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Abstract

Angiotensinogen, the precursor molecule for angiotensins I, II and III, and the enzymes renin, angiotensin-converting
enzyme (ACE), and aminopeptidases A and N may all be synthesised within the brain. Angiotensin (Ang) AT1, AT2 and
AT4 receptors are also plentiful in the brain. AT1 receptors are found in several brain regions, such as the hypothalamic
paraventricular and supraoptic nuclei, the lamina terminalis, lateral parabrachial nucleus, ventrolateral medulla and nucleus
of the solitary tract (NTS), which are known to have roles in the regulation of the cardiovascular system and/or body fluid and
electrolyte balance. Immunohistochemical and neuropharmacological studies suggest that angiotensinergic neural pathways
utilise Ang II and/or Ang III as a neurotransmitter or neuromodulator in the aforementioned brain regions. Angiotensinogen
is synthesised predominantly in astrocytes, but the processes by which Ang II is generated or incorporated in neurons for
utilisation as a neurotransmitter is unknown. Centrally administered AT1 receptor antagonists or angiotensinogen antisense
oligonucleotides inhibit sympathetic activity and reduce arterial blood pressure in certain physiological or pathophysiological
conditions, as well as disrupting water drinking and sodium appetite, vasopressin secretion, sodium excretion, renin release
and thermoregulation. The AT4 receptor is identical to insulin-regulated aminopeptidase (IRAP) and plays a role in memory
mechanisms. In conclusion, angiotensinergic neural pathways and angiotensin peptides are important in neural function and
may have important homeostatic roles, particularly related to cardiovascular function, osmoregulation and thermoregulation.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Angiotensin (Ang) II is a neuropeptide with mul-
tiple actions on the brain. The distribution of its AT1
receptor in the CNS (Fig. 1) coincides with several
cerebral regions known to regulate cardiovascular and
body fluid homeostasis (Allen et al., 2000; Lenkei,
Palkovits, Corvol, & Llorens-Cortes, 1997). It is likely
that an intrinsic brain renin–angiotensin system (RAS)
exists (Bader & Ganten, 2002). However, the exact
modus operandi of such a system, and whether it is
a network of angiotensinergic neural pathways rather
than a brain RAS is still to be clarified.

Neither renin nor Ang peptides pass readily from
the blood into the brain interstitium (Fei et al., 1982;
Ganten, Hutchinson, Schelling, Ganten, & Fischer,
1976). Therefore, it is necessary to distinguish those
cerebral regions that are separated by the blood–brain
barrier from the environment of the systemic cir-
culation, from those few regions—the circumven-
tricular organs (CVOs), that lack the blood–brain
barrier (McKinley et al., 1990) and are influenced
directly by the peripheral RAS. This review focuses
on angiotensin’s influence in brain regions with a
blood–brain barrier, but its actions on the subfornical
organ, OVLT and area postrema (the sensory CVOs)
will be briefly considered. Blood-borne Ang II inter-

acts with the brain through AT1 receptors located on
neurons in these CVOs and these neurons may project
to many other brain regions behind the blood–brain
barrier (Giles et al., 1999; McKinley et al., 1990).

Activation of these neural circuits by circulating
Ang II acting on the subfornical organ or organum vas-
culosum laminae terminalis (OVLT) may cause thirst,
vasopressin secretion and an appetite for salt (Fitts,
Starbuck, & Ruhf, 2000a; Mangiapane, Thrasher, Keil,
Simpson, & Ganong, 1984; Menani, Colombari, Beltz,
Thunhorst, & Johnson, 1998; Simpson, Epstein, &
Camardo, 1978). The main action of circulating Ang
II on the area postrema is to increase arterial pres-
sure (Otsuka, Barnes, & Ferrario, 1986). It is possible
that some neural pathways activated by Ang action on
the CVOs may utilise Ang II or Ang III generated in
the brain as transmitter molecules (Lind & Johnson,
1982). It is also probable that high concentrations of
angiotensin-converting enzyme (ACE) in the CVOs
results in local generation of Ang II within the CVOs
(Brownfield, Reid, Ganten, & Ganong, 1982).

2. Angiotensinogen in the brain

Angiotensinogen is synthesised in most regions
of the brain, although some regions e.g. medulla,
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Fig. 1. Diagram of the major locations of AT1 receptors in the mammalian brain. Regions with high densities of AT1 receptors are shown
by the stippling projected onto a mid-sagittal diagram of the rat brain. Vertical stippling indicates the circumventricular organs that lack a
blood–brain barrier and are exposed to influences of the peripheral renin–angiotensin system. Abbreviations: Arc, arcuate nucleus; AP, area
postrema; BST, bed nucleus of the stria terminalis; CVLM, caudal ventrolateral medulla; DMV, dorsal motor nucleus of the vagus; LPB,
lateral parabrachial nucleus; LO, nucleus of the lateral olfactory tract; LS, lateral septum; ME, median eminence; MnPO, median preoptic
nucleus; NTS, nucleus of the solitary tract; OB, olfactory bulb; OVLT, organum vasculosum of the lamina terminalis; Pe, periventricular
nucleus; RVLM, rostral ventrolateral medulla; SC, superior colliculus; SFO, subfornical organ; SNC, substantia nigra pars compacta; SON,
supraoptic nucleus; VLG, ventrolateral geniculate nucleus.

hypothalamus, predominate over others in this regard
(Lynch, Hawelu-Johnson, & Guyenet, 1987; Stornetta,
Hawelu-Johnson, Guyenet, & Lynch, 1988). It is a
constituent of brain extracellular fluid and one of the
more abundant proteins found in cerebrospinal fluid
(Hilgenfeld, 1984). By far the greatest proportion of
angiotensinogen synthesis within the CNS occurs in
glial cells (Stornetta et al., 1988; Intebi, Flaxman,
Ganong, & Deschepper, 1990). Immunohistochemical
and in situ hybridisation studies located angiotensino-
gen and its mRNA in astrocytes (Intebi et al., 1990;
Stornetta et al., 1988). These astrocytes constitutively
secrete angiotensinogen into brain extracellular fluid
(Hilgenfeld, 1984; Intebi et al., 1990). The rate of
angiotensinogen production may be increased by
factors such as glucocorticoid levels (Deschepper
& Flaxman, 1990). Although there is also evidence
from immunohistochemical studies in rats (Thomas &
Sernia, 1988), and from transgenic mice showing ex-
pression of angiotensinogen in neurons (Yang, Gray,
Sigmund, & Cassell, 1999), it is probably of much
less magnitude than that expressed by astrocytes.

Recent studies have been made on transgenic rats
in which the glial fibrillary acidic protein (GFAP)

promoter was coupled to the expression of an anti-
sense construct targeted to angiotensinogen mRNA,
so that glial angiotensinogen production was dis-
rupted. In these rats, the levels of angiotensinogen
and angiotensin in the brain fell by more than 90%,
indicating that astrocytes are the major source of
angiotensinogen (Schinke et al., 1999).

3. Processing enzymes

3.1. Renin

Evidence for angiotensin production within the
CNS is over 30 years old, although the enzyme re-
sponsible was probably cathepsin D (Fischer-Ferraro,
Nahmod, Goldstein, & Finkielman, 1971; Ganten,
Boucher, & Genest, 1971; Reid, 1979). More recent
studies show that while mRNA encoding renin is
present in the CNS, its concentration is low (Dzau,
Ingelfinger, Pratt, & Ellison, 1986), and its spatial re-
lationship to centrally synthesised angiotensinogen is
unclear. Recently, transgenic strains of mice in which
a large part of the gene encoding the human renin gene



904 M.J. McKinley et al. / The International Journal of Biochemistry & Cell Biology 35 (2003) 901–918

Fig. 2. Diagram of enzymatic pathways that have been proposed for the production of angiotensin peptides from angiotensinogen within
the brain.

was incorporated into an artificial chromosome were
generated. Various strains had up to seven copies of
the human renin gene comprising 140–160 kb. These
investigators reasoned that such a large segment of
the renin gene would contain most of its regulatory
regions and found expression of this transgene in
both brain and kidney. However, the main isoform
expressed in the brain was a shorter form of renin
lacking some of the preprorenin sequence. They pro-
posed that it may be acting as an intracellular enzyme
in the brain (Morimoto, Cassell, & Sigmund, 2002a).
Proposed enzymatic processing of angiotensinogen in
the brain is shown diagrammatically inFig. 2.

3.2. Angiotensin-converting enzyme

ACE is located extensively within the CNS. In the
brain, very high concentrations of ACE are found in
the circumventricular organs such as the subfornical
organ, OVLT, area postrema and median eminence
(Saavedra & Chevillard, 1982). In these CVOs, Ang I
reaching them from the peripheral circulation may be
locally converted to Ang II and have actions on Ang
receptors within these regions. This is exemplified
by studies in rats showing that angiotensin-dependent
water intake can be inhibited by local injection of
an ACE inhibitor directly into the subfornical organ
(Thunhorst, Fitts, & Simpson, 1989), and that locally
generated Ang II stimulates neurons within these
sensory CVOs (McKinley, Colvill, Giles, & Oldfield,
1997).

In other brain regions e.g. caudate nucleus, puta-
men, substantia nigra pars reticularis, nucleus of the
solitary tract (NTS), dorsal motor nucleus, median
preoptic nucleus, ACE has been identified by bind-
ing studies or immunohistochemistry in rat, human,
rabbit, sheep, monkey (Chai, McKenzie, McKinley, &
Mendelsohn, 1990; Chai, McKinley, & Mendelsohn,
1987; Chai, McKinley, Paxinos, & Mendelsohn, 1991;
Chai, Mendelsohn, & Paxinos, 1987; Rogerson et al.,
1995; Saavedra & Chevillard, 1982). In the choroid
plexus, ACE is found at high concentration on the
microvilli of its epithelial cells, where it is in con-
tact with the CSF (McKinley et al., 1990). While this
ACE may generate Ang II locally in the brain, it may
also catalyse the breakdown of several other peptides
(Rogerson et al., 1995).

3.3. Aminopeptidases A and N

Aminopeptidase A is a zinc metallopeptidase that
cleaves the N-terminal aspartyl residue of Ang II re-
sulting in the formation of the heptapeptide Ang III,
that can be further degraded to hexapeptide Ang IV by
the enzyme aminopeptidase N. Both of these enzymes
are present in the rodent brain (Reaux et al., 1999a,
1999b; Zini et al., 1996). Administration of a selective
inhibitor of aminopeptidase A (EC33) blocks the pres-
sor response to centrally administered Ang II, indicat-
ing that it may be necessary for Ang II to be converted
to Ang III for angiotensin to exert its central pres-
sor response (Reaux et al., 1999b). As well, central
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administration of an inhibitor of aminopeptidase N
(PC18), had a pressor action that was blocked by ICV
injection of the AT1 antagonist losartan in WKY rats,
suggesting that Ang III binds to AT1 receptors (Reaux
et al., 1999a). In spontaneously hypertensive rats
(SHR), centrally administered PC18 caused a greater
pressor response, suggesting that endogenous Ang III
was influencing arterial pressure in both strains, but
that greater levels of brain Ang III were responsible for
the larger response in the SHR (Reaux et al., 1999a).

4. Angiotensin peptides

Ang I, Ang II, Ang III and Ang 1–7 have all
been identified in brain tissue, although the latter
two are found in very low concentrations (Chappell,
Brosnihan, Diz, & Ferrario, 1989; Chappell,
Brosnihan, Welches, & Ferrario, 1987; Lawrence,
Clarke, & Campbell, 1992). Immunohistochemical
identification of Ang II or Ang III in rat brain reveals
that an extensive system of Ang-containing fibres and
nerve terminals occur in specific brain regions (Lind,
Swanson, Bruhn, & Ganten, 1985; Oldfield, Ganten,
& McKinley, 1989). However, neuronal cell bodies
exhibiting Ang-like immunoreactivity have been ob-
served in only a few brain regions such as the nucleus
of the solitary tract, hypothalamic PVN, and the sub-
fornical organ. Major terminal fields containing Ang
II-like immunoreactivity include the central nucleus
of the amygdala, bed nucleus of the stria terminalis,
core of the subfornical organ, amygdalo-hippocampal
zone, lateral parabrachial nucleus, NTS and median
eminence (Chappell et al., 1987, 1989). Ang 1–7 may
also have central actions (Chappell et al., 1989).

5. Angiotensin receptors

Angiotensin receptors are located in many specific
regions of the brain (Fig. 1) and spinal cord (Allen
et al., 2000; Lenkei et al., 1997; Allen et al., 1988a;
Gehlert, Speth, & Wamsley, 1986; McKinley, Allen,
Clevers, Paxinos, & Mendelsohn, 1987; Mendelsohn,
Quirion, Saavedra, Aguilera, & Catt, 1984). These re-
ceptors are of the AT1, AT2 and AT4 subtypes. AT1
receptors are further subgrouped in the rodent brain
into AT1A and AT1B receptors. In regard to AT1 recep-

tors, in vitro autoradiographic binding studies, in situ
hybridisation histochemistry, and immunohistochem-
ical results have shown great consistency in localising
these receptors to several key areas of relevance to
cardiovascular and body fluid homeostasis. Although
there are a few exceptions, there is considerable con-
sistency across mammals in the regions of the CNS
that exhibit AT1 receptors (Allen et al., 2000; Lenkei
et al., 1997).

6. AT1 receptors

The highest densities of AT1 receptor binding are
usually found on neurons in the lamina terminalis,
hypothalamic paraventricular nucleus and the NTS
(Allen et al., 2000). Within the lamina terminalis,
the subfornical organ and OVLT that are exposed to
circulating angiotensins contain AT1 receptors. The
other sensory CVO, the area postrema contains a
lower density of AT1 receptors, although in humans
it appears to lack such receptors (Allen et al., 1988a).
The other component of the lamina terminalis, the
median preoptic nucleus, is also rich in AT1 receptors.
Some neurons in the subfornical organ, OVLT and
median preoptic nucleus that express AT1 receptor
mRNA, have polysynaptic connections to periph-
eral organs such as the kidney via renal sympathetic
nerves (Giles, Sly, McKinley, & Oldfield, 2001).

Regions of the hindbrain that have crucial roles in
cardiovascular regulation, the NTS, the rostral and
caudal ventrolateral medulla, and the midline raphe,
also exhibit AT1 receptors (Allen et al., 2000; Lenkei
et al., 1997). In the NTS, a considerable proportion
of these receptors may exist presynaptically on vagal
afferent terminals (Diz, Barnes, & Ferrario, 1986;
Lewis et al., 1986). In the spinal cord, AT1 receptors
are observed in the intermedio-lateral cell column and
in the dorsal horn (Oldfield et al., 1994). These latter
receptors may be presynaptic receptors on sensory
afferent fibres, because AT1 receptors are expressed
in neurons within dorsal root ganglia (Oldfield et al.,
1994). In the midbrain, moderate to high densities of
AT1 receptors are observed in the lateral parabrachial
nucleus, substantia nigra and periaqueductal gray
(Lenkei et al., 1997).

In the hypothalamus, most species exhibit high con-
centrations of AT1 receptors in the supraoptic and
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paraventricular nuclei, although in the rat these re-
ceptors are only seen in the parvocellular division of
the PVN, with little or no binding in its magnocel-
lular division or in the supraoptic nucleus (Lenkei
et al., 1997). The majority of the AT1 receptors in
the PVN are associated with corticotrophin-releasing
hormone (CRH)-containing neurons that have projec-
tions to the median eminence (Aguilera, Kiss, & Luo,
1995a; Oldfield et al., 2001). The high concentrations
of AT1 receptors that occur in the median eminence
are not associated with expression of AT1 mRNA there
(Allen et al., 2000). It is likely that the AT1 receptors
in the median eminence are located on neurosecretory
terminals of nerve fibres that originate in the PVN.

AT1 receptors are located in parts of the limbic sys-
tem e.g. amygdala, bed nucleus of the stria terminalis
and cingulate cortex. Other notable central regions that
express the AT1 receptor are the hippocampus, the ol-
factory bulb, the piriform cortex (Allen et al., 2000;
Lenkei et al., 1997). Some regions that exhibit sig-
nificant Ang II receptor binding that is displaced by
AT1 antagonists do not express AT1 receptor mRNA
as detected by in situ hybridisation (e.g. bed nucleus
of the stria terminalis, median eminence (Lenkei et al.,
1997)). This result indicates that the AT1 receptors
in these sites are located on presynaptic nerve termi-
nalis. AT1 receptors are also reported to exist on glial
cells in the brain (Bottari, Obermuller, Bogdal, Zahs,
& Deschepper, 1992).

AT1 receptors may be up- or down-regulated in
specific regions of the brain depending on the phys-
iological state of the animal. Dehydration, sodium or
chloride depletion, hypertension and stress may all
influence the number of AT1 receptors expressed in
particular brain regions (Barth & Gerstberger, 1999;
Charron, Laforest, Gagnon, Drolet, & Mouginot,
2002; Saavedra, Correa, Kurihara, & Shigematsu,
1986; Sandberg, Ji, & Catt, 1994; Ray, Castren, Ruley,
& Saavedra, 1990). This may then influence the result-
ing physiological responses of animals to activation
of angiotensinergic circuits.

7. AT2 receptors

AT2 receptors have been detected by in vitro autora-
diographic techniques using selective AT2 antagonists
to displace binding of radiolabelled Ang II peptide

analogues such as sarile (Rowe, Grove, Saylor, &
Speth, 1990). In the rat, several brain regions exhibit
AT2 receptor binding, especially in the molecular
layer of the cerebellum and in the thalamus. In situ
hybridisation studies show that AT2 receptor mRNA
is also expressed in these regions (Lenkei et al., 1997;
Millan, Jacobowitz, Aguilera, & Catt, 1991). The
cerebellum has also been shown to exhibit AT2 recep-
tor binding in human, rabbit and sheep brain (Allen
et al., 2000). The functions of the AT2 receptor in
the brain remain unclear, although the receptors are
numerous in rat brain during development (Millan
et al., 1991), and may oppose some actions of the
AT1 receptor in the adult rat brain (Hohle, Spitznagel,
Rascher, Culman, & Unger, 1995). A recent report
indicates that mutations in the AT2 receptor may lead
to intellectual retardation (Vervoort et al., 2002).

8. AT4 receptors

The AT4 receptor is defined as the high affinity
binding site that selectively binds Ang IV with affin-
ity ranging from 1 to 10 nM (Swanson et al., 1992).
Ang IV, VYIHPF is produced by the consecutive ac-
tions of aminopeptidases A and N on angiotensin II.
This hexapeptide was initially thought to be inac-
tive because of its inability to activate the classical
angiotensin AT1 and AT2 receptors except at high
micromolar concentrations. This peptide has subse-
quently been shown to elicit dramatic actions on mem-
ory and acts via its own specific binding site-named
the AT4 receptor (Braszko, Kupryszewski, Witczuk, &
Wisniewski, 1988). In addition to Ang IV, we isolated
a decapeptide LVVYPWTQRF (LVV-H7) (Moeller,
Chai, Smith, Lew, & Mendelsohn, 1998) from sheep
brain that binds with high affinity to the AT4 receptor
and can mimic the actions of Ang IV. AT4 receptors
are widely distributed in the guinea-pig, rat, sheep,
monkey and human brain, and the distributions are
highly conserved throughout these species (Chai et al.,
2000; Miller-Wing et al., 1993; Moeller et al., 1995,
1996; Roberts et al., 1995). The receptor sites occur in
high abundance in the basal nucleus of Meynert, in the
CA1 to CA3 regions of the hippocampus, and through-
out the neocortex, a distribution that closely resem-
bles cholinergic neurones and their projections and is
consistent with the memory enhancing properties of
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the AT4 ligands. High levels of the receptors are also
found in most brain regions involved in motor control.

We have recently isolated the AT4 receptor and
shown it to be insulin-regulated aminopeptidase
(IRAP) (Albiston et al., 2001). IRAP was initially
cloned from rat adipocytes and is an abundant pro-
tein found in specific vesicles that also contain the
glucose transporter, GLUT4 (Keller, Scott, Mastick,
Aebersold,& Lienhard, 1995). In response to insulin,
these GLUT4 vesicles translocate to the cell surface
to enable increased glucose uptake into the cell. Al-
though IRAP, like GLUT4, translocates rapidly and
markedly to the cell surface after insulin stimulation,
the physiological role of the enzyme is unknown.
IRAP was also independently isolated from human
placenta as the enzyme that hydrolyses oxytocin
(Rogi, Tsujimoto, Nakazato, Mizutani, & Tomoda,
1996), hence its other name, oxytocinase. IRAP is a
type II integral membrane protein belonging to the
M1 family of zinc-dependent metallopeptidase and
has been shown to cleave a number of peptides includ-
ing vasopressin, lys-bradykinin (Herbst et al., 1997),
met-enkephalin, dynorphin A (1–8), somatostatin and
cholecystokinin (CCK8) in vitro (Matsumoto et al.,
2001). We have also shown that both Ang IV and
LVV-H7 dose-dependently inhibited the catalytic ac-
tivity of IRAP in vitro (Albiston et al., 2001). We
therefore propose that the AT4 ligands, Ang IV and
LVV-H7, bind to IRAP and inhibit its enzymatic
activity.

9. Arterial pressure

Ang II may influence arterial pressure at any one
of a number of brain sites. Micro-injection of Ang
II into the lateral or third ventricle, hypothalamic
PVN, several forebrain regions, rostral ventrolateral
medulla, NTS, the area postrema and subfornical or-
gan increases arterial pressure (Allen, Dampney, &
Mendelsohn, 1988b; Andreatta, Averill, Santos, &
Ferrario, 1988; Averill, Diz, Barnes, & Ferrario,
1987; Jensen, Harding, & Wright, 1992; Severs &
Daniels-Severs, 1973; Simpson, 1981; Thornton &
Nicolaidis, 1993). The many observations that ICV
administration of drugs that block brain Ang produc-
tion or action reduce arterial blood pressure in sev-
eral physiological or pathophysiological conditions

is compelling evidence that Ang that is endogenous
to the brain may influence arterial pressure (Gyurko,
Wielbo, & Phillips, 1993; Kubo, Ikezawa, Kambe,
Hagiwara, & Fukumori, 2001; Phillips, 1978; Sun,
Cade, & Morales, 2002).

Attention has been focussed recently on the ventro-
lateral medulla as a site of action at which centrally
generated angiotensin II may influence arterial pres-
sure. Ang II binding sites (AT1 receptors) are present
in the rostral and caudal parts of the ventrolateral
medulla in several species (Allen et al., 2000; Lenkei
et al., 1997; Mendelsohn et al., 1988). The sympa-
thetic pre-motor neurons in the RVLM play a cru-
cial role in maintaining sympathetic vasomotor tone
(Dampney, 1994; Guyenet, 1990). The caudal ven-
trolateral medulla relays signals from the barorecep-
tors to sympathetic pre-motor neurons in the RVLM
(Badoer, McKinley, Oldfield, & McAllen, 1994).

Initially, it was shown that as well as the pres-
sor response to injection of Ang II into the RVLM,
micro-injection of non-subgroup-specific peptide
antagonists of Ang II, sarthran or sarile, caused a
pronounced reduction of blood pressure (40 mmHg)
when administered into the RVLM of anaesthetised
rats or rabbits and an inhibitor of sympathetic nerve
activity, indicating a likely role of brain Ang in the
generation of basal sympathetic tone (Ito & Sved,
1996; Tagawa, Horiuchi, Potts, & Dampney, 1999).
Such injections of peptidic Ang antagonists into the
RVLM also reduced the increase in arterial pressure
caused by muscimol-induced inhibition of the CVLM,
but did not inhibit the pressor response elicited by
injection of glutamate into the RVLM (Ito & Sved,
1996). However, injections of either AT1 antagonists
or an antagonist of Ang 1–7 into the RVLM did not
reduce arterial pressure or sympathetic activity in
anaesthetised rats, nor was there any effect of these
treatments on the depressor response to injection
of sarile or sarthran into the RVLM (Potts, Allen,
Horiuchi, & Dampney, 2000). Analogously, injection
of sarthran or sarile into the CVLM caused increases in
arterial pressure and renal sympathetic nerve activity
in anaesthetised rats, but injections of AT1 antagonists
were ineffective (Potts et al., 2000). Thus, the type of
receptors mediating the depressor effects of peptidic
Ang antagonists in the RVLM and their pressor ef-
fects in the CVLM in anaesthetised rats remain to be
determined.
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Fig. 3. Diagram of the rat brain indicating some neural pathways that may influence cardiovascular control, vasopressin release and
thirst. Angiotensinergic pathways that may utilise Ang II or Ang III as a neurotransmitter are indicated by the dotted lines. Circulating
angiotensin II may stimulate neurons in the subfornical organ (SFO) which have efferent connections to the median preoptic nucleus
(MnPO) and utilise angiotensin II as a neurotransmitter. These angiotensinergic inputs to the MnPO drive neural pathways that connect to
vasopressin-containing neurons in the supraoptic nucleus (SON) and magnocellular parts of the paraventricular nucleus (mPVN) to release
vasopressin. Angiotensinergic inputs to the MnPO may also drive neural pathways that subserve thirst. The question mark indicates that
the remainder of this pathway is unknown. An angiotensinergic neural pathway from parvocellular neurons (pPVN) of the hypothalamic
paraventricular nucleus may drive pre-motor neurons in the rostral ventrolateral medulla (RVLM) to increase sympathetic activity and
arterial blood pressure.

By contrast, injection of AT1 antagonists into the
RVLM of anaesthetised sodium depleted or sponta-
neously hypertensive rats inhibits renal sympathetic
activity and reduces arterial pressure, indicating that
brain Ang acting via AT1 receptors mediates increases
in sympathetic tone under certain conditions (Allen,
2001; DiBona & Jones, 2001). AT1 receptors may
also mediate a pressor pathway from the hypothalamic
PVN to the RVLM (Tagawa & Dampney, 1999) (see
Fig. 3). In contrast to these results in anaesthetised
rats, micro-injection of the AT1 antagonist losartan or
the AT2 antagonist CGP42112A into the RVLM of
conscious freely moving Wistar rats increased arte-
rial pressure, while injection of sarthran or an Ang
1–7 antagonist caused a small decrease of blood pres-
sure, but surprisingly, micro-injections of either AT1
or AT2 antagonists into the RVLM of conscious rats
caused small increases of blood pressure (Fontes et al.,
1997) which seems paradoxical when it was observed
that micro-injections of both Ang II and Ang 1–7 into

the RVLM of these conscious rats also caused mod-
erate increases in arterial pressure. These results sug-
gest the possibility that brain Ang acting within the
RVLM may influence both pressor and depressor path-
ways, and that there may be considerable differences
between conscious and anaesthetised rats in the tonic
activity of angiotensinergic input in the RVLM.

10. Thirst

ICV administration of Ang II or Ang III causes
many species to drink relatively large volumes of
water within a few minutes (Abraham, Baker, Blaine,
Denton, & McKinley, 1975; Epstein, Fitzsimons, &
Rolls, 1970; Fitzsimons & Kucharczyk, 1978; Sharpe
& Swanson, 1974). This effect of centrally admin-
istered Ang II is abolished by ablation of the AV3V
region, but not by ablation of the subfornical or-
gan (Buggy & Johnson, 1978; Lind, Thunhorst, &
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Johnson, 1984). Therefore, Ang II infused by the ICV
route is unlikely to be acting on the Ang II receptors in
the subfornical organ that mediate the dipsogenic re-
sponse to systemic Ang II. Rather, the median preoptic
nucleus, which is mostly contained within the AV3V
region is the central site at which ICV Ang II most
likely acts to induce drinking. This site is strongly ac-
tivated by intracerebroventricularly injected Ang II as
shown by the expression of c-fos (Herbert, Forsling,
Howes, Stacey, & Shiers, 1992; McKinley, Badoer,
Vivas, & Oldfield, 1995), and direct micro-injection
of Ang II into the MnPO stimulates water drinking
in rats (O’Neill & Brody, 1987). However, is Ang II
that is intrinsic to the brain involved in the generation
of thirst? Evidence that centrally administered AT1
antagonists inhibit dipsogenic responses to several
physiological or pharmacological stimuli suggest that
this is the case, particularly if circulating levels of Ang
II were not elevated by the stimuli. Thus, the inhibi-
tion by centrally administered AT1 antagonist of the
water drinking in response to ICV injection of hyper-
tonic saline (Blair-West et al., 1993; Weisinger et al.,
1996; Mathai, Evered, & McKinley, 1997), or the
hormone relaxin (Sinnayah, Burns, Wade, Weisinger,
& McKinley, 1998; Summerlee & Robertson, 1995;
Thornton & Fitzsimons, 1995) suggests that central
Ang is mediating these dipsogenic responses, possibly
as a neurotransmitter in neural pathways subserving
thirst. The physiological significance of this proposal
is borne out by observations that centrally adminis-
tered losartan also blocks prandial drinking in sheep
(Mathai et al., 1997).

In studies that utilised the central administration
of an antisense oligonucleotide directed against an-
giotensinogen synthesis, drinking in response to ICV
injection of renin was strongly inhibited, suggesting
that there was depressed synthesis of angiotensinogen
in the brain. Drinking in response to subcutaneously
injected isoproterenol, but not that to several other dip-
sogenic stimuli, was also inhibited by this antisense
treatment (Sinnayah, Kachab, Haralambidis, Coghlan,
& McKinley, 1997). Because isoproterenol-induced
thirst is dependent on circulating Ang II acting on the
subfornical organ (Fitts, 1994), these data suggest that
a central angiotensinergic pathway distal to the sub-
fornical organ mediates drinking stimulated by circu-
lating Ang II. The median preoptic nucleus has been
proposed as the site of an angiotensinergic synapse

that mediates thirst caused by circulating angiotensin
II (Johnson, Cunningham, & Thunhorst, 1996) (see
Fig. 3).

11. Vasopressin secretion

ICV infusion of Ang II is a potent stimulus to the re-
lease of vasopressin (Andersson, Eriksson, Fernandez,
Kolmodin, & Oltner, 1972; Fyhrquist, Eriksson, &
Wallenius, 1979; Mouw, Bonjour, Malvin, & Vander,
1971). This effect is abolished by ablation of the
AV3V region (Bealer, Phillips, Johnson, & Schmid,
1979) or prior ICV administration of an AT1 antago-
nist (Mathai, Evered, & McKinley, 1998). There are
efferent neural pathways from the AV3V region to the
magnocellular neurons of the supraoptic and paraven-
tricular nuclei (Wilkin, Mitchell, Ganten, & Johnson,
1989)—sites of vasopressin-synthesising and secret-
ing neurons. Signals from the subfornical organ may
be relayed to the magnocellular neurons of the PVN
via an angiotensinergic synapse within the median pre-
optic nucleus (Tanaka, Saito, & Kaba, 1987) (Fig. 3).

In addition to an action on the AV3V region,
micro-injection of Ang II into the caudal ventrolateral
medulla a site of AT1 receptor expression, stimulates
vasopressin release (Allen, Mendelsohn, Gieroba, &
Blessing, 1990). A direct efferent neural pathway
from the CVLM to the supraoptic and paraventricular
nuclei exists (Wilkin et al., 1989), which may mediate
this response.

Results of experiments manipulating endogenous
Ang support a role for brain-derived Ang in the phys-
iological regulation of vasopressin secretion. Central
administration of the AT1 antagonist losartan reduces
AVP secretion in response to intravenous or ICV infu-
sion of hypertonic saline in the rat or sheep (Hogarty,
Tran, & Phillips, 1994; Mathai et al., 1998; Rohmeiss
et al., 1995). Preventing Ang III production in the rat
brain also reduces AVP secretion in response to ICV
Ang II (Zini et al., 1996).

Transgenic rats expressing an antisense oligonu-
cleotide sequence against the synthesis of angioten-
sinogen in astrocytes, have a reduced blood level of
vasopressin. The amount of angiotensinogen in the
brains, but not plasma, of these rats was greatly re-
duced and they exhibit moderate diabetes insipidus,
with a doubling of daily urine output (Schinke et al.,
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1999). These data show that angiotensinogen synthe-
sised in astrocytes within the brain, and presumably
brain Ang, is necessary for the neural control of the
basal secretion of vasopressin by the posterior pitu-
itary gland.

12. Effects on kidney function

12.1. Renal nerves

In the anaesthetised rat, ICV infusion of Ang II in-
creases RSNA (Huang & Leenen, 1996). By contrast,
ICV infusion of Ang II in the conscious rat, rabbit
or sheep causes a very large and long-lasting depres-
sion of RSNA (Dorward & Rudd, 1991; Kannan,
Nakamura, Jin, Hayashida, & Yamashita, 1991; May
& McAllen, 1997a). This effect was partially inde-
pendent of the baroreceptor activation, which results
from the increase in arterial pressure caused by cen-
trally injected Ang II (Dorward & Rudd, 1991; May
& McAllen, 1997a). AT1 receptors in the lamina ter-
minalis probably mediate this inhibition of RSNA be-
cause ablation of the lamina terminalis abolishes the
depression of RSNA caused by ICV infusion of Ang
II in conscious animals (May, McAllen, & McKinley,
2000). ICV infusion of hypertonic NaCl also inhib-
ited RSNA in conscious sheep, but increased RSNA
in anaesthetised rats. Both these effects were blocked
by centrally administered losartan (Chen & Toney,
2001; May & McAllen, 1997b), suggesting that Ang
II endogenous to the brain may influence RSNA.

Polysynaptic neural pathways have been shown
by viral tracing techniques to proceed from the lam-
ina terminalis to the kidney in the rat (Sly, Colvill,
McKinley, & Oldfield, 1999). A proportion of neurons
within the lamina terminalis that are polysynaptically
connected to the kidneys are activated by ICV infu-
sion of Ang II (Sly, McKinley, & Oldfield, 2001).
AT1 receptors are located on neurons in the lamina
terminalis that have polysynaptic connections to the
renal nerves (Giles et al., 2001). This pathway may
mediate the influences of central Ang II on RSNA.

12.2. Renin secretion

Notwithstanding that circulating Ang II exerts a
direct feed-back inhibition on renin secretion by the

kidney, brain Ang II may also have an inhibitory
influence on renal renin secretion. ICV infusion of
Ang II or renin reduces plasma renin activity in sev-
eral species (Eriksson & Fyhrquist, 1976; Malayan,
Keil, Ramsay, & Reid, 1979; McKinley, McBurnie,
& Mathai, 2001) This effect is due to reduced renin
secretion by the kidney (Weekley, 1992), and is prob-
ably mediated by a reduction in RSNA as described
in the preceding paragraph. ICV infusion of Ang II
reduces plasma renin concentration in sodium de-
pleted animals without a change in arterial pressure,
showing that this effect is not secondary to increased
arterial pressure, while ICV infusion of losartan in-
creased plasma renin, suggesting that a tonic central
angiotensinergic influence inhibits renin secretion in
sodium depleted animals (McKinley et al., 2001).

12.3. Sodium excretion

Injection of hypertonic saline or angiotensin II
into the lateral or third cerebral ventricle results in a
large increase in renal sodium excretion (Andersson,
Jobin, & Olsson, 1966; McKinley, Evered, Mathai, &
Coghlan, 1994). Reduced RSNA, increased arterial
pressure and vasopressin secretion, or the secretion of
an unidentified hormone could all have contributory
roles in the natriuresis induced by centrally admin-
istered Ang II. Centrally injected losartan blocks the
natriuretic response to ICV infusion of hypertonic
saline (McKinley et al., 1994), suggesting a role for
an angiotensinergic neural pathway within the CNS
in the central regulation of renal sodium excretion.

13. Regulation of body temperature

Brain Ang is implicated in the regulation of body
temperature. Ang II administered centrally reduces
core temperature. Both decrease in metabolic heat
production (thermogenesis) and an increase in radi-
ated heat contributed to the hypothermic effect of
centrally administered Ang II (Lin, 1980; Shido &
Nagasaka, 1985). ICV administration of the AT1 an-
tagonist losartan to rats exposed to a hot environment
for 1 h appeared to inhibit thermoregulatory cooling
mechanisms because there was a much larger increase
in body temperature in losartan treated rats than the
controls administered artificial cerebrospinal fluid.
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The losartan treated rats lost the same amount of saliva
as the controls, so this aspect of thermoregulation was
not disrupted. Nor is tail skin vasodilatation inhibited
by central AT1 receptor blockade (Mathai, Hubschle,
& McKinley, 2000). It has been shown that central AT1
receptor blockade with losartan prevented the increase
in splanchnic nerve activity that occurs with heat ex-
posure (Kregel, Stauss, & Unger, 1994). This may
reduce the redistribution of blood to the skin, thereby
reducing the efficiency of cutaneous cooling mecha-
nisms, eventually leading to excessive hyperthermia.

The central site at which brain Ang II may ex-
ert an action on thermoregulation is unknown. How-
ever, there is evidence from in vitro studies of slices
of PVN that the actions of Ang II on bursting neu-
rons in the PVN was potentiated by increased ambient
temperature (Dewald et al., 2002). Another potential
site for brain Ang II is the median preoptic nucleus,
where many heat sensitive thermoregulatory neurons
are located as well as AT1 receptors. Whether, they
are co-localised remains to be determined.

14. Adrenocorticotropin secretion

Centrally administered Ang II has been shown
to cause stimulation of the hypothalamo-pituitary–
adrenal axis, resulting in increased blood levels of adr-
enocorticotropic hormone (ACTH), and consequently
cortisol or corticosterone (Ganong & Murakami,
1987; Scholkens, Jung, Rascher, Dietz, & Ganten,
1982; Sumitomo et al., 1991). This effect is not inhib-
ited by the Ang II antagonist saralasin administered
peripherally, indicating that the action of Ang II in-
jected intracerebroventricularly is occurring behind
the blood–brain barrier, and it is additional to an ac-
tion of circulating Ang II on CVOs to stimulate ACTH
release (Ganong & Murakami, 1987; Murakami &
Ganong, 1987). ICV administration of Ang II also
results in a reduction of the corticotrophin-releasing
hormone in the median eminence (Sumitomo et al.,
1991), and an increase in mRNA that encodes CRH in
the hypothalamus (Aguilera, Young, Kiss, & Bathia,
1995b; Sumitomo et al., 1991). Neurons that synthe-
sise CRH in parvocellular regions of the PVN express
AT1 receptor mRNA (Aguilera et al., 1995b) and im-
munohistochemical studies show that CRF-containing
neurons of the PVN that have efferent connections

to the median eminence are rich in AT1 receptors
(Oldfield et al., 2001). These data suggest that the
CRF-containing neurons of the PVN are likely sites
where brain Ang may influence the HPA axis. While
stressors and glucocorticoid treatment increase the ex-
pression of AT1 receptor mRNA in the PVN (Jezova,
Ochedalski, Kiss, & Aguilera, 1998), it is still not
clear how particular stressors may utilise angiotensin-
ergic pathways to influence CRF release and therefore
ACTH secretion.

15. Sodium appetite

Centrally injected Ang II or renin are potent stimuli
for the ingestion of NaCl in several species (Avrith &
Fitzsimons, 1980; Bryant, Epstein, Fitzsimons, &
Fluharty, 1980; Coghlan et al., 1981; Fitzsimons,
1998), although the onset is slower than that of Ang-
induced water drinking. This action is blocked by
centrally administered AT1 or AT2 receptor antago-
nists (Fitzsimons, 1998; Rowland, Rozelle, Riley,
& Fregly, 1992). Further evidence that brain Ang regu-
lates the intake of NaCl comes from experiments
showing that centrally administered AT1 antagonists
inhibit sodium appetite in rats and baboons (Blair-West,
Carey, Denton, Weisinger, & Shade, 1998; Sakai,
Chow, & Epstein, 1990; Sakai & Epstein, 1990). It
has been proposed that central Ang and mineralo-
corticoids have a synergistic action within the brain
to initiate salt appetite (Sakai, Nicolaidis, & Epstein,
1986), but the central sites mediating Ang-induced
Na appetite remain to be determined. Brain Ang
may be less important for salt appetite in rumi-
nants (Weisinger et al., 1996; Blair-West, Denton,
McKinley, & Weisinger, 1988). A recent study in
double transgenic mice in which expression of the
human angiotensinogen gene was controlled by a
neuron-specific promoter (synapsin I) and in which
the human renin gene was also expressed, showed
that these mice had an elevated preference for salt
(Morimoto, Cassell, & Sigmund, 2002b). This result
suggests that neurally generated Ang plays a role in
the generation of salt appetite. However, an increased
preference for salt was also observed in double trans-
genic mice expressing the human renin gene and in
which the human angiotensinogen gene was under
the control of a glial-specific promoter (Morimoto,
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Cassell, & Sigmund, 2002c). Thus, Ang derived in
the brain from glial angiotensinogen may also play
a role in salt appetite in mice. Circulating Ang II
also stimulates a salt hunger by a direct influence on
the brain (Thunhorst & Fitts, 1994; Weisinger et al.,
1987), probably by an action at one of the forebrain
CVOs (Fitts, Starbuck, & Ruhf, 2000a, 2000b).

16. Memory

Central infusions of Ang IV facilitate memory
retention and retrieval in rats in passive avoidance
paradigms (Braszko et al., 1988; Wright et al., 1993).
Moreover, chronic infusions of the more stable ana-
logue of Ang IV, Nle1-Ang IV, improved performance
in rats in the spatial learning task, the Morris wa-
ter maze (Pederson, Harding, & Wright, 1998). In
two rat models of memory deficit, induced by either
scopolamine or bilateral perforant pathway lesion,
the AT4 receptor agonists reversed the performance
deficits detected in the Morris water maze paradigm
(Wright et al., 1999; Pederson et al., 1998). We
have shown recently that both Ang IV and LVV-H7
dose-dependently inhibited the catalytic activity of
IRAP in vitro (Albiston et al., 2001). We therefore
propose that the AT4 ligands, Ang IV and LVV-H7,
facilitate memory and enhance learning by binding to
IRAP and inhibiting its enzymatic activity.

17. Blood–brain barrier

Mice in which the angiotensinogen gene had been
deleted show an impairment in blood–brain barrier
function (Kakinuma et al., 1998). This effect does not
occur in mice in which the renin gene has been deleted
(Yanai et al., 2000). The damage to the blood–brain
barrier in angiotensinogen gene knockout mice may
be restored by treatment with Ang II or Ang IV. This
effect of Ang II or Ang IV is not mediated by either
AT1 or AT2 receptors.

18. Concluding summary

Angiotensinogen, renin and ACE are synthesised
within the brain, as are AT1, AT2 or AT4 receptors.

Angiotensinogen synthesis occurs predominantly in
glia, however how and where it is processed to Ang
peptides is unknown. Ang peptides generated within
the brain may act on AT1 receptors as neurotransmit-
ters or neuromodulators in neural pathways influenc-
ing the cardiovascular system and fluid and electrolyte
balance. AT1 receptors mediating these functions are
found in the ventrolateral medulla, nucleus of the
solitary tract, lamina terminalis and hypothalamic
supraoptic and paraventricular nuclei. Angiotensin-
ergic neural pathways within the brain may have
important homeostatic functions, particularly related
to the control of arterial pressure, fluid and electrolyte
homeostasis and thermoregulation. The AT4 receptor,
which is identical to IRAP, may play a role in memory.
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