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Geometry and Nonlinear Analysis^ 

Gang Tian1' 

Nonlinear analysis has played a prominent role in the recent developments in 
geometry and topology. The study of the Yang-Mills equation and its cousins gave 
rise to the Donaldson invariants and more recently, the Seiberg-Witten invariants. 
Those invariants have enabled us to prove a number of striking results for low 
dimensional manifolds, particularly, 4-manifolds. The theory of Gromov-Witten 
invariants was established by using solutions of the Cauchy-Riemann equation (cf. 
[RT], [LT], [FO], [Si], [Ru]). These solutions are often refered as pseudo-holomorphic 
maps which are special minimal surfaces studied long in geometry. It is certainly 
not the end of applications of nonlinear partial differential equations to geometry. 
In this talk, we will discuss some recent progress on nonlinear partial differential 
equations in geometry. We will be selective, partly because of my own interest and 
partly because of recent applications of nonlinear equations. There are also talks 
in this ICM to cover some other topics of geometric analysis by R. Bartnik, B. 
Andrew, P. Li and X.X. Chen, etc. 

Standard partial differential equations in geometry are the Einstein equation, 
Yang-Mills equation, minimal surface equation as well as its close cousin, Harmonic 
map equation. There are also parabolic versions of these equations, leading to R. 
Hamilton's Ricci flow, the Yang-Mills flow and the mean curvature flow. The solu­
tions, which played a fundamental role in geometry and topology, of these equations 
are their self-dual type ones. I will focus on self-dual type solutions in this talk. 
All these equations are in general hyperbolic equations if we allow Lorentz metrics 
on the underlying manifolds, but in differential geometry, so far, we only concern 
static solutions, that is, we assume that the metrics involved are Riemannian. I 
do believe that the study of this static case will be very important in our future 
understanding general Einstein equation. 

1. Einstein equation 
We will begin with the Einstein equation. We will always denote by M a 

differentiable manifold. A metric g on M is given by a non-degenerate matrix-
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valued functions (#y) in local coordinates x\, • • • ,xn, where n is the dimension of 
M. Recall that g is Riemannian if the matrices (#y) are positive definite. 

Associated to each metric, there is a canonical connection, the Levi-Civita 
connection, V characterized by the torsion freeness and Vg = 0, which means that 
g is parallel. In local coordinates, 
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where (gkl) denotes the inverse of (#y)- Then the curvature (12]w) is defined by 
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The curvature is completely determined by its sectional curvatures, that is, Gauss 
curvatures of surface cross sections. The Ricci curvature Rie = (12y) is given by-
taking trace of the curvature: 

Rij = YRikj- ( L 3 ) 
k 

The Ricci curvature essentially measures the variation of the volume form. 
A metric g is called an Einstein metric if it satisfies the following Einstein 

equation 
Rij = Apij, (1.4) 

where A is a constant, usually called Einstein constant. (1.4) is the Euler-Lagrangian 
equation of the functional fM s(g)dv, where s(g) denotes the scalar curvature of g, 
on the space of metrics with fixed volume. (1.4) is invariant under diffeomorphism 
group action. It is elliptic modulo diffeomorphisms when g is a Riemannian metric. 
From now on, I will assume that g is Riemannian. 

The simplest examples of Einstein metrics include the euclidean metric on R", 
the standard spherical metric on the unit sphere Sn and the hyperbolic metric on 
the unit ball Bn £Rn. In fact, all these metrics have constant sectional curvature 0 
or 1 or — 1, consequently, their Einstein constant A are 0, n — 1, —n+1, respectively. 

Every Riemannian 2-manifold (M,g) has a natural conformai structure. The 
classical Uniformization Theorem states that the universal covering of M together 
with the induced conformai structure is conformai to either C1 or S2 or B2 with 
canonical conformai structures. This implies that every Riemannian 2-manifold 
(M,g) admits a unique Einstein metric within its associated conformai class and 
with Einstein constant 0 or 1 or —1. 

Another way of proving this existence is to use partial differential equation. 
Given a Riemannian 2-manifold (M,g), consider a metric g conformai to g, so it is 
of the form evg. A simple computation shows that g is of constant curvature A if 
and only if ip satisfies the following equation 

A<p+4^ = AeA (1.5) 
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This equation can be solved (cf. [Au], [KW]), so there is an Einstein metric in any-
given conformai class on any Riemannian 2-manifold. In early 1990's, R. Hamilton 
gave a heat flow proof of the Uniformization Theorem ([Ha], [Ch]). This new proof 
also yields a biproduct: The space of metrics on S2 with positive curvature is 
contractible. 

The uniformization for 2-manifolds led to two generalizations in higher dimen­
sions. The one is the Yamabe problem (cf. [Au], [Sc]). The other is the Calabi's 
problem on Kähler-Einstein metrics which I will address more later. 

For 3-manifolds, Einstein metrics are also of constant sectional curvature, so 
their universal coverings are either S3 or R3 or hyperbolic 3-space H3. A major 
part of Thurston's program is to show the existence of metrics with constant sec­
tional curvature on 3-manifolds which satisfy certain mild topological conditions. 
Thurston claimed long time ago that an atoroidal Haken manifold admits a com­
plete hyperbolic metric. It will be interesting to have an analytic proof of this 
claim by solving the corresponding Einstein equation. In general, one hopes that 
any 3-manifold can be canonically split into some pieces of simple topological type 
and other pieces which admit Einstein metrics. There are at least two possible 
approaches to this: one is the variational method, trying to minimax certain func­
tional involving curvatures, while the other is to use the Ricci flow, hoping that one 
can understand how the singularity is formed along the flow. So far none of them 
work yet. 

When the dimension is higher than or equal to 4, an Einstein metric may not 
be of constant sectional curvature. It is still a very interesting question to find 
out topological constraints on Einstein manifolds. If a 4-manifold M admits an 
Einstein metric, then the Hitchin-Thorpe inequality says that | r (M)| < ||x(AT)|. 
This implies that the connected sum of more than 4 copies of CP2 can not have 
any Einstein metric. More recently, C. Lebrun showed that a 4-manifold M with 
non-vanishing Seiberg-Witten invariant admits an Einstein metric only if 3r(M) < 
X(M). We do not know any constraints on compact Einstein manifolds of dimension 
higher than 4. It may be possible that any manifold of dimension > 5 has an Einstein 
metric. 

Examples of Einstein metrics can be constructed by exploring symmetries, 
such as, homogeneous Einstein metrics, cohomogeneity one Einstein metrics. One 
can also construct new Einstein metrics from known ones through certain intrigue 
constructions when the underlying manifolds are of special fibration structures (cf. 
[Wang], [BG]). 

When n > 4, there is a special class of solutions of the Einstein equation, that 
is, Einstein metrics of special holonomy. If (M,g) is an irreducible Riemannian 
manifold, a well-known theorem of M. Berger states that either (M,g) is a locally-
symmetric space or its reduced holonomy is one of the following groups: SO(n), 
C/(f) (n > 4), SU(f) (n > 4), Sp(l) • Sp(f) (n > 8), Sp(f) (n > 4) and two 
exceptional groups Spin(7) and G2. We call (M,g) a Riemannian manifold with 
special holonomy if it is irreducible and its (reduced) holonomy is strictly contained 
in SO(n). It can be shown that a Riemannian manifold of special holonomy is 
automatically Einstein if its holonomy is other than U(%). We have Kähler-Einstein 
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metrics for the U(%) case. In fact, these special Einstein metrics are of self-dual 
type. Each manifold (M,g) of special holonomy has a parallel n — 4 form defined 
as follows: Let W C A2TM be the subspace generated by the Lie algebra of the 
holonomy group of (M,g), then the curvatures lie in S2(W). Define a 4-form ip(W) 
by 

ip(w) = YwiAwi-> (L6) 
where {w,} is an orthonormal basis of W. Clearly, it is independent of the choice of 
{w,} and is parallel. This 4-form induces a symmetric operator T^rw) '• W >-¥ W: 
Ty(w)(v) = ivip(W), where iv denotes the interior product with v. One can check 
that Tyrw) has at most two distinct eigenvalues. Moreover, there is a distinguished 
eigenspace Wo of T^rw) °f codimension 0, 1 and 3. Let ß be the corresponding 
eigenvalue. Put 

tt(W) = ^*iP(W). (1.7) 

Clearly, it is parallel. Denote by S2W = S2Wo + S2Wi the decomposition according 
to eigenvalues, then the curvature R(g) of g, which lies in S2W, is decomposed into 
Ro £ S2Wo and 12i £ S2W\. Furthermore, we have 

Ro A 0 = *120 (1.8) 

and Ri, which can be void, is completely determined by Ricci curvature of g. There­
fore, manifolds of special holonomy are always self-dual. It is very important in the 
study of Einstein metrics of special holonomy. For example, the self-duality implies 
an a prior L2-bound on curvature: There is a uniform constant C(pi(M),(i,s(gj), 
depending only on the first Pontrjagin class, 0 and the scalar curvature s(g), such 
that for any Einstein metric g of special holonomy, we have 

R(g)\2dv = C(pi(M),n,s(gj). (1.9) 
M 

Here 0 is the corresponding parallel form. In dimension 4, we can study self-dual 
Einstein metrics, that is, Einstein metrics with self-dual Weyl curvature. These 
self-dual metrics share similar properties as those with special holonomy do. 

The special geometry we see most is the Kahler geometry. A Kahler man­
ifold is a Riemannian manifold (M,g) whose holonomy lies in U(^), it is equiv­
alent to saying that M has a compatible and parallel complex structure J, that 
is, g(Ju,Jv) = g(u,v), where u,v £ TM are arbitrary, and V J = 0. So M is a 
complex manifold with induced complex structure by J. Usually, we denote g by its 
Kahler form ujg = g(, J-). In local complex coordinates z\, • • • , zm of M (n = 2m), 

ujg = —^— Y 9fjàZi A dzj, (1.10) 
A = i 

where (gß) is a positive Hermitian matrix-valued function. The self-duality simply 
means that the curvature of a Kahler metric has only components of type (1,1). A 
Kahler metric g is Einstein if and only if the trace of its curvature against ujg is 
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constant, we call such a metric Kähler-Einstein. A necessary condition for the exis­
tence of Kähler-Einstein metric on M is that the first Chern class c\(M) is definite. 
Since the Ricci curvature of a Kahler metric g can be expressed as —dd log det(gij), 
the Einstein equation is reduced to solving the following complex Monge-Amperé 
equation 

Pfi n2 

det(9ß + dz^fj) = eh~X*det(^)5 i9ß + dz^fj) > °' ( L 1 1 ) 

where ip is unknown and h is a given function depending only on g. This is a fully-
nonlinear elliptic equation and easier to solve. 

A program initiated by E. Calabi in early 1950's is to study the existence 
and uniqueness of Kähler-Einstein metrics.1 The uniqueness of Kähler-Einstein 
metrics was known in 1950's in the case that the first Chern class is nonpositive 
and was proved by Bando-Mabuchi [BM] in 1986 in the case that the first Chern 
class is positive. The difficult part of Calabi's program is about the existence. The 
celebrated solution of Yau [Ya] for the Calabi conjecture established the existence 
of a Ricci-flat metric, now named as Calabi-Yau metric, in each Kahler class on 
a compact Kahler manifold M with c\(M) = 0. If c\(M) < 0, the existence of 
Kähler-Einstein metrics was proved by Yau [Ya] and Aubin [Au], independently. 
There are further analytic obstructions to the existence of Kähler-Einstein metrics 
on M with ci(M) > 0. Matsushima proved that M has a Kähler-Einstein metric 
only if the Lie algebra n(M) of its holomorphic fields is reductive. Also if M has 
a Kähler-Einstein metric, then the Futaki invariant from [Fu] vanishes. The Futaki 
invariant is a character of n(M). If M is a complex surface with c\(M) > 0, then 
it admits a Kähler-Einstein metric if and only if the Lie algebra of holomorphic 
vector fields is reductive [Til]. For a general M with c\(M) > 0, the existence 
of Kähler-Einstein metrics is equivalent to certain analytic stability [Ti2]. This 
analytic stability amounts to checking an nonlinear inequality of Moser-Trudinger 
type: Assume that n(M) = {0}. 2 If w is a Kahler metric with [UJ] = c\(M) and </? 
with JM ipujn = 0 and UJ + ddip > 0, 

log U e - V I < M<P) - f(M<p)), (1.12) 

where / is some function bounded from below and satisfies lim^oo f(t) = oo3 and 
Jw is defined by 

M<P) = Y ^ T ^ n ? f 9ipA3iPui A(u + d3<p)n-i-1, (1.13) 
j=0 n ^M 

where V = JM^n- The inequality (1.12) has been checked for many manifolds, such 
as Fermât hypersurfaces. Furthermore, the analytic stability implies the asymptotic 

A a t e r in 1980's, E. Calabi extended this to extremal Kahler metrics, one can see X.X. Chen's 
paper in this proceeding for recent progresses on extremal metrics. 

2If T)(M) ^ {0}, then the inequality holds only for those functions perpendicular to functions 
induced by holomorphic vector fields. 

A may depend on w. 



480 Gang Tian 

CM-stability of M introduced in [Ti2] in terms of Geometric Invariant Theory. If 
one proved the partial G°-estimate conjectured in [Ti3], this asymptotic stability in 
[Ti2] would imply the existence of Kähler-Einstein metrics. Very recently, by using 
the Tian-Yau-Zeldich expansion (cf. [Ti4], [Cat], [Zel]) and a result of Zhiqin Lu 
[Lu], S. Donaldson [Dol] proved the asymptotic Chow stability [Mu] of algebraic 
manifolds which admit Kähler-Einstein metrics [Dol]. This gives a partial answer 
to one conjecture of Yau: If n(M) = 0, then there is a Kähler-Einstein metric on 
M if and only if M is asymptotically Chow stable. It would be a very interesting 
problem in algebraic geometry to compare the Chow stability with the CM-stability 
introduced in [Ti2]. Both stabilities can be defined in terms of the Chow coordinate 
of M, but their corrsponding polarizations are different (cf. [Paul]). 

Kähler-Ricci solitons arose naturally from the study of the existence of Kähler-
Einstein metrics and Hamilton's Ricci flow in Kahler geometry and generalize 
Kähler-Einstein metrics. A Kahler metric g is a Kähler-Ricci soliton if there is 
a holomorphic field X such that 

Ric(g) — Xujg = LxuJg. (1-14) 

As before, this equation can be reduced to a sightly more complicated complex 
Monge-Ampere equation (cf.[TZ]). It was proved in [TZ] that Kähler-Ricci solitons 
are unique modulo automorphisms. In subsequent papers, we also gave an analytic 
criterion for the existence as one did in [Ti2]. It was conjectured that given any 
Kahler manifold M with c\ (M) > 0, either M has a Kähler-Einstein metric or there 
are diffeomorphisms <pi and Kahler metrics gi such that <p*gi converge to a unique 
Kähler-Ricci soliton on M', which may be different from M. This conjecture was 
posed by R. Hamilton in studying the Ricci flow and myself in studying Kähler-
Einstein metrics. When the complex dimension of M is 2, in view of the main 
result in [Til], it suffices to show that the blow-up of CP2 at two points admits a 
Kähler-Ricci soliton. This should be doable. 

So far, the most successful method in proving the existence is the continuity-
method. The other possible approach is to use the Kähler-Ricci flow, which has 
only partial success (cf. X.X.Chen's talk at this ICM). 

There remain many problems in studying Kähler-Einstein with prescribed sin­
gularities, though a lot has been done (cf. [CY], [TY1], [Ts], etc.). A given Kahler 
manifold M may not have definite first Chern class, so it does not admit any Kähler-
Einstein metrics, but by blowing down certain subvarieties, the resulting manifold 
(possibly singular) may admit a canonical Kähler-Einstein metric. For instance, if 
M is an algebraic manifold of general type, can any given Kahler metric be de­
formed along the Kähler-Ricci flow to a unique Kähler-Einstein metric? Is the 
limiting metric independent of the initial metric? The answer to these questions 
seems to be affirmative in complex dimension 2 or in the case that minimal models 
exist. Another unsolved problem is Yau's conjecture: Every complete Calabi-Yau 
open manifold can be compactified such that the divisor at infinity is the zero-locus 
of a section of a line bundle proportional to the anti-canonical bundle. This is a 
hard problem. In [TY2], [TY3] and [BK], complete Calabi-Yau manifolds were con­
structed on complements of a smooth divisor which is a fraction of anti-canonical 
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divisor and satisfies certain positivity conditions (also see [Jo]). In view of these 
and [CTI], one is led to the following conjecture: a complete Calabi-Yau mani­
fold M with quadratic curvature decay and euclidean volume growth is of the form 
M = M\D such that D is ample near D and the anti-canonical bundle A-A is a[D] 
for some a > 1. This can be considered as the refinement of Yau's conjecture in a 
special case. 

The next special holonomy is contained in Sp(l)Sp(j). Riemannian manifolds 
with such a holonomy are called quaternion-Kähler manifolds. They are automat­
ically Einstein. The prototype is the quaternionic projective space P ^ . There are 
many examples of quaternion-Kähler manifolds due to the works of many people, 
including S. Salamon, Galicki-Lawson, Lebrun, etc. Quaternion-Kähler manifolds 
with zero scalar curvature are hyperKähler, that is, its holonomy lies in Sp(j). 
The existence of hyperKähler manifolds follows from Yau's solution for the Calabi 
conjecture. However, we do not know yet if there are quaternion-Kähler manifolds 
with positive scalar curvature and which are not locally symmetric, while we do 
have a number of symmetric ones, the so-called Wolf spaces. It led Lebrun and S. 
Salamon to guess that the Wolf spaces are all complete quaternion-Kähler manifolds 
with positive scalar curvature. So far, it has been checked up to dimension f < 3. 
We would like to point out that there are many non-symmetric quaternion-Kähler 
orbifolds with positive scalar curvature due to Galicki-Lawson ([GL]). 

Riemannian manifolds with holonomy G2 and Spin(7) must be Ricci-flat and of 
dimension 7 and 8, respectively. It took a long time to settle the question of whether 
such metrics exist, even locally. Local metrics with these holonomy were constructed 
by R. Bryant [Br]. Later, complete examples were constructed by Bryant and S. 
M. Salamon [BS]. Examples of compact 7- and 8-manifolds with holonomy G2 and 
Spin(7) were first constructed by D. Joyce in early 1990's (cf. [Jo]). D. Joyce's 
construction was inspired by the Kummer construction: metrics with holonomy 
SU(2) on the A3 surface can be obtained by resolving the 16 singularities of the 
orbifolds T4/Z2, where Z2 acts on T4 with 16 fixed points. In the case of G2, Joyce 
chooses a finite group F c G2 of automorphisms of the torus T7. Then he resolves 
the singularities of T7/Y to get a compact 7-manifold M with holonomy G2. A 
similar construction can be implemented for the Spin(7) case by choosing a finite 
group F of automorphisms of the torus T8 and a flat F-invariant Spin(7)-structure 
on T8 . More recently, Kovalev gave a new construction of Riemannian metrics with 
special holonomy G2 on compact 7-manifolds. The construction is based on gluing 
asymptotically cylindrical Calabi-Yau manifolds built up on the work in [TY2]. 
Examples of new topological types of compact 7-manifolds with holonomy G2 were 
obtained. 

So far, all Ricci-flat compact manifolds are of special holonomy. There should 
exist complete Ricci-flat manifolds with generic holonomy SO(n). The question is 
how we can find them. Here is a possible example in 4-dimension: It was shown 
that there is a Calabi-Yau manifold with cylindrical end asymptotic to T3 [TY2]. 
Complex analytically, this manifold can be obtained by blowing up the 9 base points 
of a generic elliptic pencil on CP2 and removing one smooth fiber. Now take two 
copies of such Calabi-Yau manifolds and glue them along the T3 's at infinity. One 
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way of gluing them is to respect the complex structures, then we will get a A3 
surface. Could one use different gluing maps which do not preserve the complex 
structures, so that one may obtain new Ricci-flat manifolds with generic holonomy? 
We can also ask if any complete Ricci-flat manifolds can be decomposed in some 
sense into a connected sum of Calabi-Yau manifolds. Similar things can be done in 
higher dimensions. 

Geometry of moduli space of Einstein manifolds is extremely important. For 
example, the moduli space of Calabi-Yau manifolds provides the B-model in the 
Mirror Symmetry. If (M,g) is an Einstein manifold with special holonomy, then 
it was proved that nearby Einstein manifolds in the moduli space is also of special 
holonomy. The first analytic problem about the moduli is its compactness. The 
moduli space is very often noncompact, so we need to compactify it. Then we can 
consider what structures a compactified moduli space has. 

We have pointed out before that for any Einstein manifold (M, g) with special 
holonomy, the L2-norm of its curvature depends only on the second Chern char­
acter and the Einstein constant A (assuming that the volume of M is normalized, 
say 1). One can first give a weak compactification M of the moduli space M of 
Einstein manifolds with special holonomy in the Gromov-Hausdorff topology. A 
basic problem is the regularity of a limit in M\M. There are two cases of the 
limit, one is when the limit is still compact, while the other has infinite diameter as 
a length space. Here let us consider only the first case, since we know much more 
in this case and it is necessary for studying the second. If Mœ is a compact limit, 
then there is a sequence of Einstein manifolds (Mj,pj) with special holonomy and 
bounded diameter converging to Mœ in the Gromov-Hausdorff topology. When 
the dimension is 2, it was proved in [Til] that Mœ is a Kähler-Einstein orbifold 
with isolated singularities. Its real version was done by M. Anderson in [An]. The 
compactness theorem played a very important role in the resolution of the Calabi 
problem for complex surfaces (cf. [Til]). In [CT2], Cheeger and I proved 

Theorem 1.1. 4 Let Mœ be the above limit of a sequence of Einstein manifolds 
(Mj,pj) with the same special holonomy and uniformly bounded diameter. Then 
there is a rectifiable closed subset S C Mœ such that M^S is a smooth mani­
fold which admits an Einstein metric poo with the same holonomy as (Afj,pj) do. 
Furthermore, Mœ is the metric completion of M^S with respect to the distance 
induced by poo-

This is based on deep works of Cheeger-Colding [CC] on spaces which are 
limits of manifolds with Ricci curvature bounded from below, my joint work with 
Cheeger and Colding on structure of the singular sets of limits of Einstein manifolds 
with L2 curvature bounds [CCT] and Cheeger's work on rectifiability of singular 
sets of the limits [Che]). 

Remark 1.2. In fact, the convergence can also be strengthened: There is an exhau-
sion of M^S by compact sets Aj c Ki+i • • • and diffeomorphisms <pi : Kt i-t Mt 

such that (pi(Ki) converge to S in the Gromov-Hausdorff topology and <Ap» converge 
to poo in the G°°-topology. 

4The Kahler case of this theorem was proved in [CCT]. 
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The most fundamental problem left is the regularity of S or structure of AAo 
along S. The conjecture is that S can be stratified into FJj< n_ 4 Si such that each 
stratum Si is a smooth manifold of dimension < i. If (Mj,pj) are Kähler-Einstein, 
then S2J+1 = S2j- We know (cf. [CCT], [CT2]) that tangent cones at almost all 
points of Sn-4 are of the form R" - 4 x C(S3/Y), where C(S3/Y) is the cone over 
S3/Y and F c S0(4) is a finite group. It makes us conjecture that Mœ should be 
homeomorphic to an open set of R" - 4 x C(S3/Y) locally along Sn-i\ 0 j<»-5 •%• ^ 
is plausible that Mœ is actually smooth along SU-A\ U J < » - 5 &ì

 m a suitable sense. 
We also believe that the (n — 4)-form OQO associated to the special holonomy of poo 
extends to S in a suitable sense and its restriction to S is the same as the volume, 
i.e., S is calibrated by OQO in a suitable sense. 

When (Mj,pj) are Kähler-Einstein manifolds with positive scalar curvature, it 
was conjectured by the author long time ago that a multiple of the anticanonical 
bundle of M^S extends to be a line bundle across the singular set S. This is of 
course true if one can show that Mœ has only quotient singularities. The affirmation 
of this conjecture will enable us to prove the converse of a result in [Ti2], that is, 
the algebraic stability of a Kahler manifold with positive first Chern class assures 
the existence of Kähler-Einstein metrics. 

Finally, we shall refer the readers to [CT2] for detailed study of tangent cones 
at any singularity of AAo-

2. Yang-Mills equation 
Next we discuss the Yang-Mills equation. The Yang-Mills equation has played 

a fundamental role in our study of physics and geometry and topology in last few 
decades. In the following, unless specified, we assume that (M,g) is a Riemannian 
manifold of dimension n and G is a compact subgroup in SO(r) and g is its Lie 
algebra. Let A be a G-bundle over M. 

First we recall that a connection of E over M is locally of the form 

A = Aidxi, Ai £ g (2.1) 

where xi,--- ,xn are euclidean coordinates of R" and At are matrices in g. Its 
curvature can be computed as follows: 

A4 = A4 + A A A. (2.2) 

The Yang-Mills functional is defined on the space of connections and given by 

y(A) = A / \FAtdVg. (2.3) 
4TT2 JM 

The Yang-Mills equation is simply its Euler-Lagrange equation 

D*AFA = 0, (2.4) 

where DA denotes the covariant derivative of A and D*A is its adjoint. On the other 
hand, being the curvature of a connection, A automatically satisfies the second 
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Bianchi identity DAFA = 0. We will call A a Yang-Mills connection if it satisfies 
(2.4). 

The gauge group Q consists of all sections of Ad(E) over M, locally, they are 
just maps into G C SO(r). It acts on the space of connections by assigning A 
to a (A) = aAa^1 — ada^1 for each a £ Q. Clearly, the Yang-Mills functional is 
invariant under the action of Q, so does the Yang-Mills equation. In particular, 
it implies that the Yang-Mills equation is not elliptic. A difficult problem is to 
construct good gauges which can be controled by curvatures. So called Coulomb 
gauges have been constructed by Uhlenbeck [Uh2] in L"/2-norms and more recently, 
by Tao-Tian and Meyer-Riviere in Morrey norms (cf. [TT]). 

The simplest Yang-Mills connections are provided by harmonic one forms: If 
G = U(l), then g = iR and A is simply a one-form and the Yang-Mills equation is 
d*dA = 0, the gauge transformation is given by a = e%a H- A + ida. It follows that 
modulo gauge transformations, abelian Yang-Mills connections are in one-to-one 
correspondence with harmonic one forms. 

Now we assume that (M, g) is of special holonomy. Let 0 be the associated 
closed form of degree n — 4. We say that a connection A is O-self-dual if 

*(0 A At) = Ai , (2.5) 

where * is the Hodge operator 5 

One can show that an O-self-dual connection is a Yang-Mills connection. 
Clearly, the self-duality is invariant under gauge transformations. So self-dual con­
nections provide a special class of Yang-Mills solutions. 

There are many examples of O-self-dual connections. First, the Levi-Civita 
connection of the underlying Riemannian metric is O-self-dual. In this sense, the 
Yang-Mills equation is a semi-linear version of the Einstein equation. Secondly, if E 
is a stable holomorphic vector bundle, then the Donaldson-Yau-Uhlenbeck theorem 
([Do2], [UY]) states that E has a unique Hermitian-Yang-Mills connection, an easy-
computation shows that a connection is Hermitian-Yang-Mills if and only if it is 

I T / 2 —2 

O-self-dual, where 0 = — >A9_9,, and UJ is the underlying Kahler form. Thirdly, 
if (M,g) is a Calabi-Yau 4-fold and 0 is its associated (n — 4)-form induced by 
the SU(4) C Spin(7)- structure, then O-self-dual connections are just complex self-
dual instantons of Donaldson-Thomas [DT]. Also, one may construct O-self-dual 
instantons from O-calibrated submanifolds of M. 

When n = 4, self-dual instantons were used to construct the Donaldson invari­
ants for 4-manifolds. This eventually led to the Seiberg-Witten invariants, which 
is much easier to compute. The construction goes roughly as follows: Let M be a 
4-manifold and p is a generic metric. Let E be an SA(2)-bundle over M. Consider 
the moduli space ME of self-dual instantons of E, that is, solutions of 

Ai = *FA (2.6) 

5If G C U(r), one can consider more general self-dual equation: A is an O-self-dual connection 
if tr(FA) is harmonic and *(0 A F%) = F%, where F% = FA - hr(FA)Id. If G = SU(r), this 
coincides with (2.5). 
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modulo gauge transformations. A generalized instanton consists of an anti-self-
dual instanton and a tuple of points of M such that the second Chern class of 
the instanton and totality of the points sum up to represent 02(E). Let ME be 
the moduli space of all generalized instantons of E. Then Uhlenbeck compactness 
theorem states that ME is compact. Also ME is a stratified space with ME as 
its main stratum. If bf(M) > 3 and p is generic, then each stratum has expected 
dimension which can be easily computed by the Atiyah-Singer index theorem, so 
ME can be taken as a fundamental class. The Donaldson invariants are obtained 
by integrating pull-backs of cohomology classes of M on this fundamental class. 

Similarly, one can define the Seiberg-Witten invariant by using the Seiberg-
Witten equation. Technically, it is much easier since the moduli space is already-
compact. Sometimes, it was said that the Seiberg-Witten invariant does not need 
hard analysis, in fact, it is false. Taubes' deep theorem on equivalence of Seiberg-
Witten and Gromov-Witten invariants requires hard analysis. 

What about higher dimensional cases? Can we construct new deformation in­
variants by using O-self-dual connections? In order to achieve it, one has to consider 
the following issues: 1. Is the corresponding self-dual equation elliptic? Indeed, the 
self-dual equation on a S'pzn(7)-manifold is elliptic. 2. Can we compactify the mod­
uli space? If so, how do we stratify the compactified moduli space? 3. Does each 
stratum have right dimension which can be predicted by the index theorem? If we 
solve these issues, we can define new invariants, then we can study how to compute 
them. 

The first issue is easy to check. We just need to linearize the self-dual equation 
and see if it is elliptic. There are examples, such as, self-dual equations on 4-
manifolds and Donaldson-Thomas complex self-dual on Calabi-Yau 4-manifolds. 
It will be very useful to construct deformation invariants by using complex self-
dual instantons. The success of it will provide a powerful tool of constructing 
holomorphic cycles of codimension 4, which are pretty much evading us. 

Next we consider the compactification. Having a good compactification, we 
will be able to get property 3 in the above. Let (M, g) be a compact Riemannian 
manifold of dimension n and with special holonomy. Let 0 be the associated closed 
form of degree n — 4. Let A be a unitary vector bundle over M. Recall that %JÌQ,E 

consists of all gauge equivalence classes of O-asd instantons of E over M. In general, 
9Jtn,E may not be compact. So we will compactify it. 

An admissible O-self-dual instanton is simply a smooth connection A of E 
over M\S(A) for a closed subset S (A) of Hausdorff dimension n — 4 such that 
JM \FA\2 < 00. A generalized O-self-dual instanton is made of an admissible O-self-
dual instanton A of E and a closed integral current C = C2(S, 0 ) calibrated by 0, 
such that cohomologically, 

[C2(A)] +PD[G2(S,0)] = C2(E), (2.7) 

where G2(.4) denotes the Chern-Weil form of A6 and G2(A) denotes the second 
Chern class of E. Two generalized O-self-dual instantons (.4, C), (A', C) are equiv-

6One can show this form, which was originally defined on M\S(A), extends to a well-defined 
current on M. 
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aient if and only ifC = C and there is a gauge transformation a on M\S(A)öS(A'), 
such that a(A) = A' on M\S(A) U S(A'). We denote by [A,C] the gauge equiva­
lence class of (A,C). We identify [.4,0] with [.4] in MQ,E if A extends to a smooth 
connection of E over M modulo a gauge transformation. We define %JÌQ,E to be set 
of all gauge equivalence classes of generalized O-self-dual instantons of E over M. 

The topology of %JÌQ,E can be defined as follows: a sequence [Ai, Ci] converges 
to [A, C] in 9Jtn,E if and only if there are representatives (.4j,Gj) such that their 
associated currents C2(.4j,Cj) converge weakly to C2(A,C) as currents, where 

C2(.4',C') = C2(.4') + C 2 (S ' ,0 ' ) , C' = (S',&). (2.8) 

It is not hard to show that by taking a subsequence if necessary, TJ(.4J) converges 
to A outside S (A) and the support of C for some gauge transformations TJ. 

The following was proved in [Ti5] and provides a compactification for the 
moduli space of O-self-dual connections. 

Theo rem 2 .1 . For any M, g, 0 and E as above, %JÌQ,E is compact with respect to 
this topology. 

Of course, %JÌQ,E admits a natural stratification. The remaining problem, 
which is also important for issue 3, is about regularity of a generalized O-self-
dual instanton. Another interesting problem is to develop a deformation theory 
of smoothing singular self-dual instantons. Are there any constraints on a singular 
self-dual instanton which is the limit of smooth self-dual instantons? We do not even 
know any example of a Hermitian-Yang-Mills connection with an isolated singularity 
and which can be approximated by smooth Hermitian-Yang-Mills connections. 

Let us give an example. Assume that (M,g) is a Kahler manifold with Kahler 
form UJ. Put 0 = u;TO_2/(ro — 2)!, where n = 2m. Then an O-self-dual instanton 
A is simply a Hermitian-Yang-Mills connection, that is FA" = 0 and FA' • UJ = 0, 
where FA'' is the (fc,l)-part of FA- If (A,C) is a generalized O-self-dual instanton, 
it follows from a result of J. King that there are positive integers ma and irreducible 
complex subvarieties Va such that for any smooth ip with compact support in M, 

C2(S,Q)(<P) = Ym«J, ip. 
va 

On the other hand, using a result of Bando-Siu, one can show [TYa] that there is a 
gauge transformation r such that T(A) extends to be a smooth connection outside 
a complex subvariety of codimension greater than 2. 

We expect that general self-dual connections have analogous properties. If 
(A,C) is a generalized O-self-dual connection, we would like to have (1) the regu­
larity of the current C, that is, C is presented by finitely many O-calibrated subva­
rieties with integral multiplicity; (2) There is a gauge transformation a such that 
a (A) extends to a smooth connection outside a subvariety of codimension at least 
6. In [Uh2], any isolated singularity of a Yang-Mills connection in dimension 4 
can be removed. In [TT], a removable singularity theorem was established for sta­
tionary Yang-Mills connections in higher dimensions. Using this, we can conclude 
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that a (A) extends to a smooth connection outside a closed subset S with vanishing 
(n — 4)-Hausdorff measure. Further understanding on S is needed. We will discuss 
regularity of C in the next section. 

A particularly interesting case is the complex self-dual instanton. We do expect 
to construct new invariants for Calabi-Yau 4-folds by showing that the above moduli 
space of generalized complex self-dual instantons gives rise to a fundamental class. 
The main problem left is the regularity of generalized instantons. A special case of 
this can be done nicely. If the underlying Calabi-Yau 4-fold M is of the form Y x T^, 
where Y is a Calabi-Yau 3-fold and T^ is a complex 1-torus, then a T^-invariant 
complex self-dual instanton is given by a Hermitian Yang-Mill connection A on Y 
and a (0,3)-form / with d f = 0. The expected dimension of its moduli space 
is zero. Counting them with sign gives rise to the holomorphic Casson invariant, 
which was constructed previously by R. Thomas using the virtual moduli cycle 
construction in algebraic geometry [Th]. 

Other analytic problems on the Yang-Mills equation include whether or not 
the Yang-Mills flow develops singularity at finite time. It was proved by Donaldson 
that the Yang-Mills flow along Hermitian metrics of a holomorphic bundle has global 
solution. Of course, if the dimension of the underlying manifold is less than 4, the 
Yang-Mills flow has a global solution. In general, it is still open. If a singularity-
forms at finite time, how does it look like? 

3. Minimal submanifolds 
The study of minimal submanifolds is a classical topic. We will not intend 

to cover all aspects of this topic. We will only discuss issues related to previous 
discussions and particularly self-dual type solutions of the minimal submanifold 
equation. 

Let (M,g) be an n-dimensional Riemannian manifold and S be a submanifold 
in M. Recall that S is minimal if its mean curvature H s vanishes. The mean 
curvature arises from the first variation of volume of submanifolds. Minimal sub­
manifolds are closely related to the Yang-Mills equation. In fact, it was shown in 
[Ti5] that if a Yang-Mills connection has its curvature concentrated along a sub­
manifold, then this submanifold must be minimal and of codimension 4. Motivated 
by this, recently, S. Brendle, etc. developed a deformation theory of constructing 
Yang-Mills connections from minimal submanifolds. 

Now assume that M has a closed differential form 0 with its norm |0 | < 
1. A submanifold S is calibrated by 0 if 0|g coincides with the induced volume 
form. Calibrated submanifolds are minimal (cf. [HL]). The study of calibrated 
submanifolds was pioneered in the seminal work [HL] of Harvey and Lawson. It now 
becomes extremely important in the string theory. As we have seen in the above, 
they also appear in formation of singularity in the Einstein equation. In particular, 
when a self-dual connection has its curvature concentrated along a submanifold, 
this submanifold is calibrated [Ti5], so a calibrated submanifold can be regarded as 
a self-dual solution of the minimal submanifold equation. 

Let (M,UJ) be a symplectic manifold and J be a compatible almost complex 
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structure, that is, uj(Ju,Jv) = UJ(U,V) and UJ(U,JU) > 0 for any non-zero tangent 
vectors u and v. Define a compatible metric p by g(u,v) = UJ(U,JV). Any UJ-

calibrated submanifolds are J-holomorphic curves, that is, each tangent space is 
a J-invariant subspace in TM. They are particularly minimal with respect to 
p. Holomorphic curves have been used to establish a mathematical foundation of 
the quantum cohomology, the mirror symmetry, etc. (cf. [RT]). The key of it 
is to construct the Gromov-Witten invariants by showing the moduli space of J-
holomorphic curves can be taken as a fundamental class in a suitable sense. This 
was proven by first constructing a "nice" compactification of the moduli space of 
J-holomorphic curves and then applying appropriate transversality theory. 

I do believe that there should be new invariants by using other calibrated sub­
manifolds. A particularly interesting case is the Cayley cycles in a Spin(7)-manifold. 
Note that a Calabi-Yau 4-fold is a special Spin(7)-manifold. Again the problem is 
about the structure of singular Cayley cycles. This proposed new invariants will 
provide a powerful tool of constructing Cayley cycles in a Spin(7)-manifold, par­
ticularly, holomorphic and special Lagrangian cycles in a Calabi-Yau 4-fold. A 
related problem is to construct new invariants for hyperKähler manifolds by using 
tri-holomorphic maps. A good compactification for the moduli of tri-holomorphic 
maps is needed, but this should be technically easier. Partial results have been 
obtained in [LiT] and [CL1]. 

Another possible invariant may exist for Calabi-Yau manifolds. Let (M, UJ) be 
a Calabi-Yau n-fold with a holomorphic n-form UJ such that 

ujn(-l)]li21^1nl (^-) ÛAÏÏ. (3.1) 

A special Lagrangian submanifold is a submanifold L c M such that UJ\L = 0 and 
0 restricts to the induced volume form of L. If one has a good compactification 
theorem for special Lagrangian submanifolds, then one can count them to obtain a 
new invariant for M. A particularly important case is for Calabi-Yau 3-folds. 

The minimal equation is nonlinear and does have singular solutions. So one 
has to introduce weak solutions. An integral Adimensional current C = (S, 0 , £) 
consists of a Adimensional rectifiable set S 7 of locally finite Hausdorff measure, 
an A*-integrable integer-valued function 0 and a fc-form £ £ AkTS with unit 
norm. Each current induces a natural functional $ c on smooth forms with compact 
support: For any smooth form tp, 

*c(<p)= (<P,OdH, (3.2) 
Js 

where dHk denotes the Adimensional Hausdorff measure. We say C has no bound­
ary if ^c(d'ip) = 0 for any ip. One can define the generalized mean curvature of C 
as the variation of volume. A current C is minimal if its mean curvature vanishes. 
A current C is calibrated by a Aform 0 if O ^ s coincides with the induced volume 
form whenever the tangent space T,XS exists. Of course, a calibrated current is 
minimal, provided that dO = 0 and |0 | < 1. 

7This implies that there is a unique tangent space at a.e. point of S. 
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A fundamental problem in the regularity theory of minimal surfaces is the 
regularity of minimizing currents. A result of F. Almgren claims that an area min­
imizing current is regular outside a subset of Hausdorff codimension two [Aim]. In 
many geometric applications, we will encounter with calibrated currents, for exam­
ple, in the famous work of Taubes on equivalence of the Seiberg-Witten invariants 
and the Gromov invariants, the key technical point is to show that any w-calibrated 
current in a symplectic 4-manifold (M,UJ) is a classical minimal surface, i.e., the 
image of a pseudo-holomorphic map from a smooth Riemann surface ([Ta], also see 
[RiT]).8 This current is obtained as an adiabatic limit of curvature forms of solu­
tions of deformed Seiberg-Witten equations. The problems of this type should also 
occur when we study the Calabi-Yau manifolds near large complex limits. Of course, 
this regularity problem also appears in compactifying moduli spaces of calibrated 
cycles. 

Here is what we think should be true: If C = (S,Q,£) is a Adimensional 
calibrated current, then S can be stratified into JJ, Si such that each stratum Si 
is a smooth manifold of dimension i, which is at most k — 2, and 0 is constant on 
each stratum. 

If the calibrating form 0 is UJ'/U (k = 21) on a symplectic manifold (M,UJ) 

with a compatible metric p, then O-calibrated current is pseudo-holomorphic, that 
is, any tangent space is invariant under the almost complex structure induced by 
UJ and p. In this special case, the conjecture is that S is stratified into pseudo-
holomorphic strata S^j- If the dimension of G is 2, then the conjecture claims that 
C is induced by a pseudo-holomorphic curve. This conjecture follows from a result 
of King when (M,g) is Kahler, i.e., the corresponding almost complex structure is 
integrable. Very recently, Riviere and I can prove this conjecture when dim C = 2. 
When dimAf = 4, it was already known (cf. [Ta], [RiT]). 

A nice way of deforming a surface into a minimal one is to use the mean 
curvature flow. If (M, g) is a compact Kähler-Einstein surface and So is a symplectic 
surface with respect to the Kahler form, then surfaces along the mean curvature flow 
starting from So are also symplectic [ChT]. If the flow has a global solution, then 
So can be deformed to a symplectic minimal surface. In particular, So is isotopie 
to a symplectic minimal surface. However, it is highly nontrivial to show that 
the flow has a global solution. Partial results have been obtained ([CL2], [WaM]). 
Nevertheless, it was conjectured in [Ti6] that any symplectic surface in a Kähler-
Einstein surface is isotopie to a symplectic minimal surface. This has been checked 
for a quite big class of symplectic surfaces in a Kähler-Einstein surfaces with positive 
scalar curvature (cf. [ST]) by using pseudo-holomorphic curves. One can also 
ask similar questions for the mean curvature flow along Lagrangian submanifolds. 
It was proved first by Smocsky [Sm] that the mean curvature flow preserves the 
Lagrangian property. We refer [ThY] for more discussions on the mean curvature 
flow for Lagrangian submanifolds. 

8This is a special case of the main result in [SCh], which states that a 2-dimensional area 
minimizing is a classical minimal surface. But Chang's proof relies on some hard techniques of 
[Aim], so a self-contained proof is very desirable. 
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