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Motion of the Oloid-toy
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Summary. We present a kinematic analysis and dynamic simulation of the toy known as the Oloid. The Oloid is defined by the
convex hull of two equal radius disks whose symmetry planes are at right angles with the distance between their centers equal to their
radius. The no-slip constraints of the Oloid are integrable, hence the system is essentially holonomic. In this paper we present analytic
expressions for the trajectories of the ground contact points, basic dynamic analysis, and observations on the unique behavior of this
system.

Introduction.

The geometry of the Oloid is described by the disc radii R. There are five points of interest on the Oloid: A and B denote
the contact points of the first and second disc with the ground plane, C1 and C2 denote the two disc centers, G denotes
the midpoint of the line segment C1C2. We introduce a coordinate system Gx1x2x3 centered at G with x1 in the plane of
the first disc, x3 in the plane of the second, and x2 along connecting axis.

Figure 1: The coordinate system Gx1x2x3.

The Oloid was constructed for the first time by Paul Schatz [2,3]. The geometric properties of the surface of the Oloid have
been discussed in [1]. The Oloid is also used for technical applications. Special mixing-machines are constructed using
such bodies [5]. In our paper we make the complete kinematical analysis of motion of this object on the horizontal plane.
Further we briefly describe basic facts from Kinematics and Differential Geometry which we will use in our investigation.
We conclude with some observations on the dynamic behavior of the rolling Oloid.

Methods

The Frenet - Serret formulas
Consider a particle which moves along a continuous differentiable curve in three - dimensional Euclidean Space R3. We
can introduce the following coordinate system: the origin of this system is in the moving particle, τ is the unit vector
tangent to the curve, pointing in the direction of motion, ν is the derivative of τ with respect to the arc-length parameter
of the curve, divided by its length and β is the cross product of τ and ν: β = [τ × ν].
Then the Frenet - Serret formulas for the derivatives of τ , ν and β are:

dτ

dt
= kṡν,

dν

dt
= −kṡτ + æṡβ,

dβ

dt
= −æṡν.

Here d/dt is the derivative with respect to the time, k is the curvature and æ is the torsion of the curve. The tangent τ , the
normal ν and the binormal β unit vectors are known as the Frenet - Serret frame.

The Poisson formulas
Let e1, e2, e3 any moving coordinate system with angular velocity ω. Then the derivatives of e1, e2 and e3 satisfy the
Poisson formulas:

dei

dt
= [ω × ei] , i = 1, 2, 3.

Thus we can rewrite the Frenet - Serret formulas as:
dτ

dt
= [Ω× τ ] ,

dν

dt
= [Ω× ν] ,

dβ

dt
= [Ω× β] ,

where Ω = kṡβ+æṡτ is the angular velocity of the Frenet - Serret frame known also as the Darboux vector. In particular,
for a plane curve we have æ = 0 and therefore

Ω = kṡβ. (1)
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Two contact points
Consider an Oloid rolling without slip on a fixed horizontal plane. Let G be the center of mass of the moving body and
K1, K2 be two contact points of the body with the plane. From the rolling conditions for the two contact points follows
that the angular velocity is always parallel to the line between the contact points, i.e.

[
ω ×−−−→K1K2

]
= 0.

Now we introduce four coordinate systems. The first coordinate system is the fixed system Oxyz with origin at any point
O of the fixed plane and with the Oz - axis directed upward. The second is Gx1x2x3 with the Gx2 axis along the common
axis of symmetry of the two lamina and Gx3 - axis perpendicular to the plane of the first lamina and the Gx1 - axis is
perpendicular to the plane of the second lamina. The third coordinate system is the Frenet - Serret frame K1τνβ for the
boundary of the first lamina: τ - vector is the tangent vector to the boundary of the lamina, ν - vector is in the plane of
the lamina and the β - vector coincides in the unit vector of Gx3 axis (i.e. β is perpendicular to the plane of lamina). The
fourth coordinate system is also a Frenet - Serret frame. The origin of this system is also in K1, the first unit vector τ 1

of this system coincides with the vector τ of the system K1τνβ. The second vector ν1 of this system is in the plane of
motion and the third vector β1 is perpendicular to the plane of motion (i.e. the vector β1 coincides with the vector ez of
the system Oxyz). Therefore we can conclude that the coordinate system K1τ 1ν1β1 is the Frenet - Serret frame for the
curve which is obtained by the motion of the contact point K1 (i.e. it is a ”trace” of the point of contact on the plane).
Let us find the angular velocity of the moving body. We will use the law of composition of angular velocities. Let us
consider the systems Oxyz, K1τνβ and Gx1x2x3. The absolute angular velocity of Gx1x2x3 system with respect to
Oxuz system is the sum of angular velocity of Gx1x2x3 with respect to K1τνβ and the angular velocity of K1τνβ with
respect to Oxyz. But the angular velocity of Gx1x2x3 system with respect to K1τνβ system can be found easily: it is
equal to −kṡβ. So we need calculate now the angular velocity of K1τνβ system with respect to Oxyz system.
Let us denote by ϕ the angle between two unit vectors β = e3 and β1 = ez . Then we can represent the angular velocity
of K1τνβ system with respect to Oxyz system as the sum of the angular velocity of the K1τνβ system with respect
to K1τ 1ν1β1 system and the angular velocity of the K1τ 1ν1β1 system with respect to Oxyz system. But the angular
velocity of K1τνβ with respect to K1τ 1ν1β1 is ϕ̇τ and the angular velocity of K1τ 1ν1β1 with respect to Oxyz system
is Kṡβ1. Therefore finally we obtain:

ω = ϕ̇τ − kṡβ + Kṡβ1.

Since β = −ν1 sin ϕ + β1 cosϕ we have

ω = ϕ̇τ 1 + kṡ sinϕν1 − kṡ cos ϕβ1 + Kṡβ1.

But from the rolling conditions already obtained, the vector ω is parallel to
−−−→
K1K2 vector, i.e. ω is always in the plane of

motion
ω = ω1τ 1 + ω2ν1.

This means that
K = k cosϕ or ρ cos ϕ = r, (2)

where ρ and r are radii of curvature of the curve on the fixed plane (trajectory of point K1) and the bound of the first
lamina.

Natural equations of a curve
Let us consider the planar curve, defined by its parametric equations:

r = r (s) = x(s)ex + y(s)ey,

with arc-length s as a parameter. We denote by α(s) the angle between the unit tangent vector τ to the given curve

τ =
dr

ds
=

dx

ds
ex +

dy

ds
ey

and the unit vector ex of the Ox - axis. The initial value of α(s) at s = 0 can be chosen to be a value divisible by 2π. For
other points the angle α(s) is defined explicitly.
Since τ (s) is the unit vector its projections on the Ox and Oy axes are cosα and sin α respectively. From the other side

τ (s) = cos αex + sin αey =
dx

ds
ex +

dy

ds
ey,

and therefore
dx/ds = cos α, dy/ds = sin α. (3)
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Moreover, using the first Frenet – Serret formula we have

dτ

ds
= (− sin αex + cos αey)

dα

ds
ν = k(s)ν,

and hence
dα/ds = k(s). (4)

This means that we can find the parametric equations of the curve if we know its curvature k(s). Thus we derived all the
necessary facts for the investigation of the Oloid motion.

Coordinate frames and parametrization
We consider now the motion of Oloid. Let two circles of the same radius R in perpendicular planes be given such that
each circle contains the center of the other. Then the convex hull of these circles is called Oloid. Let (I) and (II) be two
circles of the same radius R in perpendicular planes Π1 and Π2 such that (I) passes through the center C2 of (II) and kB

passes through the center C1 of (I) (Fig. 1).
According to the previous theory let us introduce the moving coordinate system Gx1x2x3. The origin of this system will
be at the midpoint G of C1C2 (i.e. G is the center of mass of the system). The Gx3 - axis is perpendicular to the plane
Π1 of the first circle, Gx1 - axis is perpendicular to the plane Π2 of the second circle and Gx2 axis is directed along the
common axis of symmetry of two circles (Fig. 1).
We will parametrize the first circle by the angle θ between the negative direction of Gx2 axis and the direction to the point
of contact. Note that this parametrization is proportional to the arc-length parametrization s: s = Rθ. We introduce also
the angle ψ for the parametrization of the second circle: let ψ be the angle between the positive direction of Gx2 axis and
the direction to the point of contact B. Then the radius - vector of the point A can be written as follows:

−→
GA = r1 = R sin θe1 − (R/2 + R cos θ) e2.

The radius-vector of the point B has the form:

−−→
GB = r2 = (R/2 + R cos ψ) e2 + R sin ψe3.

When the Oloid rolls on a fixed plane the three vectors r1 − r2, r′1 and r′2 should be situated in this plane. We can write
this condition as: ∣∣∣∣∣∣

R sin θ −R−R cos θ −R cos ψ −R sin ψ
R cos θ R sin θ 0

0 −R sin ψ R cos ψ

∣∣∣∣∣∣
= 0.

As a result we have the following constraint between two parametrizations:

cos ψ + cos θ cos ψ + cos θ = 0.

and now can obtain the radius vector
−−→
GB = r2 in the θ parametrization:

−−→
GB = r2 =

(
R

2
− R cos θ

1 + cos θ

)
e2 − R

√
1 + 2 cos θ

1 + cos θ
e3. (5)

Note here the interesting fact that the length of the vector
−−→
AB

−−→
AB =

−−→
GB −−→GA = −R sin θe1 +

(
R +

R cos2 θ

1 + cos θ

)
e2 − R

√
1 + 2 cos θ

1 + cos θ
e3

will be a constant
AB = R

√
3.

This feature is used in construction of the Oloid. The expression (5) for the vector r2 then should give:

0 ≤ 1 + 2 cos θ ∀ θ, ψ ∈ [−2π

3
,
2π

3
]

Results

Trajectories of the points of contact
We derive now the equation of the fixed plane in the Gx1x2x3 coordinate system, writing it in the form:

LX + MY + NZ + P = 0.



ENOC 2011, 24-29 July 2011, Rome, Italy

Indeed points A, B and the tangent vector to the first circle at A are always in this plane. Therefore the following condition
is valid: ∣∣∣∣∣∣∣∣∣

X −R sin θ Y +
R

2
+ R cos θ Z

−R sin θ R

(
1 +

cos2 θ

1 + cos θ

)
−R

√
1 + 2 cos θ

1 + cos θ
R cos θ R sin θ 0

∣∣∣∣∣∣∣∣∣
= 0.

From this condition, after some simplifications, we have the following expression for the plane of motion

− sin θX + cos θY +
√

1 + 2 cos θZ +
R

2
(2 + cos θ) = 0.

The unit vector

n = − sin
θ

2
e1 +

(
1

2 cos θ
2

− cos
θ

2

)
e2 +

√
1 + 2 cos θ

2 cos θ
2

e3.

is the normal vector to this plane. Therefore the angle between the plane of the first circle and the fixed plane is defined
as follows:

cos ϕ = (n · e3) =
√

1 + 2 cos θ

2 cos θ
2

.

The radius of curvature of a circle at any point is equal to R. Thus using (2) we can calculate the radius of curvature of a
curve drawn by the point of contact A on the fixed plane:

ρ =
R

cos ϕ
=

2R cos θ
2√

1 + 2 cos θ
and K =

1
ρ

=
√

1 + 2 cos θ

2R cos θ
2

.

Having an expression for K, we can find the parametric equations of the trajectory of the point A on the fixed plane.
For this purpose let us introduce the fixed coordinate system Oxyz, whose origin O coincides with the point of contact of
the first circle with the plane at θ = 0. The Ox - axis is tangent to the first circle, the Oz - axis is directed upwards. The
Oy - axis forms a right triple with the Ox and Oz axes. Then we obtain:

dα

ds
=

dα

Rdθ
= K (θ) , i.e.

dα

dθ
=
√

1 + 2 cos θ

2 cos θ
2

.

Integration of this equation gives the following expression for α:

α = 2 arcsin
(

2√
3

sin
θ

2

)
− arcsin

(
sin θ

2√
3 cos θ

2

)
.

Then

sin α =

√
3 sin θ

2

9 cos θ
2

(5 + 4 cos θ) , cos α =
√

3
9

(1 + 2 cos θ)
3
2

cos θ
2

.

Using these formulas together with (3), (4) we find after some trigonometric simplifications

xA (θ)=
2R
√

3
9

(
arcsin

(
2√
3

sin
θ

2

)
+arcsin

(
sin θ

2√
3 cos θ

2

)
+2 sin

θ

2

√
1+2 cos θ

)
,

yA (θ) =
8R
√

3
9

sin2

(
θ

2

)
− 2R

√
3

9
ln

(
cos

(
θ

2

))
, −2π

3
< θ <

2π

3
.

These equations give a parametric representation for the trajectory of the point A on the fixed plane.
We can use a similar method in finding the trajectory of point B, represented in the scalar form as:

xB (θ) = xA (θ) + R
√

3 cos (α + γ) , yB (θ) = yA (θ) + R
√

3 sin (α + γ) .

Here γ is the angle between the vector eAB and the tangent vector τ to the first circle at A. The tangent vector τ has the
form:

τ = cos θe1 + sin θe2

and therefore its scalar product with
−−→
AB leads to:

(−−→
AB · τ

)
= AB (eAB · τ ) = AB cos γ = R

√
3 cos γ =

R sin θ
2

cos θ
2

,
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cos γ =
sin θ

2√
3 cos θ

2

, sin γ =
√

1 + 2 cos θ√
3 cos θ

2

.

Further, it is easy to find

sin (α + γ) =
7
9

+
4 cos2 θ

9 (1 + cos θ)
, cos (α + γ) = −4 (2 + cos θ) sin θ

2

9 (1 + cos θ)

√
1 + 2 cos θ.

Finally in the explicit form we have the following expressions for xB and yB :

xB (θ)=
2R
√

3
9

(
arcsin

(
2√
3

sin
θ

2

)
+arcsin

(
sin θ

2√
3 cos θ

2

)
− 2 sin θ

2

(1+cos θ)

√
1+2 cos θ

)
,

yB (θ) =
7R
√

3
9

+
2R
√

3
9 cos2

(
θ
2

) − 2R
√

3
9

ln
(

cos
(

θ

2

))
, −2π

3
< θ <

2π

3
.

Figure 2: Trajectories of points A (bottom curve) and B (upper curve) on the supporting plane.

These equations give a parametric representation for the trajectory of the point B on the fixed plane. Figure 2 shows both
trajectories on the fixed plane Oxy.

Non-Obvious Dynamic Behaviors
Unusual behavior was observed when simulating the dynamic motion of the Oloid. We found that the waveform of the
generalized speed changed qualitatively with different initial speeds. Figure 3 below demonstrates this. The speeds and
times were normalized to the initial values and shown for one cycle of the output. It can be seen at the lower initial speeds
that the speed starts by decreasing and at a higher initial speed it starts by rising. We believe this behavior to be unusual
for such a simple, deterministic, one degree of freedom system where energy is conserved. Also visible is the change in
shape of waveform throughout the cycle from two large speed minima to four smaller speed minima.

Conclusions

We investigate here the motion of the Oloid toy on the fixed horizontal plane. Parametric equations for the trajectories of
points of contact of the Oloid with the plane are derived.
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Figure 3: Qualitative Analysis of Generalized Speed Waveform (R = .1, G=9.8)


