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Abstract Strains belonging to the yeast speciesKluyveromyces
marxianus have been isolated from a great variety of habitats,
which results in a high metabolic diversity and a substantial
degree of intraspecific polymorphism. As a consequence,
several different biotechnological applications have been
investigated with this yeast: production of enzymes (β-
galactosidase, β-glucosidase, inulinase, and polygalact-
uronases, among others), of single-cell protein, of aroma
compounds, and of ethanol (including high-temperature and
simultaneous saccharification-fermentation processes); reduc-
tion of lactose content in food products; production of
bioingredients from cheese-whey; bioremediation; as an
anticholesterolemic agent; and as a host for heterologous
protein production. Compared to its congener and model
organism, Kluyveromyces lactis, the accumulated knowledge
on K. marxianus is much smaller and spread over a number of
different strains. Although there is no publicly available
genome sequence for this species, 20% of the CBS 712 strain
genome was randomly sequenced (Llorente et al. in FEBS Lett
487:71–75, 2000). In spite of these facts, K. marxianus can
envisage a great biotechnological future because of some of its
qualities, such as a broad substrate spectrum, thermotolerance,
high growth rates, and less tendency to ferment when exposed

to sugar excess, when compared to K. lactis. To increase our
knowledge on the biology of this species and to enable the
potential applications to be converted into industrial practice, a
more systematic approach, including the careful choice of (a)
reference strain(s) by the scientific community, would certainly
be of great value.
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Taxonomic history of the present species Kluyveromyces
marxianus

Kluyveromyces marxianus was first described in 1888 by E.
C. Hansen, which at that time was named Saccharomyces
marxianus after Marx, the person who originally isolated
this yeast from grapes (Lodder and Kreger-van Rij 1952).
In their monograph, Lodder and Kreger-van Rij (1952)
describe ten strains of S. marxianus, among which a
particular strain labeled Zygosaccharomyces marxianus,
which had been deposited at the Centraalbureau voor
Schimmelcultures (CBS) in 1922 by H. Schnegg, was
arbitrarily chosen as the type strain. This corresponds to the
present CBS 712 strain. Some differences among the ten
mentioned strains were already pointed out at that time,
regarding the formation of pseudomycelium, and the
capacities of assimilating and fermenting lactose. Rotting
leaves of sisal, sewage of a sugar factory, and “Lufthefe”
(aerated yeast) are other habitats from which the strains of
S. marxianus had been isolated. Already in 1939, Sacchetti
had observed that inulin is fermented by S. marxianus
(Lodder and Kreger-van Rij 1952). Although it was already
recognized at that time that S. marxianus and Saccharomyces
fragilis, which had been isolated from kefir in 1909 by
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Jörgensen, were very closely related, they were considered
distinct species (Lodder and Kreger-van Rij 1952). In 1951,
Luh and Phaff affirmed that S. fragilis “is the only yeast
species capable of attacking pectin” (Lodder andKreger-van Rij
1952). Yoghurt, soft cheese, a lung with tuberculosis, Koumiss
(a beverage made of fermented mare’s milk), a human lesion
of tonsils and the pharynx, and feces are other habitats from
which the 11 strains belonging to the S. fragilis species had
been obtained from (Lodder and Kreger-van Rij 1952).

Mainly due to differences in spore and ascus morphol-
ogy, in the capacity of fermenting and oxidizing different
sugars, and in the occurrence of hybridization between
strains, when compared to true Saccharomyces yeasts, there
was a need to reclassify the former species S. fragilis and S.
marxianus, besides Saccharomyces lactis, into a new taxon
(van der Walt 1970). In 1956, van der Walt described the
new genus Kluyveromyces, the type species of which was
Kluyveromyces polysporus (van der Walt 1956). Later, it
was found that the latter yeast had very similar properties to
the three above-mentioned species, and consequently, they
were all reclassified into the genus Kluyveromyces, which
encompassed 18 species in the second edition of The
Yeasts, a taxonomic study (Lodder 1970). Additional
habitats from which strains had been isolated include Bantu
Beer, milk of a mastitic cow, asthmatic expectoration, and
maize meal (van der Walt 1970). Again, Kluyveromyces
fragilis was considered closely related but still separate
from K. marxianus, mainly due to the former’s high
capacity of fermenting lactose. Dairy products and human
and animal lesions were the prevalent origin of strains in
the K. fragilis taxon (van der Walt 1970).

In the third edition of The Yeasts, a taxonomic study
(Kreger-van Rij 1984), the genus Kluyveromyces was
divided into 11 species. On the basis of interfertility, the
taxon K. marxianus was organized into seven varieties,
which are able to readily hybridize (van der Walt and
Johannsen 1984). Concomitantly, the former species K.
fragilis and K. lactis disappeared.

In the most recent edition of The Yeasts, a taxonomic study
(Kurtzman and Fell 1998), the chapter on the Kluyveromyces
genus includes 15 species. The seven varieties within the K.
marxianus species, proposed in the previous edition of the
monograph, were eliminated by considering them as either
independent species (e.g., K. lactis and K. dobzhanskii) or
synonyms of K. lactis or K. marxianus (Lachance 1998).This
is due to the examination of the genetic structure of
populations, in combination with hybridization ability, as
criteria for classification. Consequently, the former species or
varieties Kluyveromyces bulgaricus, K. cicerisporus, K.
fragilis, and K. wikenii could not be considered distinct from
K. marxianus (Lachance 1998).

Since the biological concept of species cannot be applied
to homothallic organisms, such as the majority of yeasts in

the Kluyveromyces taxon, any classification is always based
on arbitrary criteria, which have changed along time, as
discussed above. Since the development of rapid and
efficient gene sequencing tools, it became natural to utilize
gene sequences as the criterion for the comparison and
classification of microorganisms into the different taxa.
Rather than performing single gene comparisons, the most
recent reports on the taxonomy of Kluyveromyces yeasts
employ multigene sequence analyses for elucidating the
phylogeny of the different strains. Using this strategy,
Kurtzman and Robnett (2003) showed that the species
described by Lachance (1998) in the Kluyveromyces genus
are actually distributed into six clades, indicating the
polyphyly of this group of yeasts. This is mainly due to
the previous criteria employed in classification, such as
ascus morphology (in this particular case, ascus deliques-
cence), which are inadequate as phylogenetic descriptors
(Kurtzman 2003; Kurtzman and Robnett 2003). It has been
proposed that genera should be circumscribed according to
the phylogenetically defined clades, rather than on pheno-
typic analyses (Kurtzman and Robnett 2003). As a result of
this, the number of species in the Kluyveromyces genus
decreased to six and the species K. marxianus is proposed
as the conserved type species (Kurtzman 2003; Lachance
2007). The type species of the originally described
Kluyveromyces genus (van der Walt 1956), namely, K.
polysporus, has been reclassified into the newly proposed
Vanderwaltozyma genus (Kurtzman 2003; Lachance 2007).

Biochemistry, metabolism, and physiology

It should be noted that the great majority of studies
published on K. marxianus have not aimed at looking into
its biochemistry, metabolism, or physiology. Most of the
works that are publicly available explored potential appli-
cations of this organism (see “Biotechnological applica-
tions”), without investigating what takes place at the
intracellular level. Typically, the yeast cells have been
cultivated on a specific substrate, and measurements have
been carried out in such a way that only the concentrations
of a substrate and of a product, besides the cell concentra-
tion, are determined. In what concerns physiology, carbon
balances are very rarely looked at, meaning that it is only
possible to have a rough macroscopic picture of the cellular
reactions and, hence, of the organism’s physiology.

Since the 1970’s, a number of studies has been published
on biochemical and metabolic aspects of different K.
marxianus strains (a summary is presented in Table 1).
Some studies were actually aimed at identifying suitable
classification methods for K. marxianus, which has always
been a challenging task. These include the observation that,
in contrast to S. cerevisiae, ergosterol is the only sterol
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Table 1 Compilation of biochemical and metabolic studies performed with the yeast K. marxianus

Target of the study Strain employed Reference

Sterol composition K. fragilis NCYC 100 Penman and Duffus (1974)
Subcellular localization of the enzyme
alcohol dehydrogenase (ADH)

K. fragilis H32 Künkel and May (1976)

Measurement of heat evolution by
microcalorimetry

K. fragilis NCYC 100 Beezer et al. (1979)

Characterization of the enzyme fructose-
1,6-bisphosphatase

K. fragilis ATCC 10022 Toyoda and Sy (1984)

Lactose symporter K. marxianus CBS 397; K.
marxianus IGC 2902, CBS 712,
IGC 2587, IGC 2671, IGC 3014,
NRRL Y-1122, CBS 397

Van den Broek et al. (1987);
Carvalho-Silva and Spencer-
Martins (1990)

High- and low-affinity glucose transporters K. marxianus IGC 2587 Gasnier (1987)
Regulation of four transport systems
identified during the exponential and
the stationary phases of batch growth
on glucose

K. marxianus CBS 397 De Bruijne et al. (1988)

High- and low-affinity symporters of
glucose and fructose

K. marxianus CBS 6556 Postma and Van den Broek (1990)

Proton-motive force-driven transport
of galactose

K. marxianus CBS 397 van Leeuwen et al. (1991)

Transport of lactic acid K. marxianus IGC 3014 Fonseca et al. (1991)
Mechanism of the enzyme UDP
glucose 4-epimerase

K. fragilis ATCC 10022 (presumed,
from one of the articles)

Mukherji and Bhaduri (1992);
Bhattacharjee and Bhaduri (1992);
Ray et al. (1995); Majumdar
et al. (1998)

Absence of complex I NADH
ubiquinone oxidoreductase

K. marxianus K5 (own collection) Büschges et al. (1994)

Regulation of adenylate cyclase
by Ras proteins

K. marxianus CBS 5795W Verzotti et al. (1994)

Coenzyme Q system and the
monosaccharide pattern of cell wall

K. marxianus (various strains) Molnár et al. (1996)

Behaviour of K. marxianus during
autolysis

K. marxianus CBS 397 Amrane and Prigent (1996)

Presence of killer activity K. marxianus (isolated as a
result of the work)

Abranches et al. (1997)

Glucose repression via Mig1p K. marxianus SGE11 (Montpellier
University)

Cassart et al. (1997)

composition of the cell wall K. marxianus R157, 1586
(University of New South Wales)

Nguyen et al. (1998)

Presence of active efflux pumps
involved in drug resistance

K. marxianus IGC 2671 Prudêncio et al. (2000)

Transport of malic acid via a
symport mechanism

K. marxianus ATCC 10022, KMS3
(derivative of CBS 6556)

Queirós et al. (1998)

Identification and characterization
of a cell-wall acid phosphatase

K. marxianus Y-610 (identical to
ATCC 12424)

Yoda et al. (2000)

Capacity of using xenobiotic
compounds as nitrogen source

K. fragilis UU1; K. marxianus IMB3 Ternan and McMullan (2000);
Ternan and McMullan (2002)

Response of the NADP+-dependent
glutamate dehydrogenase to
nitrogen repression

K. marxianus CBS 6556 de Morais (2003)

Characterization of an amine oxidase K. marxianus CBS 5795 Corpillo et al. 2003
The transport mechanism of xylose K. marxianus ATCC 52486 Stambuk et al. 2003

This list does not include enzymes of industrial interest, which are separately listed in Table 2.
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present in K. marxianus; the use of microcalorimetry for
identification purposes; and the characterization of coenzyme
Q and monosaccharide patterns of cell walls (Table 1).

In other cases, K. marxianus was simply used as the
source of specific compounds, which were the actual focus of
research (mainly enzymes). Examples of this kind of study
include those on fructose-1,6-bisphosphatase, uridine diphos-
phate (UDP) glucose-4-epimerase, an acid phosphatase, an
amine oxidase, protein phosphatases, carboxypeptidases, and
aminopeptidases (Tables 1 and 2). A number of transport
studies were also carried out, namely, on the transport of
sugars (lactose, glucose, fructose, galactose, and xylose) and
organic acids (lactic and malic acids) (Table 1). Finally, a few
metabolic studies were carried out with the aim of
characterizing some non-transport aspects of K. marxianus,
such as the absence of complex I in the respiratory chain, the
regulation of adenilate cyclase by Ras proteins, the functional
characterization of Mig1p (involved in glucose repression),
analysis of cell-wall composition, presence of efflux pumps
and their role in drug resistance, and the regulation of the
nicotinamide adenine dinucleotide phosphate (oxidized form)
(NADP+)-dependent glutamate dehydrogenase (Table 1). In
many cases, these studies were performed in parallel with
other yeasts, mainly with S. cerevisiae.

In terms of biochemical studies on enzymes that have
industrial interest, K. marxianus has been used as a source
of inulinase, β-galactosidase, β-glucosidase, and endopo-
lygalacturonases (Table 2). Besides these, some less wide-
spread enzymes with potential industrial application, such as

protein phosphatases, carboxypeptidases, and aminopepti-
dases have also been investigated more recently (Table 2).

In the 1970s, physiological studies focusing on the
influence of some common environmental factors on the
growth of K. marxianus started to appear in the literature,
as a reflection of the eventual interest in using this yeast for
industrial applications. Chassang-Douillet et al. (1973)
presented the first clear physiological comparison of K.
marxianus and S. cerevisiae, carried out using synthetic
media and demonstrating that the so-called glucose effect
was absent in K. marxianus, as opposed to S. cerevisiae.
Later studies reported on the effects of pH (de Sánchez and
Castillo 1980), ethanol concentration (Bajpai and Margaritis
1982), and sugar concentration (Margaritis and Bajpai 1983)
on the growth kinetics of K. marxianus. Importantly, K.
marxianus started to be included in comparative biochemical
and physiological studies on yeast in general, such as those
related to catabolite repression (Eraso and Gancedo 1984),
sensitivity toward toxins (Sukroongreung et al. 1984), and
growth inhibition by fatty acids (Viegas et al. 1989).

The use of defined synthetic media combined with chemo-
stat cultivations for quantitative physiological studies started
around the 1990s, with works focusing on the regulation of
respiration and fermentation and on the so-called Crabtree-
effect in yeasts (van Urk et al. 1990; Verduyn et al. 1992). It
was then quantitatively shown that K. marxianus presents a
strong Crabtree-negative character, since no ethanol produc-
tion was observed after a glucose pulse applied to respiring
cells, in contrast to what is commonly observed with S.

Table 2 Studies on the biochemistry of enzymes of industrial interest performed with the yeast K. marxianus

Enzyme Application Strain Reference

Inulinase Production of fructose
syrup from inulin-containing
feed-stocks

K. fragilis ATCC 12424;
K. marxianus CBS 6397,
CBS 6556

Workman and Day (1984);
Rouwenhorst et al. (1988, 1990a,b)

β-galactosidase Reduction of lactose
content in foods

K. fragilis (several strains);
K. marxianus NCYC 111;
K. marxianus ATCC 10022;
K. marxianus IMB3; K.
marxianus CBS 6556

Mahoney et al. (1975); Gonçalves and
Castillo (1982); Bacci Júnior et al.
(1996); Brady et al. (1995); Martins
et al. (2002)

β-glucosidase Hydrolysis of cellulosic materials K. fragilis ATCC 12424 Raynal and Guerineau (1984);
Leclerc et al. (1987)

Endopolygalacturonases Reduce of viscosity in fruit
processing products

K. marxianus CCT 3172; CCT
3172 (overproducing mutant);
an unidentified NCYC isolate

Jia and Wheals (2000)

Protein phosphatases modification of cheese-making
qualities of caseins

K. marxianus (strain not indicated) Jolivet et al. (2001)

Carboxypeptidases reduction of bitter taste in protein-
containing foods

K. marxianus (own isolate) Ramírez-Zavala et al. (2004b)

Aminopeptidases direct processing or aging of dairy
and meat products

K. marxianus (own isolate) Ramírez-Zavala et al. (2004a)

Only studies which focused on the biochemistry of enzymes are indicated here. For studies aiming at enzyme production, please refer to the
section on “Biotechnologial applications”
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cerevisiae and even with K. lactis, to a lesser extent (Kiers et
al. 1998). This was later confirmed by Bellaver et al. (2004).
Castrillo and Ugalde (1993) showed that when oxidoreduc-
tive metabolism sets in in K. marxianus, as a function of
increasing glycolytic flux, the maximum respiratory capacity
of the cells has not yet been achieved, which is in contrast
with the situation in S. cerevisiae, in which the onset of
respirofermentative metabolism coincides with the achieve-
ment of its maximum respiratory capacity. From these studies,
K. marxianus was classified as facultatively fermentative and
Crabtree-negative (van Dijken et al. 1993). It is important to
note that it cannot grow under strictly anaerobic conditions
and that the occurrence of ethanol formation is almost
exclusively linked to oxygen limitation (Visser et al. 1990;
van Dijken et al. 1993; Bellaver et al. 2004). More recently,
Blank et al. (2005) showed that K. marxianus presents the
highest tricarboxylic acid cycle flux during batch growth on
glucose among the 14 hemiascomycetous yeasts studied
within the Génolevures consortium (Souciet et al. 2000).

Other physiological studies report on various issues,
such as flocculation (Fernandes et al. 1992, 1993), the

influence of CO2 on the survival of K. marxianus
(Isenschmid et al. 1995), the influence of the specific
growth rate on the morphology of the NRRLy2415 strain,
which displays significant growth in pseudo-hyphal form
(O’Shea and Walsh 2000), the effects of increased air
pressure on the biomass yield of K. marxianus (Pinheiro et
al. 2000), the response of K. marxianus to oxidative agents
such as hydrogen peroxide (Pinheiro et al. 2002), and the
macromolecular composition of K. marxianus cells as a
function of the specific growth rate (Fonseca et al. 2007).
The later data can be particularly useful for metabolic flux
analysis studies.

One important aspect on the physiology of K. marxianus
is the fact that significantly different growth parameters,
such as μmax and Yx/s, have been reported not only for
different strains within the species but also for the same
strain when investigated in different laboratories (Fonseca
et al. 2007).

From the data in Tables 1 and 2 (and also in Table 3), it
can be observed that the number of strains that have been
investigated is quite large, and many of them were not

Table 3 Biotechnologically relevant genes sequenced in K. marxianus

Gene/function Strain Reference

β-glucosidase K. fragilis ATCC 12424 Raynal et al. (1987)
INU1/inulinase K. marxianus ATCC 12424 Laloux et al. (1991)
LEU2/β-isopropylmalate dehydrogenase K. marxianus CBS 6556 Bergkamp et al. (1991)
URA3/orotidine-5′-phosphate decarboxylase K. marxianus CBS 6556 Bergkamp et al. (1993b)
PDC/pyruvate decarboxylase K. marxianus ATCC 10606 Holloway and Subden (1993)
ADH1/alcohol dehydrogenase K. marxianus ATCC 12424 Ladrière et al. (1993)
ABF1/a DNA binding protein K. marxianus (strain not indicated) Oberyé et al. (1993)
the GAP family/glyceraldehyde-3-phosphate
dehydrogenases

K. marxianus ATCC 10022 Fernandes et al. (1995)

LAC4/β-galactosidase K. fragilis (strains not indicated) Huo and Li (1995)
MIG1/DNA-binding protein involved in
glucose repression

K. marxianus SGE11 (Montpellier University) Cassart et al. (1997)

EPG1/endopolygalacturonase K. marxianus BKM Y-719 Šiekštelė et al. (1999)
PCPL3/purine-cytosine permease K. marxianus ATCC 12424 Ball et al. (1999)
ADH2/alcohol dehydrogenase K. marxianus ATCC 12424 Ladrière et al. (2000)
17% of the genome (1,300 genes by a
partial random strategy)

K. marxianus CBS 712 Llorente et al. (2000)

Inulinase K. marxianus (strain not indicated) GenBank AF178979
URA3/orotidine-5′-phosphate decarboxylase K. cicerisporus CBS 4857 Zhang et al. (2003)
QOR/NADPH quinone oxidoreductase K. marxianus KCTC 7155 Kim et al. (2003)
URA 9/dihydroorotate dehydrogenase 2 K. marxianus NRRL Y-8281 GenBank AY444339
HIS3/imidazoleglycerol-phosphate dehydratase K. cicerisporus CBS 4857 GenBank AY303539
OYE/old yellow enzyme C. macedoniensis AKU 4588 Kataoka et al. (2004)
EPG1–2/endopolygalacturonase K. marxianus CECT 1043 GenBank AY426825
FPS1/plasma membrane glycerol channel K. marxianus IGC 3886 Neves et al. (2004)
β-galactosidase K. marxianus (strain not indicated) GenBank AY526090
Exoinulinase K. marxianus IW 9801 GenBank AY649443
TPI1/triosephosphate isomerase K. marxianus (strain not indicated) GenBank AJ577476

Partial gene sequences deposited in public databases and sequences coding for RNA were not included. GenBank accession numbers were only
given when there is no available article to be cited.
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obtained directly from the main culture collections world-
wide. If, on the one hand, this leads to an interesting
metabolic diversity and to several potential applications, as
described below in this review, it makes it difficult, on the
other hand, to gain fundamental knowledge on the
metabolism and physiology of this yeast. In this sense, it
would be necessary that researchers started using a reduced
number of strains (chosen from key culture collections),
similarly to the way in which the K. lactis community has
been using the CBS 2359 strain (Lachance 1998; Fukuhara
2006). This would allow the development of efficient
molecular genetic tools for K. marxianus (probably starting
with genome sequencing), which are the basis for
performing systematic studies that will finally lead to a
better understanding of the biology of this species. A
possibility would be to choose one or two strains with
characteristics that have given K. marxianus a clear
advantage over other yeasts: thermotolerance, high growth
rate, absence of fermentative metabolism upon sugar
excess, and a broad substrate spectrum. For making this
choice, an approach as the one reported by van Dijken et al.
(2000) could be followed.

Recombinant DNA technology

As with any (potential) industrial organism, rational genetic
manipulation is one of the most efficient ways of
optimizing process yield and/or productivity. In some cases,
the application of recombinant DNA (rDNA) technology
may even become a prerequisite for a successful industrial
process, either to increase product titer and/or purity to
levels at which the process becomes economically feasible
or to render the producing host capable of synthesizing a
heterologous compound. This kind of activity has been well
known as metabolic engineering, which is now a consol-
idated discipline (Stephanopoulos et al. 1998). rDNA
technology is also an invaluable technique for genetic and
physiological studies, which in turn are essential for
increasing our understanding of K. marxianus.

Already more than two decades ago, transformation
methods for inserting foreign DNA into K. marxianus have
been developed. Das et al. (1984) constructed a plasmid
called pGL2, containing the kanamycin resistance gene as a
dominant selectable marker, and the KARS2 autonomously
replicating sequence of K. lactis. They showed that the
transformation method of intact cells with alkali cations,
originally developed for Saccharomyces cerevisiae by Ito et
al. (1983), also worked in the strain K. fragilis C21.
However, the transformation efficiency was rather low.

A breakthrough in molecular biology research of
Kluyveromyces yeasts was the discovery of the pKD1
plasmid in the species Kluyveromyces drosophilarum

(Falcone et al. 1986). The 4.8-kb, 1.65 μm pKD1 plasmid
proved to have a similar organization but different
sequences and host specificities, when compared to other
already known plasmids, such as the 2 μ plasmid of
Saccharomyces yeasts (Chen et al. 1986). In contrast to the
latter, pKD1 can be maintained stable in K. lactis, but not in
S. cerevisiae, in the absence of selective pressure (Bianchi
et al. 1987). Later, it was shown that the insertion of the
kanamycin resistance gene, the URA3 gene of S. cerevisiae,
a replication origin for E. coli, and the ampicillin resistance
gene into pKD1 rendered a shuttle plasmid that could be
transformed and maintained in K. marxianus strains CBS
6556 and CBS 712, though still with low-transformation
efficiencies (Chen et al. 1989). This is in accordance with
the fact that ARS and centromere sequences of K. lactis
work in K. marxianus and vice versa (Das et al. 1984;
Iborra and Ball 1994). Thus, pKD1-based plasmids have
become the most common choice for inserting foreign
DNA sequences into K. marxianus (Bergkamp et al. 1993b;
Bartkevičiute et al. 2000; Zhang et al. 2003).

Iborra (1993) reported for the first time transformation
efficiencies in the order of hundreds to thousands of
transformants per microgram of DNA with K. marxianus,
either with the lithium method (Ito et al. 1983) or using
electroporation (Meilhoc et al. 1990). Similar results were
obtained more recently by Zhang et al. (2003).

Besides requiring efficient vectors and transformation
protocols, foreign gene expression also depends on the
promoter and eventually a signal sequence for directing the
synthesized protein into the extracellular environment,
which usually facilitates downstream operations. For this
purpose, Bergkamp et al. (1993a) used the promoter and
prepro-signal sequence of the INU1 (inulinase) gene to
successfully direct heterologous expression and secretion of
α-galactosidase in K. marxianus, with dramatically higher
efficiencies when compared to the use of classical S.
cerevisiae promoters, such as PGK.

With the INU1 promoter, heterologous gene expression
can be fine-tuned by choosing the appropriate carbon
source. Another regulated promoter that was successfully
used in K. marxianus is the tetracycline repressible
promoter (Pecota and da Silva 2005).

Strong, constitutive promoters for driving heterologous
gene expression have also been described, such as that of a
purine-cytosine permease gene (Ball et al. 1999). Instead of
fine-tuning foreign gene expression according to promoter
strength or induction properties, Pecota et al. (2007)
developed an insertion cassette that enables multicopy
integration of a precise number of gene copies into K.
marxianus with recycling of the selection marker.

Auxotrophic mutants of K. marxianus, for their use in
transformation experiments, have been reported for leucine,
uracil, histidine, or triptophane requirement (Bergkamp et
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al. 1991, 1993b; Basabe et al. 1996; Hong et al. 2007).
Dominant markers applicable for the selection of K.
marxianus transformants include at least the kanamycin,
the aureobasidin A, and the nurseothricin resistance genes
(Das et al. 1984; Hashida-Okado et al. 1998; Goldstein and
McCusker 1999; Steensma and Ter Linde 2001; Ribeiro et
al. 2007). Recycling of the marker gene for multiple gene
disruptions can be performed in K. marxianus in the same
way as in S. cerevisiae and K. lactis with the Cre-loxP
system (Güldener et al. 1996; Ribeiro et al. 2007).

A number of genes have been cloned and sequenced in
different K. marxianus strains, and the most relevant ones
are indicated in Table 3.

Biotechnological applications

When evaluating the yeast K. marxianus for biotechnolog-
ical applications, it is impossible not to consider other most
popular species, mainly S. cerevisiae and K. lactis. The
former is probably the most employed biocatalyst in the
biotechnological industry and a model organism in biolog-
ical studies, whereas the latter has been chosen as a model
Crabtree-negative, lactose-utilizing organism (Lachance
1998; Fukuhara 2006). The fact that several K. marxianus
strains have obtained the generally-regarded-as-safe
(GRAS) status, similarly to S. cerevisiae and K. lactis
(Hensing et al. 1995) indicates that this aspect does not
impose any disadvantage for the former, when compared to
the latter yeasts, in terms of process approval by regulatory
agencies. The fact that K. lactis was chosen by the scientific
community as the model organism in the Kluyveromyces
genus, and not K. marxianus, led not only to a much better
understanding of its physiology (for reviews, see e.g.,
Schaffrath and Breunig 2000; Wolf et al. 2003; Breunig and
Steensma 2003 and the whole issue no. 3, vol. 6 of FEMS
Yeast Research), and to the full sequencing of its genome
(Dujon et al. 2004) but also to the development of several
applications, including the expression of more than 40
heterologous proteins (van Ooyen et al. 2006). This is due,
to a great extent, to the fact that researchers have used, from
the beginning, a very small number of K. lactis isolates
(Fukuhara 2006), which has not been the case in the K.
marxianus species.

The development of biotechnological applications with
K. marxianus has been motivated by a number of
advantages it has when compared to K. lactis. These
include at least the fact that it can grow on a broader
variety of substrates and at higher temperatures, its higher
specific growth rates, and the lesser tendency to produce
ethanol it has when exposed to sugar excess (Rouwenhorst
et al. 1988; Steensma et al. 1988; Bellaver et al. 2004; see
also “Biochemistry, metabolism, and physiology”).

One very important aspect of the ecology of K. marxianus
should be taken into account when considering its biotech-
nological utilization: Individuals have been isolated from an
enormous variety of habitats (see “Taxonomic history of the
present species Kluyveromyces marxianus”).

The obvious consequence is that the metabolic diversity
is broad, and hence, potential biotechnological applications
of K. marxianus strains are manifold. A summary of the
most explored applications with this yeast follows.

Although several yeasts have been reported for the
production of aroma compounds, only a few of these can
find industrial application due to their GRAS status
(Medeiros et al. 2000, 2001). Kluyveromyces sp. produce
aroma compounds such as fruit esters, carboxylic acids,
ketones, furans, alcohols, monoterpene alcohols, and
isoamyl acetate in liquid fermentation (Scharpf et al.
1986; Fabre et al. 1995). Of all these compounds, 2-phenyl
ethanol (2-PE), with rose petals aroma, is the most
important commercially (Welsh et al. 1989; Leclercq-Perlat
et al. 2004). Natural 2-PE has a high-value (approximately
US $1,000 kg−1) serving a current world market of
approximately 7,000 tons per annum (data from 1990;
Etschmann et al. 2002). This alcohol presents sensorial
characteristics that influence the quality of the wine,
distilled drinks, or fermented foods. It is also found in
fresh beer and is added to various industrial food products
such as ice creams, bullets, non-alcoholic drinks, gelatines,
puddings, and bubble gums (Wittmann et al. 2002). The
influences of the carbon source (Fabre et al. 1998;
Medeiros et al. 2000), aeration rate (Medeiros et al.
2001), media composition (Etschmann et al. 2004), and
cultivation conditions (Etschmann and Schrader 2006) on
the aroma production using K. marxianus were studied.

K. marxianus possesses the natural ability to excrete
enzymes. This is a desired property for cost-efficient
downstream processing of low- and medium-value enzymes
(Hensing et al. 1994). The enzymes that hydrolyze pectic
substances are known as pectic enzymes, pectinases, or
pectinolytic enzymes (Wimborne and Rickard 1978).
Pectinases are industrially used in the extraction and
clarification of fruit juices (i.e., grape and apple; Schwan
et al. 1997; Blanco et al. 1999). Other interesting
applications are related to the maceration of vegetables,
oil extraction, and formulation of animal feed using
complex mixtures with cellulases to make the nutritional
assimilation easier (Blanco et al. 1999). K. marxianus has
considerable economic advantages over Aspergillus as an
endo-PG source, even without genetic improvement of the
strains (Harsa et al. 1993). Thus, the use of PGs from K.
marxianus has attracted considerable interest (Garcia-
Garibay et al. 1987b; Harsa et al. 1993; Donaghy and
McKay 1994). Moreover, no other pectinolytic enzyme,
besides PG, was reported to be secreted by K. marxianus
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CCT 3172 in the culture media, which should facilitate the
process to produce pure enzyme (Schwan et al. 1997).

In K. marxianus, the pectinolytic enzymes are only
produced during exponential growth, but almost all PG is
secreted in the start of the stationary phase (Schwan and
Rose 1994; Schwan et al. 1997; Serrat et al. 2004). Among
the cultivation parameters, dissolved oxygen was reported
to be the key in the production of both biomass and endo-
PG (Wimborne and Rickard 1978; Garcia-Garibay et al.
1987a). High rates and yields of biomass production require
high oxygenation levels that, however, repress endo-PG
induction (Wimborne and Rickard 1978). It was reported
that K. marxianus exhibited pectolytic ability when it was
grown without shaking and under anaerobic conditions,
and no activity was found at high aeration rates (Barnby
et al. 1990; Schwan and Rose 1994; García-Garibay
et al. 1987a).

The effect of temperature was assessed on both growth
and endo-PG production in combination with the effect of
dissolved oxygen (Schwan and Rose 1994). Temperature
was also reported to have no direct effect on the synthesis
of this enzyme but influenced the growth rate and had an
indirect effect due to changes in oxygen solubility (Cruz-
Guerrero et al. 1999). Addition of pectin in an aerobic
culture in a fermenter was reported to derepress the
production of the enzyme (Garcia-Garibay et al. 1987a).
However, whereas some authors did not find any effect of
pectin addition to the medium in an endo-PG producing
strain (Schwan and Rose 1994; Schwan et al. 1997), others
reported the enhancement of pectinase production by this
yeast when pectin was added (Wimborne and Rickard
1978; Lim et al. 1980; Cruz-Guerrero et al. 1999). K.
marxianus CCT 3172 was able to break down pectin but
required a usable source of carbon and energy to elaborate
pectinolytic activity (Schwan and Rose 1994). It had a
strong endo-PG activity between pH 4–6 with pH 5 as
optimum (Schwan et al. 1997). Furthermore, the type of
pectinase excreted by this strain was pointed as a feasible
alternative to fungal production due to the lower broth
viscosity, which can make downstream operations easier
(Almeida et al. 2003a).

Lactose-intolerance can be circumvented by removing
lactose from the diet or by converting this sugar into
glucose and galactose with β-D-galactosidase (Rajoka et al.
2003). It was reported that only approximately 2% of the
recognized yeast species are capable of fermenting lactose
(Barnett et al. 1983), among which strains within the
Kluyveromyces genus can be found. In a screening
performed with yeast strains belonging to different genera,
only two cultures of K. fragilis and Ferrissia fragilis
showed β-galactosidase activity (Fiedurek and Szczodrak
1994). Lactose is considered the primary inducer of β-D-
galactosidase synthesis (Furlan et al. 2000) and production

of lactase by K. marxianus using cheese whey as a nutrient
source has been investigated by several authors (Sonawat et
al. 1981; Nunes et al. 1993).

During the stationary phase of growth, theβ-D-galactosidase
activity of K. marxianus CBS 712 and CBS 6556 remained
approximately constant (Rech et al. 1999). In contrast, a
reduction of β-D-galactosidase activity was reported by other
authors in the stationary phase (Mahoney et al. 1975). The
highest β-D-galactosidase activity of K. marxianus CBS 712
and CBS 6556 was reported to be at 37°C, decreasing quickly
at temperatures above 40°C (Rech et al. 1999), while in K.
marxianus IMB3, the enzyme is optimally active at 50°C
(Barron et al. 1995a). On the other hand, the β-galactosidase
of K. marxianus CBS 6556 is more stable than the
corresponding enzymes of other strains, when stored at low
temperatures, e.g., 4°C (Rech et al. 1999; Itoh et al. 1982;
Brady et al. 1995). When different substrates were investigat-
ed for β-galactosidase production by K. marxianus, lactose
supported the highest enzyme activities (Rajoka et al. 2003;
Rajoka et al. 2004).

Inulinase is an enzyme that cleaves fructose molecules
from inulin. Its expression is induced by inulin or sucrose,
and the enzyme can be excreted to the culture medium or
remain associated to the cell wall (Rouwenhorst et al. 1988;
Barranco-Florido et al. 2001). K. marxianus has been
widely studied for inulinase production, aiming at the
production of fructose syrup from inulin (Cruz-Guerrero et
al. 1995).

Pessoa and Vitolo (1999) obtained the highest inulinase
activities with the K. marxianus DSM 70106 strain, using
inulin as the carbon source. Growth of K. marxianus on
sucrose also proceeds via the action of an extracellular
inulinase (Hensing et al. 1994), which is repressed when
growth is not sucrose-limited (Rouwenhorst et al. 1988;
Parekh and Margaritis 1985; Grootwassink and Hewitt 1983).

K. marxianus has also been proposed as a source of: (1)
oligonucleotides, used as flavour enhancers in food prod-
ucts; (2) oligosaccharides, used as prebiotics; and (3)
oligopeptides, immuno stimulators added to dairy products
that are released in the wort after whey protein proteolysis
(Belem et al. 1997; Belem and Lee 1998, 1999). Recent
studies have shown the potential of K. marxianus FII
510700 biomass as an alternative source to S. cerevisiae for
yeast autolysates (Lukondeh et al. 2003a), alkali-insoluble
glucans (Lukondeh et al. 2003c), and a natural bioemulsi-
fier (Lukondeh et al. 2003b).

In the field of bioremediation, processes using K.
marxianus were developed for the removal of copper ions
(II) with molasses as a nutrients source (Aksu and Dönmez
2000). Lead (II) uptake by K. marxianus from contaminated
molasses had negative effects on cell growth. Nevertheless,
the decrease in biomass formation did not lead to decreased
lead (II) uptake; on the contrary, the biosorption ability was
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higher at higher initial lead (II) concentrations (Skountzou
et al. 2003).

Ethanol production at elevated temperatures has received
much attention because of the potential cost savings, which
could be obtained by continuous evaporation of ethanol
from the broth under reduced pressure (Hacking et al. 1984;
Gough et al. 1996, 1997, 1998; Banat et al. 1998). This
topic was recently reviewed for yeasts in general, including
K. marxianus. The advantages described, besides the
energy savings due to reduced cooling costs, were higher
saccharification and fermentation rates, continuous ethanol
removal, and reduced contamination (Banat et al. 1998).
However, the temperature increase has a negative effect on
ethanol yield and also reduces the cell viability (Anderson
et al. 1986; Ballesteros et al. 1991). K. marxianus was
reported to produce alcohol at temperatures above 40°C and
to have a maximum growth temperature of 47°C (Anderson
et al. 1986), 49°C (Hughes et al. 1984), or even 52°C
(Banat et al. 1992). Lower ethanol tolerance was observed
when K. marxianus was compared to S. cerevisiae, and this
was correlated with the activity of the plasma membrane
ATPase (Rosa and Sa-Correia 1992; Fernanda and Sa-
Correia 1992). Hacking et al. (1984) screened yeast strains
for their ability to ferment glucose to ethanol at high
temperatures. The tolerance of all species seemed to
decrease with temperature, but in general, Kluyveromyces
strains were more thermotolerant than Saccharomyces,
which in turn can produce higher ethanol yields. Anderson
et al. (1986) compared K. marxianus strains isolated from
sugar mills and CBS strains for ethanol production at high
temperatures. The CBS strains produced the same ethanol
amounts as the new isolates but with lower cell viability
and higher cultivation time. Sakanaka et al. (1996) reported
the fusion of a thermotolerant strain of K. marxianus with a
high ethanol producing strain of S. cerevisiae; however,
their fermentative capacity was severely impaired and the
fusants’ thermostability was lower than for either of the
parental cells.

While Schwan and Rose (1994) reported that ethanol
production in galactose-containing medium was not as high
as when glucose was the carbon source, Duvnjak et al.
1987 found that galactose was a better carbon source for
ethanol production than glucose; however, the strains
employed in both works were different. The conversion of
xylose into ethanol by K. marxianus was already reported
some time ago (Margaritis and Bajpai 1982).

Different process strategies have been used for ethanol
production with K. marxianus: batch cultures with elevated
substrate concentrations (Grubb and Mawson 1993; Barron
et al. 1996), fed-batch production (Ferrari et al. 1994;
Gough et al. 1998; Love et al. 1996), continuous system
(Love et al. 1998), membrane recycle bioreactors (Tin and
Mawson 1993), two-stage fermentation (Hack et al. 1994;

Banat et al. 1996), immobilization with β-galactosidase
(Hahn-Hägerdal 1985), calcium-alginate-immobilized cells
(Bajpai and Margaritis 1987a,b; Marwaha et al. 1988;
Nolan et al. 1994; Riordan et al. 1996; Barron et al. 1996;
Brady et al. 1996, 1997a,b, 1998; Ferguson et al. 1998;
Gough and Mchale 1998), cells immobilized in poly(vinyl
alcohol) cryogel beads (Gough et al. 1998), or in Kissiris, a
mineral glass foam derived from lava (Nigam et al. 1997;
Love et al. 1996, 1998), extractive fed batch cultures (Jones
et al. 1993), simultaneous saccharification and fermentation
processes with added enzymes (Barron et al. 1995b, 1996,
1997; Boyle et al. 1997; Nilsson et al. 1995; Ballesteros et
al. 2002a,b, 2004; Kádár et al. 2004) or by cloning of
heterologous cellulase genes (Hong et al. 2007), and the use
of mixed cultures (Ward et al. 1995).

Cheese whey contains lactose and a protein fraction
sufficiently rich in essential amino acids. Cheese whey
cultivations with K. marxianus have been proposed, with
promising results, as a means of reducing the pollution
caused by this industrial waste stream (Ghaly and Singh
1989; Giec and Kosikowski 1992; Harden 1996; Aktas et
al. 2005) and/or to produce single-cell protein (Giec and
Kosikowski 1992; Ben-Hassan et al. 1992, Ben-Hassan and
Ghaly 1995; Belem and Lee 1999; Schultz et al. 2006;
Ghaly and Kamal 2004). Aerobic cultures of microorgan-
isms in cheese whey can reduce up to 90–95% of its BOD
(Grubb and Mawson 1993), resulting in bioingredients of
high added value for the food industry (Belem et al. 1997).

Other potential applications of the yeast K. marxianus,
which can be found in the literature include its use as baker’s
yeast (Caballero et al. 1995) and as an anticholesterolemic
agent (Yoshida et al. 2004). The cellular components
involved in the hypocholesterolemic activity of K. marxianus
were further examined (Yoshida et al. 2005).

Last but not the least, K. marxianus has been investi-
gated as a host for the production of heterologous proteins.
In general, yeasts are capable of performing some post-
translational modifications of proteins, such as glycosyla-
tion and/or other modifications required for optimal
biological activity and stability (Hensing et al. 1995). S.
cerevisiae has been the most commonly used yeast host for
the production of heterologous proteins (Romanos et al.
1992; Gellissen and Hollenberg 1997; Porro et al. 2005).
Nevertheless, this yeast has some drawbacks, such as its
strong aerobic fermentation behavior and a tendency to
hyperglycosylate secreted glycoproteins (Hensing et al.
1994). K. lactis has also been used for the production of
heterologous proteins (van den Berg et al. 1990; Panuwatsuk
and da Silva 2002; Bartkevičiute and Sasnauskas 2003; van
Ooyen et al. 2006). K. marxianus, which is phylogeneti-
cally close to K. lactis, is supposed to have a similar
capacity for synthesis and secretion of high molecular
weight proteins (Wésolowski-Louvel et al. 1996). Some
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examples showing that heterologous protein production in
this yeast is possible have been reported in the literature
(Bergkamp et al. 1993a; Bartkevičiute et al. 2000; Zhang et
al. 2003). More recently, Pecota et al. (2007) successfully
expressed lactate dehydrogenase activity in K. marxianus,
using an integrative multi-copy system, resulting in lactate
production by this yeast. Hong et al. (2007) expressed
thermostable endo-β-1,4-glucanase, cellobiohydrolase, and
β-glucosidase, also making use of an integrative system,
generating a strain capable of converting cellulosic materi-
als into ethanol. Although these studies demonstrate that
the heterologous proteins expressed in K. marxianus were
functional, the capacity of K. marxianus to perform post-
translational modifications of heterologous proteins still
remains to be investigated.
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