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ABSTRACT 

An optimal unified architecture that can efficiently 
compute the Discrete Cosine, Sine, Hartley, Fourier, 
Lapped Orthogonal, and Complex Lapped trans- 
forms for a continuous input data stream is pro- 
posed. This structure uses only half as many mul- 
tipliers as the previous best known scheme [l]. 
The proposed architecture is regular, modular, and 
locally-connected. In the realization of the DCT, 
only 2 N  - 2 multipliers are needed. We provide a 
theoretical justification by showing that any discrete 
transform whose basis functions satisfy the Funda- 
mental Recurrence Formula has a second-orider au- 
toregressive structure in its filter realization. We 
also demonstrate that dual generation trarnsform 
pairs share the same autoregressive structure. 

1. INTRODUCTION 

Discrete sinusoidal transforms play an important 
role in various digital signal processing applications, 
such as spectrum analysis, speech and image signal 
processing, computer tomography, data compression 
and reconstruction, etc. The development of effi- 
cient algorithms and architectures for discrete si- 
nusoidal transforms that are suitable for h- cv d ware 
implementation has been an interesting topic for 
decades. A parallel lattice structure that cart dually 
generate the DCT and DST simultaneously was pro- 
posed by Liu and Chiu [l]. The structure is regular, 
modular, locally-connected and suitable for VLSI 
implementation. The number of multipliers used in 
that lattice structure is O(N)(N is the transform 
size), in contrast to O(N logN), which is common 
in many other fast algorithms with a buffered data, 
irregular, and globally connected scheme [2,3]. For 
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example, for the 1-D DCT case, the lattice structure 
needs 6N - 8 multipliers [l], while ((N/2) log N )  
multipliers are used in reference [2,3]. The lattice 
structure is superior than other computing schemes 
except possibly when N is very small. In this paper, 
we propose an optimal unified IIR architecture for 
the discrete sinusoidal transforms, which preserves 
the advantages of the lattice architecture, while re- 
ducing the hardware complexity in half. It is opti- 
mal in the sense that the number of multipliers used 
is minimum, and both speed and area are asymptot- 
ically optimal. A theoretical basis that allows us to 
show that all the resulting unified filter architectures 
have a similar second-order autoregressive structure 
is provided in Section 3. 

2. OPTIMAL TIME-RECURSIVE 
ARCHITECTURES 

2.1 Optimal Unified IIR Structures 
Input data arrive serially in most real-time signal 
processing applications. Our approach is to view 
the lattice modules in [l] as linear time invariant 
systems which transform input sequences into out- 
put sequences. The transfer functions can be de- 
termined by the time difference equations obtained 
from the lattice modules. For all these discrete sinu- 
soidal transforms, the transfer functions for the k-th 
transformed component have the following form 

(N1+ N22-1) H(%) = ((-1)m - 2-" )  
(1 - Dit-' + D22-2)' 

(1) 
The coefficients, m, n, N I ,  N2, D1, and D2, io; 
different discrete sinusoidal transforms are listed in 
Table 1. Note that C(k)  in Table 1 is the the nor- 
malization constant for the k-th transformed com- 
ponent. From the transfer functions derived above, 
we observe that these transforms can be realized by 
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Table 1: Coefficients of the universal IIR filter struc- 
ture for the DXT(*Br. = w). 

to even module 

x 

to odd mdul 
Figure 1: The paralrel IIR filter structure for 1-D 
DXT . 

a parallel structure consisting of a shift register ar- 
ray of size N, two adders and an IIR array made up 
of N DXT modules as shown in Fig. 1. Each IIR 
module is a second order autoregressive IIR filter as 
shown in Fig. 2. From Table 1, we further note 
that the DCT and DST, DFT and DHT share the 
same denominator and can be simultaneously gener- 
ated by using an IIR filter structure with three and 
four multipliers respectively as depicted in Figs. 3 
and 4. The transfer function given in Table 1 for 
the LOT/CLT is in complex form. We will show 
in the following how to realize the CLT using real 
operations. The definition of the CLT in [4] can be 
rewritten as 

x(t )  . 

Figure 2: The universal IIR filter module. 

Figure 3: The IIR filter structure for the DCT and 
DST. 

Figure 4: The IIR filter structure for the DHT and 
DFT. 

1, (2k + 1)(2n + 1)" 
exp{-j 4N 

k = 0 , 1 ,  ..., N - 1 .  (2) 

111-74 



x:t: Transforms multipliers adders ' 

DCT 2 N - 2  3 N + 2  
DST 2 N - 2  3 N + 2  

Figure 5: The IIR filter structure for real operation 
of the LOT and CLT. 

direct IIR lattice Leela] 
2 N - 2  6 N - - L )  ( N / 1 )  No. of 

Mmltipliers *log N 
No. of S N + 1  SN - 1 ( S N / P ) l o s N  
addera - N  + 1 
limitrtion no m 0  a n  

If we define another transform with basis functions 
i n k ,  then the CLT can be expressed in the form of 
[41 

Hom[S] 
( N / 1 )  
*Ios N 
same 
a. Lee 
a n  

where tnk = k exp v. This leads to the CLT 
architecture as shown in Fig. 5 ,  in which the Rmn are 
generated by using the DCT and DST dual gener- 
ating circuit as depicted in Fig. 3.  The numbers of 
multipliers and adders required for computing indi- 
vidual transforms by using the IIR filter structures 
are summarized in Table 2. From Table 2 ,  we ob- 
serve that by using the IIR structure the number of 
multipliers required for the DCT has been reduced 
from 6 N  - 8 to 2N - 2 .  Table 3 provides a compar- 
ison of the optimal unified IIR structure with other 
well-known algorithms. 
2.2 Unified inverse IIR structure 
Inverse transforms are important in retrieving orig- 
inal information in digital communication systems. 
The inverses of the discrete sinusoidal transforms] 
which have similar transfer formulae are also carried 
out under the same methodology. The inverse trans- 
forms of the discrete sinusoidal transforms are the 
same as their direct versions except for the appear- 

CLT* 

Table 2: Number of multipliers and adders for dif- 
ferent transforms with IIR filter realizations(Here * 
denotes complex operation) 

Table 3: Comparison of different DCT algorithms 

ance of the normalization constants, C(lc)'s. For ex- 
ample, the transfer function of the inverse DCT(as 
defined in [l]) is 

Hi,(z) = g z - N - 1  - cos e z - N  + (-1)n sin 0 
1 - 2cosez-1 + z - 2  

where 0 = v. If we perform the block trans- 
form instead of sliding window transform, then the 

and z - ~  components in the numerator can 
be eliminated because of the reset operation. In Fig. 
6 ,  we show the optimal unified IIR implementation 
of the inverse DCT module under block transform. 
The number of multipliers required for the inverse 
DCT is 2N - 1. The additional branch of multi- 
plier is shared by the N IIR array with a delay of 
N - 1 cycles. The difference in the direct and in- 
verse transform formula can be rectified by adding 
one additional branch of multipliers to a whole par- 
allel IIR structure and changing the multiplication 
coefficients. 

Z-N-l 

3. THEORETICAL BASIS 

All the resulting unified filter architectures men- 
tioned above have a similar second-order autoregres- 
sive structure with the minimum number of multi- 
pliers. A theoretical basis for this fact is provided in 
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Figure 6: The IIR filter structure for the IDCT. 

this section. As a generalization to all these direct 
and inverse discrete sinusoidal transforms, we start 
from their transform formula for the k-th compo- 
nent, which have the following form 

N - 1  

X ( k , t )  = z ( t  + l ) P l ( k ) ,  (5) 
I=O 

where z(.) is the input data sequence and X ( k , t )  is 
the k-th transformed component of {~( i ! ) ,  . . . , z ( t  + 
N - 1)). The weighting coefficients Pl(k), 1 = 
0, . - , N - 1,  are different from one transform to an- 
other. For discrete sinusoidal transforms, PI’S orig- 
inate from orthogonal polynomials. From the Fun- 
damental Recurrence Formula[5] for an orthogonal 
polynomial system, we find that PI = -cPr-l - 
XPr-2, where c and X are constants for all the si- 
nusoidal transforms that we are interested in. Using 
the recurrence formula, PI = -cPr-1 - API-2, the 
transfer function between X ( k ,  .) and z(.) is given 
by be 

H ( z )  = 

The denominator is always a second order polyno- 
mial with the same coefficients of the recurrence re- 
lation of 4 ’ s .  When p~ = ~ P N  and p-1 = f P N - 1 ,  
which are often satisfied for the discrete sinusoidal 
transforms, the transfer function is further sim- 
plified by extracting out the factor (1 + z - ~ )  or 
(1 - z - ~ ) .  This extracted factor can be interpreted 
as an updating process and implemented by a reg- 
ister array. The resulting transfer function depends 
on A,  c ,  PO, and P-1, which dependent on k and 
the transformation. Note that the poles are always 
cancelled by zeros and the transfer function is es- 
sentially an FIR. In the case when two transforms 
can be generated dually [l], they share the same 

XPN-1 - PN%-’ - XP-l%-N + PO%-N-l 
x + cz-1 + 2 - 2  

(6) 

autoregressive model in their IIR filter structure. 
One advantage of the IIR implementation over dual 
generation is that it generates only one transform. 
When one of the transform in the dual generation 
is not needed, the IIR implementation is still favor- 
able. It also can be shown that our design uses the 
least amount of memory asymptotically. The speed 
of our VLSI design cannot be improved asymptot- 
ically since it processes the input in real time. We 
can show that our design is asymptotically optimal 
in both speed and area [6]. 

4. CONCLUSIONS 

In this paper, we present a new optimal unified ar- 
chitecture to compute the discrete sinusoidal trans- 
forms. The DCT, DST, DHT, DFT, LOT, and CLT 
are all unified under the same time-recursive, IIR 
implementation. To generate 1-D DCT, this archi- 
tecture requires only 2 N  - 2 multipliers, that is one- 
third of the previous best known lattice structure in 
[l]. In Section 3, we provide a theoretical justifica- 
tion to show that the proposed unified filter architec- 
tures have a second order autoregressive structure. 
Furthermore, the throughput of this scheme is one 
input sample per clock cycle. The resulting archi- 
tecture is regular, locally-connected and asymptoti- 
cally optimal in terms of area-time complexity. This 
makes it very suitable for high speed real-time ap- 
plications. 
References 
[l] K. J.  R. Liu, and C. T. Chiu, “Unified Paral- 
lel Lattice Structures for Time-Recursive Discrete 
Cosine/Sine/Hartley Transforms,” to appear IEEE 
Trans. on Signal processing, March 1993. 
[2] B. G .  Lee, “A new algorithm to compute the 
discrete cosine transform,” IEEE Trans. Acoust., 
Speech, Signal Processing, vol. ASSP-32, pp 1243- 
1245, Dec. 1984. 
[3] H. S. Hou, “A fast recursive algorithm for com- 
puting the discrete cosine transform,” IEEE Trans. 
Acoust., Speech, Signal Processing, vol. ASSP-35, 

[4] R. Young, and N.  Kingsbury, “Motion Esti- 
mation using Lapped Transforms,” IEEE ICASSP 
Proc., pp. I11 261-264, March, 1992. 
[5] T. S. Chihara, An Introduction to Orthogonal 
Polynomials. Gordon and Breach, 1978. 
[6] K. J .  R.  Liu, C. T .  Chiu, R. K. Kolagotla, and 
J. F. J U B ,  “Optimal Unified Architectures for Real- 
Time Computation of Time-Recursive Discrete Si- 
nusoidal Transforms,” submitted for publication. 

pp 1455-1461, Oct. 1987. 

111-76 


