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1. Introduction

Ergodic theory treats measure preserving dynamical systems. We recall: a

quadruple X = (X,B, µ, T ) is a measure preserving system (m.p.s.) if (X,B, µ)

is a measure space with µ(X) < ∞, and T : X → X is a measurable, measure

preserving map. That is to say, for B ∈ B, T−1(B) ∈ B and µ(T−1B) = µ(B).

The dynamical character of such a system appears when the transformation T

is iterated so that Tnx describes the state at the time n when the initial state

is x. There are two theorems at the foundation of classical ergodic theory:

Poincaré’s Recurrence Theorem. If (X,B, µ, T ) is an m.p.s. and A ∈ B

with µ(A) > 0, then for some n = 1, 2, 3, . . . , µ(A ∩ T−nA) > 0.

It is not hard to deduce from this that in fact almost every point of A

returns to A infinitely often.

Birkhoff’s Pointwise Ergodic Theorem. If (X,B, µ, T ) is an m.p.s. and

f ∈ L1
(X,B, µ), then for almost every x ∈ X, the limit as N → ∞ of ergodic

averages

AN (f, x) =
1

N

N−1
∑

n=0

f(Tnx) (1.1)

exists, and the limit function f̄(x) = limAN (f, x) satisfies f̄(Tx) = f̄(x) and
∫

f̄dµ =
∫

fdµ.
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Our focus here will be on “non-conventional ergodic averages”,

1

N

N−1
∑

n=0

f1(T
p1(n)x)f2(T

p2(n)x) · · · fk(T
pk(n)x) (1.2)

and their limits, in which several functions are involved simultaneously,

and these are evaluated on the orbit of a point x at polynomial times

p1(n), p2(n), . . . , pk(n) respectively. The polynomial character of the times has

no special dynamical significance, but is meaningful for diophantine applica-

tions.

The diophantine significance of expressions of the form (1.2) showed up first

in the ergodic theoretic proof of Szemerédi’s theorem. This theorem states that

if a set E of integers has positive upper density, then it contains arbitrarily

long arithmetic progressions. It can be shown — via a correspondence principle

([EW10], [TT09, p. 163]) — that this is equivalent to the following extension

of the Poincaré recurrence theorem:

The Multiple Recurrence Theorem. For any m.p.s. X = (X,B, µ, T ), if

A ∈ B with µ(A) > 0 and k ∈ N, then for some n

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0. (1.3)

This recurrence result was first proved by a consideration of averages.

Namely, ([FU77]) one showed that for any k,

lim inf
N→∞

1

N

N−1
∑

n=0

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0. (1.4)

This raises the question as to whether the limit in question exists, and this will

be the case, if, setting f(x) = 1A(x) the “non-conventional average”

lim
N→∞

1

N

N−1
∑

n=0

f(Tnx)f(T 2nx) · · · f(T knx)

exists in L2
(X,B, µ). This in fact is true but considerably more effort was

required to obtain this “mean ergodic theorem” than was needed for (1.4). (See

[EW10], [BL96] and [FU81] for a more detailed exposition.)

One is now able to extend the two types of phenomena further to polyno-

mial times, as we’ll see. We can talk of a “polynomial mean ergodic theorem”

as well as a “polynomial multiple recurrence theorem”. The former is of in-

terest in its own right as a legitimate topic in ergodic theory; the latter is of

interest also for its diophantine and combinatorial implications. The polyno-

mial mean ergodic theorem is the statement that for any bounded measurable

functions f1, f2, . . . , fk and integer valued polynomials p1(n), p2(n), . . . , pk(n),

the averages in (1.2) converge, as N → ∞, in L2
(X,B, µ). It is believed that
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one also has almost everywhere convergence but this has been proved so far

only for some special cases. A polynomial multiple recurrence theorem is the

analogue of (1.3) or (1.4) with n, 2n, . . . , kn replaced by a suitable set of poly-

nomials. Some restrictions on the polynomials pj(n) have to be made since, e.g.,

it is easy to construct systems with µ(A ∩ T−(2n+1)A) = 0 for certain A for

all n.

2. Ergodicity, Factors and the Basic Structure

Theorems

A system (X,B, µ, T ) is ergodic if for A,B ∈ B with µ(A), µ(B) > 0 there

exists n with µ(A ∩ T−nB) > 0. This is equivalent to the condition that if f is

measurable and f ◦ T = f then f is almost everywhere constant. The ergodic

theorem implies in this case that the limit f̄ of (1.1) is constant, and the

condition
∫

f̄dµ =
∫

fdµ implies that f̄(x) = 1

µ(X)

∫

fdµ. We will be assuming

throughout that µ(X) = 1, so that for ergodic systems we obtain AN (f, x) →
∫

fdµ a.e.

For two measure spaces (X,B, µ) and (Y,D, ν), a map π : X → Y is

measurable if the σ-algebra π−1(D) ⊂ B and π is measure preserving if for

D ∈ D, µ(π−1(D)) = ν(D). For (X,B, µ) a “Lebesgue space” we have the no-

tion of “decomposition of µ relative to (Y,D, ν)” and conditional expectation.

(See [GL03], [FU81] for details). Namely there is an almost everywhere defined

map from Y to probability measures on X, y → µy, so that µ =
∫

µydν(y),

meaning that
∫

fdµ =
∫

{

∫

fdµy}dν(y) for f ∈ L1
(X,B, µ). The function

φ(y) =
∫

fdµy is denoted E(f |π−1(D)) (See [DO53]). The lift of the latter

function to X, E(f |π−1(D))◦π belongs to L1
(X,B, µ) and for f ∈ L2

(X,B, µ),

the linear map f → E(f |π−1D)◦π is the orthogonal projection of L2
(X,B, µ) to

the subspace L2
(Y,D, ν) ◦ π. We will use the notation E(f |Y ) interchangeably

for the function E(f |π−1(D)) on Y and its lift to X.

For two measure preserving systems (X,B, µ, T ), (Y,D, ν, S) we will speak of

a measurable, measure preserving map π : X → Y as a homomorphism if for a.e.

x ∈ X, Sπ(x) = π(Tx). It will follow that for almost every y, T (µy) = µSy and

that E(f◦T |Y ) = E(f |Y )◦S as functions on Y . When we have a homomorphism

of a system X to a system Y we speak of the latter as a factor of the former

and of the former as an extension of the latter.

Suppose Y = (Y,D, ν, S) is a degenerate system meaning that Sy = y for

each y ∈ Y , and suppose π : X → Y is a homomorphism. Then the measures

µy are T -invariant for a.e. y. We can then form systems (X,B, µy, T ). One now

has the ergodic decomposition theorem:

Theorem. For any m.p.s. X = (X,B, µ, T ) there is a degenerate factor

Y = (Y,S, ν, S) for which the systems (X,B, µy, T ) are almost all ergodic.
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A consequence of this ergodic decomposition theorem, together with the

representation µ =
∫

µydν(y), is that the issues we are dealing with, recurrence

and convergence of ergodic averages, can be confined to the case of an ergodic

system. We proceed to present a structure theorem for ergodic systems. We will

describe two types of extensions for ergodic systems and the basic structure

theorem for ergodic systems will be the assertion that combining these two

forms of extensions one can arrive at any ergodic system starting from the

trivial 1-point system.

For a compact metric space M we denote by Isom(M) the compact group

of isometries of M . We will say that X = (X,B, µ, T ) is an isometric extension

of Y = (Y,D, ν, S) if the former can be represented as X = Y ×M for compact

metric M with µ = ν ×mM where mM ∈ P(M) is invariant under isometries,

and T (y, u) = (Sy, ρ(y)u) where ρ : Y → Isom(M) is measurable. When Y
is a trivial system and X an ergodic isometric extension, it can be seen that

X ≈ M is a compact abelian group and Tx = ax where a ∈ M generates a

dense subgroup of M . We call such a system a Kronecker system and denote

the action of S additively: z → z + α, and denote the system (M , Borel sets,

Haar measure, translation by α) briefly by (M,α).

Let X = (X,B, µ, T ) be an ergodic m.p.s. with Kronecker factor (Z,α)

and let ϕ : X → Z define the corresponding homomorphism. Any character

χ : Z → S1
satisfies χ(z + α) = χ(α)χ(z) and so lifting to X, if f = χ ◦ ϕ,

f(Tx) = χ ◦ ϕ(Tx) = χ(ϕ(x) + α) = χ(α)χ ◦ ϕ(x) = χ(α)f(x), we obtain an

eigenfunction f of the operator f → f◦T . For ergodic systems all eigenfunctions

come about in this way, and indeed, using the group of eigenfunctions of the

induced operator Tf = f ◦ T , we can construct a “universal” Kronecker factor

(Z̃, α̃) of X such that all Kronecker factors of X are factors of (Z̃, α̃). We refer

to (Z̃, α̃) as the Kronecker factor of X.

A broader family of systems is obtained by taking successive isometric

extensions of previously defined systems. This leads to the notion of a dis-

tal system: X is distal if it is a member of a (possibly) transfinite tower

of systems {Xη, η ordinal} having at its base X0 the trivial 1-point sys-

tem, and with Xη+1 an isometric extension of Xη, and for a limit ordinal

η, Xη = lim
ξ<η

Xξ.

The other type of extension which will appear in our general structure

theorem is that of a (relatively) weakly mixing extension, which we abbre-

viate to WM extension. Recall that a system is (absolutely) weakly mixing if

X × X is ergodic. In the relative notion we introduce the “relative product”.

If (Xi,Bi, µi), i = 1, 2, are two measure spaces, fi, i = 1, 2, two measurable

function on these spaces respectively, we denote by f1 ⊗ f2 the function on

X1 × X2 with f1 ⊗ f2(x1, x2) = f1(x1)f2(x2). Suppose X1 and X2 are both

extensions of a system Y there will be a unique measure µ̃ or X1 × X2 with
∫

f1⊗f2dµ̃ =
∫

E(f1|Y )E(f2|Y )dν(y). If Xi = (Xi,Bi, µi, Ti) then T1×T2 will
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preserve the measure µ̃. We can speak of the m.p.s. (X1×X2,B1×B2, µ̃, T1×T2)

which we denote X1 ×

Y

X2. We now make the definition:

Definition. A system X is a WM extension of a factor Y if X×

Y

X is ergodic.

Our main structure theorem is:

Theorem. Every ergodic system is a WM extension of its maximal distal fac-

tor.

It follows from this that every ergodic system arises by taking successively

isometric and WM extensions beginning with the trivial system.

The ergodic decomposition theorem together with the foregoing structure

theorem were made use of in the original proof of (linear) multiple recurrence in

the form (1.4) which implies Szemerédi’s theorem. (See [FKO82]). A variant of

that argument in the spirit of the proof of Szemerédi’s theorem for commuting

transformations ([FK78]) is the following. Call a system an MR system when

(1.4) holds for all sets A of positive measure and for all k. It is relatively

straightforward to show that a WM extension of an MR system is MR. Using

van der Waerden’s theorem on arithmetic progressions, one can show that the

MR property is also preserved under isometric extensions. Finally one argues

that every system has a maximal MR factor and this proves that every ergodic

system is MR. Ultimately by ergodic decomposition the phenomenon of (linear)

multiple recurrence is established.

A similar strategy was adopted by V. Bergelson and A. Leibman in [BL96]

to obtain a polynomial multiple recurrence theorem:

Theorem. Let p1(n), p2(n), . . . , pk(n) be polynomials with integer coefficients

and with vanishing constant term (pi(0) = 0), then for any m.p.s. X =

(X,B, µ, T ) and a set A ∈ B with µ(A) > 0, there exists n 6= 0 with

µ(A ∩ T−p1(n)A ∩ T−p2(n)A ∩ · · · ∩ T−pk(n)A) > 0

The proof in [FK78] of multiple recurrence which is needed for Szemerédi’s

theorem on arithmetic progressions and its higher dimensional analogues makes

use of the related, classical van der Waerden theorem. For the Bergelson-

Leibman polynomial version, a polynomial version of van der Waerden’s theo-

rem is needed and this too is established in their paper [BL96].

We remark that the formulation in the foregoing theorem is not the final

word on multiple recurrence. The result can be refined to include certain sets of

polynomials which do not vanish at 0, but this will require additional machinery

which will be discussed.

We may make use of the same correspondence principle alluded to earlier

to derive the following result regarding “polynomial progressions”:

Theorem. Let E ⊂ Z be a subset of positive upper density, and let p1(n),

p2(n), . . . , pk(n) be k polynomials vanishing for n = 0. Then E contains a

progression {a, a+ p1(n), a+ p2(n), . . . , a+ pk(n)} with n 6= 0.
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3. Characteristic Factors and the van der

Corput Lemma

We shall refer to families {p1(n), p2(n), . . . , pk(n)} of integer valued polynomials

as schemes.

Definition. If X is a m.p.s. and Y is a factor of X, we shall say that Y is

a characteristic factor for the scheme {p1(n), . . . , pk(n)} if for every choice of

f1, f2, . . . , fk ∈ L∞(X,B, µ),

1

N

N−1
∑

0

T p1(n)f1T
p2(n)f2 · · ·T

pk(n)fk

−

1

N

N−1
∑

0

T p1(n)E(f1|Y )T p2(n)E(f2|Y ) · · ·T pk(n)E(fk|Y ) → 0

in L2
(X,B, µ).

Here we have abbreviated f ◦ T to Tf . Finding a characteristic factor for

a scheme often gives a reduction of the problem of evaluating limit behavior

of non-conventional averages to special systems. This will be the case in the

proof of the polynomial mean ergodic theorem, which is carried out by first

showing the convergence for nilsystems and showing that the latter serve as

characteristic factors for all polynomial schemes.

Perhaps the principal tool in identifying characteristic factors is the follow-

ing lemma which we will refer to as the “Hilbert space van der Corput lemma”:

Lemma. Let H be a Hilbert space with inner product 〈 , 〉. Let {un} be a

bounded sequence of vectors in H and assume that for each m, the limit

γm = lim
N→∞

1

N

N
∑

n=1

〈un, un+m〉

exists. If 1

M

∑M

1
γm → 0 as M → ∞, then ‖

1

N

∑N

1
un‖ → 0.

We will illustrate the use of this lemma in showing that for any ergodic

system X, its Kronecker factor (Z,α) is a characteristic factor for the scheme

{n, 2n}. It suffices to show that if E(f |Z) = 0 or E(g|Z) = 0 then

1

N

N
∑

n=1

TnfT 2ng → 0

in L2
(X,B, µ). Regarding the products TnfT 2ng as elements in L2

(X,B, µ),

we set un = TnfT 2ng. Then

〈un, un+m〉 =

∫

Tn
(fTmf̄)T 2n

(gT 2mḡ)dµ =

∫

fTmf̄ · Tn
(gT 2mḡ)dµ
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By the ergodic theorem the average of these expressions over n exists and by

ergodicity

γm = lim
N→∞

1

N

N
∑

n=1

〈un, un+m〉 =

∫

fTmf̄dµ

∫

gT 2mḡdµ

=

∫

f ⊗ g(T × T 2
)
mf̄ ⊗ ḡd(µ× µ).

The average over m exists:
1

M

∑M

1
γm →

∫

f⊗gHd(µ×µ) where T×T 2H =

H. Now invariant functions on a product system are formed from products of

eigenfunctions for the individual systems, from which it follows that if either

E(f |Z) = 0 or E(g|Z) = 0, then
∫

f ⊗ g H d(µ × µ) = 0. This proves that

the Kronecker factor is a characteristic factor for {n, 2n} as claimed. We re-

mark that following T. Ziegler [ZI07], for any scheme and any system there

exists a “minimal” characteristic factor. If we take into account expressions
1

N
Σ

N
n=1T

nϕ2T 2nϕ̄ where ϕ is an eigenfunction we see that all eigenfunctions of

T appear in any characteristic factor for {n, 2n}. Thus we have identified the

minimal characteristic factor for {n, 2n} as the Kronecker factor.

One conclusion that can be drawn is the existence of lim
1

N
Σ

N
n=1T

nfT 2ng in

L2
(X,B, µ) for any system. From the foregoing this is reduced to the special

case of a Kronecker system and L2
-convergence is readily established in this

case. Namely, for convergence in L2
it suffices to consider f, g in an L4

-dense

subset of L2
, and particularly for f, g continuous. For this case we can use the

equidistribution of {nα} in Z:

1

N

N
∑

n=1

f(z + nα)g(z + 2nα) →

∫

f(z + θ)g(z + 2θ)dθ

which is true pointwise and consequently also in L2
.

Since strong convergence in L2
(X,B, µ) implies weak convergence, we can

formulate a consequence of the foregoing:

For f, g, h ∈ L∞(X,B, µ),

1

N

∑

∫

f(x)g(Tnx)h(T 2nx)dµ →

∫

E(f |Z)(z)E(g|Z)(z + θ)E(h|Z)(z + 2θ)dzdθ.

An instructive interpretation of this is that as x ranges over X and n

ranges over non-negative integers, the triple (x, Tnx, T 2nx) ranges “freely” over

X×X×X subject to the condition that ϕ(x), ϕ(Tnx), ϕ(T 2nx) form an arith-

metic progression in Z, where ϕ : X → Z is the projection of X to its Kronecker

factor. Thus the role played by the characteristic factor here is that of deter-

mining the constraints on (x, Tnx, T 2nx). It is remarkable that the constraints

are purely algebraic.
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There is a situation when no constraints exist on (x, T p1(n)x,

T p2(n)x, . . . , T pk(n)x). Another way of saying this is to say that the charac-

teristic factor of X for {p1(n), p2(n), . . . , pk(n)} is trivial so that

1

N

∑

T p1(n)f1T
p2(n)f2 . . . T

pn(n)fk →

∫

f1dµ ·

∫

f2dµ . . .

∫

fkdµ

in L2
(X,B, µ). This will be the case when X is weakly mixing - or a WM

extension of the trivial system - provided the polynomials pi − pj for i 6= j

differ not only in their constant term. This result was proved by Bergelson

[BE87] and the proof makes repeated use of the Hilbert space van der Corput

lemma.

4. Geometric Progressions in Nilpotent Groups

and on Nilmanifolds

Turning to the general case, one finds that for k > 2 the (k + 1)-tuples

(x, Tnx, T 2nx, . . . , T knx) are subject to further restrictions not implicit in the

projection to a (k+1)-term arithmetic progression in the Kronecker factor of the

system X = (X,B, µ, T ). These come from “nil-factors”, i.e., factors (Y,D, ν, S)

where Y = N/Γ, N a nilpotent Lie group, Γ a cocompact discrete subgroup. ν

is an N -invariant measure, and S(uΓ) = a◦uΓ for a◦ fixed in N . The existence

of a nil-factor π : X → N/Γ for a nilpotent group N of level k − 1 imposes an

algebraic condition on (k + 1)-tuples (x, Tnx, T 2nx, . . . , T knx). This condition

can be stated as the requirement that (π(x), π(Tnx), . . . , π(T knx)) belong to

a submanifold of (N/Γ)k+1
which we designate HPk+1(N/Γ). H-P stands for

Hall and Petresco who studied the term by term products of geometric pro-

gressions for non-commutative groups, these no longer having to be geometric

progressions.

Definition. Let G ⊃ G(1)
⊃ G(2)

⊃ · · · be the lower central series of a group

G, G(i+1)
= [G,G(i)

]. A (k+1)-term sequence {u0, u1, u2, . . . , uk} is an HPk+1-

sequence if there exist x1 ∈ G, x2 ∈ G(1), . . . , xk ∈ G(k−1)
so that

u1 = x1u0, u2 = x2x
2
1u0, u3 = x3x

3
2x

3
1u0, u4 = x4x

4
3x

6
2x

4
1u0 ,

. . . , uk = xkx
k

k−1 · · ·x
k

1u0.

The significance of this notion is that the HPk+1 sequences form a group in

Gk+1
([LE98], [TT09, p. 217]). We can define the projection of such sequences

on a homogeneous space G/Γ as HPk+1-progressions which form a subvariety

of (G/Γ)k+1
. The role played by nilpotence comes from the following:

Lemma. If N is k-step nilpotent, i.e., N (k)
= {1}, then the first k + 1 terms

of an HP`-progression, ` > k + 1, determine all successive terms.
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Now let X be an arbitrary m.p.s. possessing a k-step nilfactor, then

the projections π(x), π(Tnx), . . . , π(T `nx) form a HP`+1 sequence on the

factor and this imposes new constraints on (x, Tnx, T 2nx, . . . , T `nx). As in

the case of {n, 2n} these constraints turn out to be the only ones on

(x, Tnx, T 2nx, . . . , T knx). To make this precise we formulate the notion of a

k-step pro-nilsystem: a k-step pro-nilsystem is an inverse limit of nilsystems

lim
←

Nj/Γj where Nj is a nilpotent Lie group with N
(k)

j
= {1}, and on each of

these the measure preserving action is translation by an element of Nj , so that

the inverse system is consistently defined. Every ergodic system X will have

a maximal k-step pro-nilflow factor Zk and Ziegler’s theorem asserts that Zk

is characteristic for {n, 2n, . . . , kn}, and, more generally, for any linear family

{a1n, a2n, . . . , akn} with distinct ai [ZI07].

As remarked earlier, a consequence of this identification of the characteristic

factor for any ergodic system enables us to prove convergence in L2
(X,B, µ) of

1

N

N
∑

n=1

f1(T
a1nx)f2(T

a2nx) · · · fk(T
aknx)

as N → ∞, since this will now follow for any system once it is known for

translations on nilmanifolds. For nilmanifolds this was established in 1969 by

W. Parry ([PA69]), and is also a special case of theorems of N. Shah ([SH96])

and Leibman ([LE05]). An explicit description of the limit appears in [ZI05]

and for the special case k = 3 was given by E. Lesigne ([Le89]). The entire

theory was developed for k = 3 by J.P. Conze and E. Lesigne in [CL84] and

[CL87], who first recognized the role of nilmanifolds for 3-term non-conventional

averages.

In fact pro-nilsystems serve as characteristic factors for any scheme, and

both the polynomial mean ergodic theorem and polynomial multiple recurrence

can be deduced from this. With the identification of the characteristic factor for

any scheme, the polynomial mean ergodic theorem as well as a polynomial mul-

tiple recurrence theorem will follow for arbitrary measure preserving systems,

once they are known for nilsystems. As regards the polynomial mean ergodic

theorem one has available for nilsystems a pointwise ergodic theorem which

is valid for all points for continuous functions by results of Leibman ([LE05]).

In addition, the analysis of distribution of polynomial orbits on a nilmanifold

leads to the following refinement of our earlier multiple recurrence theorem:

Call a set of integer valued polynomial {q1(n), . . . , qr(n)} intersective if

for any m ∈ N, there exists n such that m divides each qi(n). Then if

{q1(n), . . . , qr(n)} is an intersective family, for any m.p.s. X = (X,B, µ, T )

and A ∈ B with µ(A) > 0 there exists an integer n with µ(A ∩ T−q1(n)A ∩

T−q2(n)A ∩ · · · ∩ T−qr(n)A) > 0.

Note that the sufficient condition for multiple recurrence given in §2 is a

special case of the above. But there are intersective families of polynomials

which don’t have a common 0 and so the present theorem is strictly stronger



Ergodic Structures and Non-conventional Ergodic Theorems 295

than the earlier one. This is noteworthy since the theorem in [BL96] makes use

implicitly of the distal factor of a given ergodic system, whereas the present

refinement in [BLL08] makes use of a special distal factor - namely, the pro-

nilfactor.

5. Conze-Lesigne Factors

The main result of these investigations is identifying the nilfactor of an ergodic

system as the characteristic factor for all schemes. Two approaches have been

taken up and these show up in considering the schemes {a1n, a2n, . . . , akn}. The

approach of Conze and Lesigne has been mentioned and this was generalized by

T. Ziegler from the case k = 3 to arbitrary k ([ZI07]). In line with this approach

is the treatment in [FW96] of characteristic factors for {a1n, a2n, a3n} which,

as is shown there, is also characteristic for {n, n2
}. This was the first instance

of a non-linear scheme to be treated, and for which a mean ergodic theorem

was proved. B. Host and B. Kra have an entirely different approach leading

ultimately to the same conclusion ([HK05]).

We begin with what can be called the Conze-Lesigne approach. With Ziegler

([ZI07]) we denote by Yk = Yk(X) the “universal” characteristic factor for

schemes {a1n, a2n, . . . , akn} which, first of all, is shown to exist. It is manifest

that Yk+1 is an extension of Yk. It can be shown to be an isometric extension

and moreover an extension Yk+1 = Yk × Wk, where Wk is a compact abelian

group. The action on Yk+1 is given by T (y, w) = (Ty, ρ(y)w) and further analy-

sis shows that the “cocycle” ρ is not arbitrary but satisfies a functional equation.

This has led to the important notion of a “Conze-Lesigne cocycle” which ap-

pears in contemporary treatments of more general convergence questions. In

the simplest situation k = 2 where Y2 has already been shown to coincide with

the Kronecker factor (Z̃, α̃) of X, the Conze-Lesigne condition takes the form:

there exist measurable functions K and L with

ρ(z + u)

ρ(z)
= K(u)

L(u, z + α)

L(u, z)
.

Conze and Lesigne arrived at this equation in their direct treatment of

convergence of ergodic averages, but Ziegler makes use of it and its analogs

for higher k to show that the k-universal factor is a (k − 1)-step pro-nilsystem

which can be denoted Zk−1(X).

6. Gowers Seminorms and Host-Kra Factors

In his proof of Szemerédi’s theorem ([GO01]), T. Gowers introduced a notion of

mixing (he calls it “uniformity”) which is useful in studying non-conventional

averages. With B. Host and B. Kra one defines an ergodic theoretic analog of an
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expression studied by Gowers: the k-seminorm ‖|f‖|k of a bounded measurable

function which can be defined inductively by

‖|f‖|2
k+1

k+1 = lim
N→∞

1

N

N
∑

n=1

‖|f · Tnf‖|2
k

k ,

and ‖|f‖|0 =
∫

fd µ. These are non-decreasing with k so that the condition

‖|f‖|k = 0 becomes more and more restrictive. It can be shown that if f is

orthogonal to the distal component of a system X, then ‖|f‖|k = 0 for all k.

On the other hand ‖|f‖|k = 0 if f ⊥ g for functions g on X coming from

the (k− 1)-step pro-nilfactor, and indeed this nilfactor can be characterized by

this quantitative condition on its orthogonal complement. A direct definition

of ‖| ‖|k is given in [HK05] where the seminorm appears as an autocorrelation

of values of a function on “cubes”, these being special 2
k
-tuples of points in X.

For our purposes, the main result is the theorem of Leibman [LE05,1].

Theorem. For any r, b ∈ N there exists k ∈ N such that for any system of

non-constant essentially distinct integer valued polynomials p1, . . . , pr of degree

≤ b and any f1, f2 , . . . , fr ∈ L∞(X,B, µ) for a m.p.s. X for which ‖|f1‖|k = 0,

one has

1

N

N−1
∑

0

T p1(n)f1 T p2(n)f2 · · ·T
pr(n)fr → 0

in L2
(X,B, µ) as N → ∞.

It follows from this theorem that for any scheme {p1(n), p2(n), . . . , pr(n)},

the (k − 1)-step pro-nilfactor of X serves as a characteristic factor provided k

is sufficiently large.

Pro-nilfactors appear as characteristic in a related but different context.

Namely one can form multi-parameter averages:

lim
N1,N2···Nk→∞

1

N1N2 · · ·Nk

N1
∑

n1=1

N2
∑

n2=1

· · ·
Nk
∑

nk=1

∏

ε1,...,εk∈{0,1}

T
ε1n1+···+εknkfε1ε2···εkdµ.

These were first considered by Bergelson for k = 2, who showed that

lim
N1,N2→∞

1

N1N2

N1
∑

n1=1

f(Tn1x)f(Tn1x)g(Tn2x)h(Tn1+n2x)

exists in L2
(X,B, µ). It turns out that Zk−1(X) is a characteristic factor (in

this extended sense) for this expression as well. ([BE00])

We have only skimmed the surface of a large area, which is still growing.

Much work has already been done when powers of a single transformation

are replaced by more general commuting transformations. Another notion of

interest is that of IP -limit (see [BE06]) replacing the usual average. This plays

a central role in establishing a density version of the Hales-Jewett theorem. See

[FK85] and [BM00] for further details.
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and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), 725–753.

[BLL08] V. Bergelson, A. Leibman and E. Lesigne, Intersective polynomials and the
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