, gives

dT

dt
=

∫
ψJ(τ, (∇2 − λ2)τ )dA (3.39)

dC

dt
=

∫
τJ (ψ, (∇2 − λ2)τ )dA (3.40)

where

T =
∫
(∇ψ)2 dA (3.41)

is the energy associated with the barotropic flow (the ‘barotropic energy’)

C =
∫
(∇τ)2 dA (3.42)

is the baroclinic energy.
An easy integration by parts shows that∫

ψJ(τ, (∇2 − λ2)τ )dA = −
∫
τJ (ψ, (∇2 − λ2)τ )dA (3.43)

and therefore
d

dt
E = d

dt
(T + C) = 0 (3.44)

or total energy is conserved.
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The enstrophy invariant may be expressed in terms ofψ andτ as:

Z =
∫
(∇2ψ)2 + (

(∇2 − λ2)τ
)2
dA (3.45)

dZ

dt
= 0. (3.46)

Just as for two-dimensional turbulence, we may define the spectra of the energy and enstrophy.
Thus spectrally as:

T =
∫
T (k)dk (3.47)

and similarly forC(k). The enstrophy spectrumZ(k) is then related to the energy spectra by

Z =
∫
Z(k)dk = k2T (k)+ (k2 + λ2)C(k)dk. (3.48)

which is analogous to, but because of the presence ofλ2 not exactly the same as, the relation-
ship between energy and enstrophy in two-dimensional flow. Thus, we begin to suspect that the
phenomenology to two-layer turbulence is somehow related to, but perhaps richer than, that of
two-dimensional turbulence.

Phenomenological analysis

Two types of triad interactions are possible:

I. Barotropic triads:

An interaction that is purely barotropic (i.e., as ifτ = 0) conservesT , the barotropic energy, and
the associated enstrophy

∫
k2T (k)dk. Thus, purely barotropic flow is exactly the same as purely

two-dimensional flow. Explicitly, the conserved quantities are

Energy:
d

dt
(T (k)+ T (p)+ T (q)) = 0 (3.49)

Enstrophy:
d

dt

(
k2T (k)+ p2T (p)+ q2T (q)

) = 0 (3.50)

II. Baroclinic triads:

Baroclinic triads involve two baroclinic wavenumbers (sayp, q) interacting with a barotropic
wavenumber (sayk). Their vector sum is zero. The energy and enstrophy conservation laws for this
triad are

d

dt
(T (k)+ C(p)+ C(q)) = 0 (3.51)
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d

dt

(
k2T (k)+ (p2 + λ2)C(p)+ (q2 + λ2)C(q)

) = 0 (3.52)

Consider the following cases of baroclinic triad:

1. (p.q, k) � λ. Then neglectλ2 in (3.51) and (3.52). A baroclinic triad then behaves as if it
were a barotropic triad. Alternatively, reconsider the layer form of the equations,

∂qi

∂t
+ J (ψi, qi) = 0 (3.53)

where

qi = ∇2ψ1 + λ2(ψj − ψi) [i = (1,2), j = 3 − 1]
≈ ∇2ψi (3.54)

In this case, each layer is decoupled from the other. Enstrophy is cascaded to small scales
and energy is transferred to larger scales, until such a time as the scale becomes comparable
with the deformation scale at which time the dynamics are no longer quasi-barotropic. Note
that the transfer of enstrophy to small scales in a purely two-dimensional fashion depends on
the two-layer nature of the flow. In reality, the small scales of a continuously stratified flow
may not be representable by a two-layer model: remember that in a continuously stratified
quasi-geostrophic model the enstrophy cascade occurs inthree-dimensionalwavenumber.
Thus, as the horizontal scales become smaller, so does the vertical scale and the first internal
deformation radius is not the relevant parameter.

2. (p.q, k) � λ. Then the energy and enstrophy conservation laws collapse to:

d

dt
(C(p)+ C(q)) = 0 (3.55)

That is to say, energy is conserved in the baroclinic field, with the barotropic modek acting the
mediate the interaction. There is no constraint on the transfer of baroclinic energy to smaller
scales, and no production of barotropic energy atk � λ.

3. (p.q, k) ∼ λ. This is the most general case, and baroclinic and barotropic modes are both
important. Suppose that we define the quasi-wavenumberk′ by k′2 := k2 +λ2 for a baroclinic
mode andk′2 = k2 for a barotropic mode, and similarly forp′ andq ′. Then energy and
enstrophy conservation can be written

d

dt
(E(k)+ E(p)+ E(q)) = 0

d

dt

(
k′2E(k)+ p′2E(p)+ q ′2E(q)

) = 0 (3.56)
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Figure 3.5:Schema of two-layer baroclinic turbulence (after Salmon 1980)

whereE(k) is the energy (barotropic or baroclinic) of the particular mode. This are formally
identical with the conservation laws for purely two-dimensional flow. By analogy with two-
dimensional flow, we expect energy to seek the gravest (smallest quasi-wavenumber) mode.
Since the gravest mode hasλ = 0 this implies abarotropizationof the flow.

4. Baroclinic InstabilityBaroclinic instability in the classic Phillips problem concerns the in-
stability of a flow with vertical but no horizontal shear. We can approximate this in a triad
interaction for whichp � (k, q, λ). Thenk2 ≈ q2 and the conservation laws are:

d

dt
(T (k)+ C(p)+ C(q)) = 0

d

dt

(
k2T (k)+ λ2C(p)+ (k2 + λ2)E(q)

) = 0 (3.57)

Then

Ċ(p) = − [
Ċ(q)+ Ṫ (k)

]
λ̇2C(p) = − [

(k2 + λ2)Ċ(q)+ k2Ṫ (k)
]

(3.58)

whence
Ċ(q) = (λ2 − k2)Ṫ (k) (3.59)

Baroclinic instability requires that botḣC(q) andṪ (k) be positive. This can only occur if

k2 < λ2. (3.60)
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Figure 3.6:Energy flow in two-layer baroclinic turbulence (after Rhines 1977)

Thus, there is ahigh wave-number cut-offfor baroclinic instability. This cut-off arises solely
from considerations of energy and enstrophy conservation, and is not dependent on linearizing
the equations and looking for normal mode instabilities (although of course it is consistent
with such a calculation (section??).

Phenomenology of Baroclinic Turbulence

Putting together considerations above leads to the following picture of baroclinic turbulence in a
two-layer system (see fig. 3.5 and fig. 3.6). At large horizontal scale we imagine some source
of baroclinic energy, which in the atmosphere might be the differential heating between pole and
equator, or in the ocean might be the wind. Baroclinic instability effects a nonlocal transfer of
energy to the deformation scale, where both baroclinic and barotropic modes are excited. From
here there is an enstrophy cascade in each layer to smaller and smaller scales, until eventually the
scale is small enough so that non-geostrophic effects become important and enstrophy is scattered by
three-dimensional effects. At scales larger than the deformation radius, there is an inverse barotropic
cascade of energy to larger scales, which causes the excitation of large-scale barotropic modes. the
energy at large scales is dissipated by boundary layer effects: Ekman drag, for example, is a scale
independent dissipation mechanism.
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3.3 †A Scaling Theory for Geostrophic Turbulence

We now construct a phenomenological, but quantitative, theory of two-layer geostrophic turbulence.2

Small Scales

For small scales, i.e.,k2 � λ2, the potential vorticity in each layer is, withβ = 0,

q1 = ∇2ψ1 + λ2(ψ2 − ψ1) ≈ ∇2ψ1,

q2 = ∇2ψ2 + λ2(ψ1 − ψ2) ≈ ∇2ψ2. (3.61)

Thus, each layer is decoupled from the other. Thus, enstrophy will cascade to smaller scales and,
should there be an energy source at scales smaller than the deformation scale it will cascade to
larger scales. However, baroclinic instability (of the mean flow) occurs at scaleslarger than the
deformation radius. Thus, energy extracted from the mean flow is essentially trapped at scales larger
than the deformation scale.

Large Scales

For large scales,k2 � λ2 we eliminate terms involvingk2 if they appear along with terms involving
λ2. The baroclinic and barotropic equations respectively become

∂

∂t
∇2ψ + J (ψ,∇2ψ) = −J (τ,∇2τ)− U

∂

∂x
∇2τ +Dψ (3.62)

and
∂τ

∂t
+ J (ψ, τ) = −U ∂

∂x
ψ +Dτ . (3.63)

In the barotropic equation, we shall further argue that, in the energy containing scales,|ψ | � |τ |
and that we can then ignore the nonlinear term on the right-hand-side of (3.62). This takes the
form of a self-consistency argument. Suppose that the main effect of the baroclinic terms, including
the forcing terms involving the mean shear, act to supply energy to the barotropic mode, and that
the terms on the left-hand-sideof (3.62) indeed dominate at large scales. Then at these large scales
the barotropic streamfunction obeys the two-dimensional vorticity equation, and we may expect an
energy cascade to large scales with energy spectrum:

Eψ = C1ε
2/3k−5/3, (3.64)

whereC1 is the Kolmogorov-Kraichnan constant appropriate for the inverse cascade andε is the
as yet undetermined energy flux through the system. We may suppose that this cascade holds
for wavenumbersk0 < k � λ. The wavenumberk0 is the halting scale of the inverse cascade,
determined by one or more of frictional effects, theβ–effect, or the domain size.
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Now, from the baroclinic streamfunction is being advected as a passive tracer — it is being stirred
by ψ . Thus, any energy that is put in at large scales by the interaction with the mean flow (via the
term proportional toUψx) will be cascaded to smaller scales. Thus, we expect the baroclinic energy
spectrum to be that of a forward cascade a passive tracer in a−5/3 spectrum, given by (c.f., (2.86))

Eτ = C2ετ ε
−1/3k−5/3 (3.65)

whereC2 is the Kolmogorov constant appropriate for a forward passive tracer cascade,εtau is the
transfer rate of baroclinic energy andε is the same quantity appearing in (3.64). Now, since energy
is not lost to small scales, we have thatετ = ε. Thus, the energy in the barotropic and baroclinic
modes are comparable at sufficiently large scales. Since the energy density in the former is(∇ψ)2
and in the latter(∇τ)2 + λ2τ 2 ∼ λ2τ 2 the magnitude ofψ must then be much larger than that ofτ .
Specifically, at the energy containing wavenumberk0 � λ we expect

|ψ | ∼ λ|τ |
k0
. (3.66)

The barotropic equation (3.62) then becomes

∂

∂t
∇2ψ + J (ψ,∇2ψ) = −U ∂

∂x
∇2τ +Dψ. (3.67)

3.3.1 Scaling properties

The baroclinic equation may be written as

∂τ

∂t
+ J (ψ, τ − Uy) = Dτ . (3.68)

That is,τ is stirred byψ in a mean gradient provided by the shearU . Scaling arguments would
suggest that at the scalek−1

0 the magnitude ofτ is given by

τ ∼ U

k0
(3.69)

with associated velocity (proportional to the vertical shear of the eddies) at this scale being

vτ ∼ U. (3.70)

Using (3.66) the magnitude of the barotropic streamfunction at this scale is given by

ψ ∼ λU

k2
0

, (3.71)
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with asscoiated barotropic velocity at the energy containing scale being given by

vψ ∼ λU

k0
. (3.72)

Multiplying (3.63) byτ and integrating over the domain, the energy input to the system is given by
the polewards heat flux. That is,

ε = Uλ2ψxτ ∼ U3λ3

k2
0

. (3.73)

The correlation betweenψx andτ cannot be determined by this argument. Nevertheless, we have
produced a physically based ‘closure’ for the flux of energy through the system in terms only of
the mean shear and other external (at least to quasi-geostrophic theory) parameters such as the
deformation scale and the halting scalek0.

Finally, we calculate the ’eddy diffusivity’ defined by

κ ≡ v′b′
∂b
∂y

= ψxτ
∂τ
∂y

(3.74)

Using (3.69) and (3.71) gives

κ ∼ λU

k2
0

(3.75)

which, if the mixing velocity is the barotropic stirring velocity, implies a mixing length ofk−1
0 . (Note

also that the eddy diffusivity is just the magnitude of the barotropic streamfunction at the energy
containing scales.)

3.3.2 The β–effect

As discussed in section 3.1 theβ–effect provides a soft barrier for the inverse cascade, at the scale

kβ ∼
(
β3

ε

)1/5

(3.76)

The energy containing scale is nota priori the same askβ , because in the absence of frictional
processes energy will still seek to cascade to larger scales, and in doing so become anisotropic.
However, the cascade becomes much less efficient and friction does have more time to act to halt
the cascade. Using (3.73) and (3.76) we obtain

kβ = β

Uλ
. (3.77)
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Now using (3.75) and (3.77) we obtain for the eddy diffusivity,

κ ∼ λ3U3

k2
β

(3.78)

The magnitudes of the eddies themselves are easily given using (3.71) and (3.69), namely

τ ∼ U2λ

β
, (3.79)

vτ ∼ U, (3.80)

and

ψ ∼ U3λ3

β2
, (3.81)

vψ ∼ U2λ2

β
. (3.82)

Again, the magnitude of the barotropic streamfunction is equal to the eddy diffusivity.
Clearly, in this model, the eddies becomelessenergetic with increasingβ, although the cause is

slightly different from the linear case in which the presence of a mean gradient of planetary vorticity
usually acts to stabilize a flow, and reduce the growth rate of baroclinic instability. Furthermore,
the eddy amplitudes increase more rapidly with the mean shear than previously. The reason for
these is that asβdecreases, the inverse cascade can extend to larger scales, thereby increasing the
overall energy of the flow. Similarly, asU increases not only does the eddy amplitude increase as a
direct consequence (as is (3.69) and (3.71)) but ssalsokβ falls (see (3.77)), giving rise to a superlinear
increase of the eddy magnitudes withU .

3.3.3 Discussion

Notes

1. The ‘wave-turbulence’ boundary harks back to Rhines (1975) in GFD.

2. The theory and related numerical simulations was expounded in a pair of papers by V. Larichev and I.
Held (see bibliography).


