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1. Introduction 

Random matrices have their roots in multivariate analysis in statistics, and 
since Wigner's pioneering work [Wi] in 1955, they have been a very important 
tool in mathematical physics. In functional analysis, random matrices and ran
dom structures have in the last two decades been used to construct Banach spaces 
with surprising properties. After Voiculescu in 1990-1991 used random matrices to 
classification problems for von Neumann algebras, they have played a key role in 
von Neumann algebra theory (cf. [V8]). In this lecture we will discuss some new 
applications of random matrices to operator algebra theory, namely applications 
to classification problems for C*-algebras and to the invariant subspace problem 
relative to a von Neumann algebra. 

The rest of this lecture is divided into eight sections: 

Selfadjoint random matrices and Wigner's semicircle law. 
Free probability and Voiculescu's random matrix model. 
Ext(C*(Fkj) is not a group for k > 2. 
Other applications of random matrices to C*-algebras. 
The invariant subspace problem relative to a von Neumann algebra. 
The Fuglede-Kadison determinant and Brown's spectral distribution measure. 
Spectral subspaces for operators in Ili-factors. 
Voiculescu's circular operator Y and the strictly upper triangular operator T. 
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2. Selfadjoint random matrices and Wigner's semi
circle law 

A random matrix X is an n x n matrix whose entries are real or complex 
random variables on a probability space (0, T, P). We denote by SGRM(n,<72) the 
class of selfadjoint random matrices 

Y — I v(n)\n An - (Ay )ij=i 

where Xy, i,j= 1 , . . . ,n are n? complex random variables and 

(X^)i, ( v ^ R e I ^ ) t < j , ( ^ I m l ^ K i 

are n? independent identical distributed real Gaussian random variables with mean 
value 0 and variance a2. In the terminology of Mehta's book [Me], Xn is a Gaussian 
unitary ensemble (GUE). In the following we put a2 = ^ which is the normalization 
used in Voiculescu's random matrix paper [V4]. By results of Gaudin, Mehta and 
Wigner from 1960-1965, the joint distribution of the eigenvalues (in random order) 
of X has density g given by 

n 

gn(Xi,. ..,Xn) = cn J[(Xj - Xi)2 exp ( - - ^ A2) 
i<j i=l 

where cn is a normalization constant, and the (average) density for a single eigen
value is given by 

h^) = WlEM^r)2 

where po, <fii, • • • is the sequence of Hermite functions. Moreover, 

lim hn(x) = —\/4 — x2 l[-2,2](;c)) x £ 
2TT V - - ' l - 2 ' 2 ] l 

(cf. [Me]). This is Wigner's semicircle law for the GUE-case. In the sense of weak 
convergence of probability measures, the semicircle law can be proved under much 
more general assumptions on the entries (see Wigner [Wi]). Arnold proved in 1967 
that the corresponding strong law also holds, i.e. for almost all u in the proba
bility space 0, the empirical eigenvalue distribution of Xn(oj) converges weakly to 
the semicircular distribution ^V4 — x2 l[-2,2}(x)dx as n —¥ oo. Very interesting 
research have been carried out on the level spacing of the eigenvalues in the bulk 
of the spectrum (cf. [Me]) and more recently near the boundary of the spectrum 
(cf. [TW1], [TW2]) for selfadjoint Gaussian random matrices with real, complex or 
symplectic entries (the GOE, GUE and GSE cases), but this is outside the scope of 
the present lecture. 
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3. Free probability and Voiculescu's random ma
trix model 

Voiculescu proved in 1991 [V4] an extensive generalization of Wigner's semi
circle law to families of independent random matrices. In order to state the result, 
we will need some basic concepts from free probability theory (cf. [V2], [V3] and 
[VDN]). 

Definition 3.1 [V2] 

1. A non-commutative probability space is a pair (A,(p) consisting of a unital 
complex algebra A and a functional tp: A —t C such that P(1A) = 1-

2. A C* -probability space is a pair (A,(p) consisting of a unital C* -algebra A and 
a state tp: A —t C on A. 

The connection to classical probability theory on a probability space (0, T, P) 
is obtained by putting 

A = f | IS (Si) 
P=I 

and 

tp(a) = E(a) = / a(u)dP(oj), a£ A 
Jn 

or A' = L°°((i,P) with the same definition of tp. The latter example is a C*-
probability space. To fit random matrices (of size n) into this framework, one must 
instead consider the non-commutative algebra 

oo 

An= f]LP(n,Mn(C)) 
P=I 

with functional 

tpn(a) = E(tr„(a)) = / trn(a(u))du 
Jn 

where tr„ = ^Tr is the normalized trace on Mn(C). 

Definition 3.2 [V2], [V3] 

1. A family (a,),Gi of elements in a non-commutative probability space is a free 
family if for all n G N and all polynomials pi,...,pn £ C[X], one has 

ip(pi(ah) • . . . - P n K J ) = 0 

whenever ii ^ i2 ^ • • • ̂  in (neighbouring indices are different) and 
<p(Pk(aik)) = 0 for k=l,...,n. 

2. A family (ar,)jGj of elements in a C*-probability space (A,ip) is called a semi
circular family if (ar,)jG/ is a free family, a:, = x*, ip(x2k^1) = 0 and 

,(..lf) = _L/_A^,a ._!_(«) 
for all k £ N and all i £ I. 
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We can now formulate Voiculescu's generalization of Wigner's semicircle law: 

Theo rem 3.3 [V4] Let I be an index set and let for each n £ ii, (X\n ),Gj be a 
family of independent SGRM(n, -)-distributed selfadjoint random matrices. Then 

asymptotically as n —̂  oo (X>"')jGj is a semicircular family, i.e. if (ar,)jGj is a 
semicircular family index by I in a C* -probability space (A,tp) then 

lim Etr „ ( X ^ •...• X\n) ) = tp(xil • ... • xip ) (3.1) 

for all p G N and all ii,... ,ip £ I. 
The corresponding strong law: For almost all u £ 0 , one has 

lim trn(X^(oj) •-.-• X£\u)) = y(xit •-.-• xip), (3.2) 

whick was proved independently by Hiai and Petz [HP2] and Thorbjrnsen [T]. 

4. Ext(C*(Fk)) is not a group for k > 2 
Very recently Thorbjrnsen and the lecturer proved that the strong version 

(3.2) of Voiculescu's random matrix model also holds for the operator norm: 

Theo rem 4.1 [HT4] Let r £ N and let for each n £ N (x[n\..., X(
r
n)) be a set 

of r independent S G RM(n,-)-distributed selfadjoint random matrices. Let further 
(xi,... ,xr) be a semicircular system in a C*-probability space (A,ip), where ip is a 
faithful state on A. Then there is a null set N C Q such that for all u £ Q\N and 
all non-commutative polynomials P in r variables 

lim l\P(x{n)(üj),..., X^(üjj)\\ = \\P(xi,..., xr)\\. 

Let F be a countable (discrete) group. The reduced group C*-algebra C*(F) 
is the C*-subalgebra of B(£2(Tj) generated by the set of unitaries {A(7) | 7 G F}, 
where À: F —t B(£2(Tj) is the left regular representation. By the methods of [V3] 
it follows that for the free group Fk on k generators, C*(Fk) can be embedded in 
C* (xi,..., xk, 1), where xi,... ,xk is a free semicircular family in a C* -probability-
space (A,ip) with tp faithful. Hence as a corollary of Theorem 4.1 we have 

Corollary 4.2 [HT4] czj Let k £ N, k > 2. Then C*(Fk) can be embedded in the 
quotient C*-algebra f] Mn(C)/ ]T Mn(C) where 

\[Mn(C) = l(xn)™=i \xn£ Mn(C), sup||a:J| < cx>l 

TMn(C) = {(ar„)~=1 I xn £ Mn(C), lim [|a:J| = o} . 

In particular C*(Fk) is a MF-algebra in the sense of Blackadar and Kirchberg [BK]. 
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The invariant Ext (.A) for a C*-algebra A was introduced by Brown, Douglas 
and Fillmore in [BDF]. Ext(A) is the set of all essential extensions B of A by the 
compact operators K on the Hilbert space A(N), and it has a natural semigroup 
structure. Voiculescu proved in [VI] that Ext(A) is always a unital semigroup, 
and by Choi and Effros [CE] Ext(A) is a group, when A is a nuclear C*-algebra. 
Andersen [An] provided in 1978 the first example of a C*-algebra A for which Ext(A) 
is not a group. The C*-algebra in [An] is generated by C*(F2) and a projection 
p £ B(A(F2)). Since then it has been an open problem whether Ext(C*(F2)) is 
a group (see [V6, Sect.5] for a more detailed discussion about this problem). It is 
well known that a proof of Corollary 4.2 would provide a negative solution to this 
problem (see [V6, 5.12], [V5] and [Ro]). The argument works for all k > 2. Hence 
we have 
Corollary 4.3 [HT4] For allkeN, k> 2, Ext(C;(Fkj) is not a group. 

Remarks 4.4 
a) Corollaries 4.2 and 4.3 also hold for k = oo. 
b) C*(Fk) is not quasidiagonal (cf [Ro]) but the non-invertible extension B of C*(Fk) 
obtained from Corollary 4.2 is quasidiagonal. 
c) C*(Fk) is an exact C*-algebra, but for any non-invertible extension B of C*(Fk) 
by the compact operators, B cannot be exact. This follows from the Lifting theorem 
in [EH]. Other examples of non-exact extensions of exact C* -algebras by K are given 
in [Ki2]. 

In the rest of this section, I will briefly outline the main steps in the proof of 
Theorem 4.1. From (3.2) it follows that for all non-commutative polynomials P in 
r variables 

liminf \\P(x{n)(oj),...,X^(uj))\\ > \\P(xi,... ,xr)\\ (4.1) 
n—»oo 

for almost all u £ 0 (see [T]), so we "only" have to prove that 

limsup[|F(X1
(" )(a;),...,X(" )(a;)[| < \\P(xi,... ,xr)\\ (4.2) 

n—»oo 

for almost all u; G 0. Even the case r = 1 and P(x) = x is a difficult task. It 
corresponds to proving that if Xn is SGRM(n, ^-distributed, n = 1,2,... then for 
almost all u £ 0 , 

limsupAmax(X„(a;)) < 2 liminf Amin(X„(a;)) > - 2 , 
n—»oo n—»oo 

where Amax and A m j n are the smallest and largest eigenvalue of Xn(oj). This 
problem was settled by Bai and Yin [BY] in 1988 using Geman's combinatorial 
method [Ge]. (See also [Ba, Thm. 2.12] and [HT1, Thm. 3.1]). 

Lemma 4.5 (The linearization trick) [HT4] In order to prove (4.2) it is suffi
cient to show that for all m G N and all selfadjoint m x m-matrices ao,---,ar and 
all e > 0, 

r r 

a(ao®l + ^2ai(giX(
i
n)(uj)) Ç c r ( a 0 ® H - ^ a A ï ! ) + ] -e,e{ (4.3) 
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holds eventually as n —¥ oo for almost all u £ ii. Here a(T) denotes the spectrum 
of a matrix or an operator T. 

Lemma 4.6 [HT4] Let ao,... ,ar be as above, and put 

r 

Sn = a 0 <8> 1 + ^ a* <g> x f n ) 

«=i 
r 

s = a0 ® 1 + ^2 at ® xt-
i=l 

Moreover, let Gn,G be the matrix valued Stieltjes transforms of Sn and S, i.e. for 
X £ Mn(C), and Im A = ^(A — A*) positive definite 

Gn(X) = n(idm®trn)((X®l-Sn)-
v)) 

G(X) = (idm®<p)((\®l-s)-1). 

Then Gn(X) and G(X) are invertible and 

r 

a0 + ^ a i G ( A ) a i + G(A)-1 = A (4.4) 
«=i 

||a0 + X!o*Gn(A)o*+Gn(A)"1-All ^ -^(^+PII)2|I(^A)_1||5 (4-5) 
n" 

»2™3 
w}m.eC=^(YJ

ri=i\\aify o n d A = [ | a 0 | | + 4 E L i l l a i l l -

The equality (4.4) was proved by Lehner (cf. [Le, Prop.4.1] using Voiculescu's 
ii-transform with amalgamation [V7]. The inequality (4.5) is more difficult. It 
relies on the concentration phenomena used in Ban ach space theory, in form of [PI, 
Theorem 4.7]. (See [Mi] for a general discussion of the concentration phenomena.) 
Next we derive from (4.4) and (4.5) that 

4(7 
[ |G„(A)^G(A)[|<7A(A+[|A[|)2[ |(ImA)-1[ |7 (4.6) 

when A G Mm(C) and Im A is positive definite. The estimate (4.6) implies that for 
every/GGc°°(R) 

E((tr ro ® tr„)(/(S„))) = (trro ® <p)(f(s)) + O(^) (4.7) 

for n —¥ oo. Moreover a second application of the concentration phenomena gives 

Var((trro ® tr„)(/(S„))) < ^ E ( ( t r r o ® tr„)(/ ' (S„)2)) (4.8) 
oil" 

where Var denotes the variance. Now let g be a G°°(R)-function with values in 
[0,1] such that g vanishes on a(S) and g is 1 on the complement of a(s)+] — e,e[. 
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By applying (4.7) and (4.8) to / = g — 1, one gets 

E((trm®trn)(g(Sn)) = O(^) (4.9) 

Var((trro®tr„)<;(Sn)) = O(^). (4.10) 

By a standard application of the Borei-Cantelli lemma (4.9) and (4.10) imply 

(trm ®trn)(g(Sn(u))) = 0(n-4/3) 

almost surely. Hence the number of eigenvalues for Sn(oj) outside a(s)+] — e,e[ is 
O ^ - 1 / 3 ) 1 almost surely, but being an integer, the number has to vanish eventually 
as n —¥ oo for almost all u £ ii. Hence (4.3) holds. 

5. Other applications of random matrices to C*-
algebras 

A G*-algebra A is called exact if for every short exact sequence of G*-algebras 

0 - • J - • B - • B/ J - • 0 

the sequence 

0 - • A ® m i n J - • A ® m i n B - • A ® m i n (B/J) - • 0 

is exact (cf. [Kil], [Wa]). The class of exact G*-algebras is very large: All nuclear 
G*-algebras are exact and the reduced group G*-algebra C*(T) is exact for any-
discrete subgroup F of a connected locally compact group (cf. [Ki2]). In 1991 the 
lecturer proved that 2-quasitraces on unital exact C* -algebras are traces (cf. [Haal]). 
Combined with results of Handelman [Han] and Blackadar and Rrdam [BR], this 
implies that 

Every stably finite exact unital G*-algebra has a tracial state. (5.1) 

Every state on the A0-group, K0(A) of an exact unital (5.2) 

G*-algebra A is induced by a tracial state on A. 

Later, Thorbjrnsen and the lecturer found new proofs based on random matrices 
for (5.1) and (5.2). The key step in the proof was to show: 

Theo rem 5.1 [HT2] Let A be an exact unital C*-algebra, and let a,\,... ,ar £ A 
be elements in A for which 

2_,a*ìai = C 1 A where c > 1 (5.3) 
«=i 

r 

$ > A * < 1 A (5.4) 
ì=i 

1trTO and t r n are the normalized traces on Mm(C) and M n(C). 
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and let Y^',... , Yr be random n x n-matrices whose entries are rn2 independent 
identically distributed complex Gaussian random variables with density ^ exp(^n|z|2) 
z £ C. Put 

r 

sn = 5> i®y/n) (5.5) 
«=i 

and let a(S^Sn) be the spectrum of S*Sn as a function of u £ ii (the underlying 
probability space). Then for almost all u £ ii 

limsupmax(<7(S'*S'„)) < ( v ^ + l ) 2 (5.6) 
n—»oo 

liminfmin(a(S;S„)) > (y/c - l ) 2 (5.7) 
n—»oo 

The result is a kind of generalization of the results of Geman 1980 [Ge] and 
Silverstein 1985 [Si] on the asymptotic behaviour of the largest and smallest eigen
value of a random matrix of Wishart type. The estimates (5.6) and (5.7) were 
proved by careful moment estimates and lengthy combinatorial arguments. With 
Theorem 4.1 at hand, a much simpler proof of (5.6) and (5.7) can now be obtained 
(cf. [HT4]). 

Theorem 5.1 is not true in the general non-exact case (cf. [HT3]). It is unknown 
whether (5.1) or (5.2) hold for general G*-algebras. Both problems are equivalent 
to Kaplansky's problem from the 1950's: Is every AW*-factor of type III a von 
Neumann factor of type Hi ? 

Let me end this section by discussing another application of Theorem 4.1: 
Junge and Pisier proved in [JP] that 

B(H)®mlaB(H)^B(H)®minB(H). (5.8) 

In the proof they consider a sequence of constants C(k), k £ N: For fixed k £ N 
C(k) is the infimum of all C > 0 for which there exists a sequence of fc-tuples of 
unitary matrices («i , • • • ,uk )TOGN of size n(m) £ N, such that for all m ^ TO': 

||X>jro)®ujro,)||<C. 
«=i 

To obtain (5.8), Junge and Pisier proved that l im^oo — ^ = 0. Subsequently, 
Pisier [P2] proved that C(k) > 2\Jk — 1 for all k £ N and Valette [V] proved, using 
Ramanujan graphs, that C(k) < 2\Jk — 1 when k is of the form k = p+1 for an odd 
prime number p. It is an easy consequence of Corollary 4.2 that C(k) < 2\Jk — 1 
for all k > 2 and hence C(k) = 2s/k - 1 for all k > 2 (see [HT4]). 

6. The invariant subspace problem relative to a 
von Neumann algebra 

The invariant subspace problem for operators on general Banach spaces were 
settled by Enfio [E] and Read [Re] in the 1980's, but for Hilbert spaces the problem 
is still open: 
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Problem 6.1 [Hal, pp. 100-101] Let H be a separable infinite dimensional Hilbert 
space, and let T £ B(H). Does there exist a non-trivial closed T-invariant subspace 
of if? 

More generally, one has the invariant subspace problem relative to a von Neu
mann algebra: 

Problem 6.2 Let M C B(H) be a von Neumann algebra on a separable Hilbert 
space H, and let T £ M. Does there exist a non-trivial closed T-invariant subspace 
K for T, such that K is affiliated with M (i.e. K is of the form K = P(H) for a 
projection P £ M)? 

The problem is only interesting when dim(M) = +oo and when M is a factor, 
i.e. when the center of M is just CIM-

The infinite dimensional factors were divided into 4 types by Murray and von 
Neumann in the late 1930's (cf. [KR, Vol.2]). 

Type IQO: These are isomorphic to B(K) for some infinite dimensional Hilbert 
space. 

Type H i : M has a tracial state, i.,e. there exists a functional tr: M —t C, such 
that t r ( l M ) = 1, tr(S*S) > 0 and tr(ST) = tr(TS) for all S,T £ M. 

Tupe IIQO: M ~ N®B(K) where N is type Hi and dim K = +oo. 
Type III: All other infinite dimensional factors. 

In all 4 cases, problem 2 remains open (the Type IQO case is of course equivalent 
to Problem 7.1). We will in the following address the invariant subspace problem 
relative to a factor of type Hi • 

7. The Fuglede-Kadison determinant and Brown's 
spectral distribution measure 

Let M be a Hi-factor. Then M has a unique tracial state tr, and tr is nor
mal and faithful (see eg. [KR, Vol.2, Sect.8]. The Fuglede-Kadison determinant 
A: M -t [0,oo) can be defined (cf. [FK]) by: 

A(T)=limexp(tr(log(T*T + £l)2)), t £ M. (7.1) 
e.j-0 

If T is in verüble, one has 

A(T) = exp(tr(log|T|)) 

where \T\ = (T*T)z. Moreover A has the following properties: 

A(ST) = A(S)A(T), S,T£M 

A(T) = A(T*) = A(\T\), T £ M 

A(U) = 1, when U £ M is unitary. 

A is an upper semi-continuous function on M but it is not continuous in the norm-
topology on M. 
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Theorem 7.1 (L.G. Brown 1983 [Br]) Let M be a Ih-factor and let T £ M. Then 
the function 

tp: A - ) - ^ - l o g A ( T - A l ) , A G C 
2TT 

is subharmonic and its Laplacian taken in distribution sense 

( d2 d2 \ 

**r=\m+mr (7-2) 
(Xi = Re X, X2 = Im X) is a probability measure in C concentrated on the spectrum 
cr(T) ofT. 

Definition 7.2 The above measure ßj is called Brown's spectral distribution mea
sure for T or just the Brown measure for T. 

Example 7.3 
a) The Fuglede-Kadison determinant and the Brown measure also make sense for 
M = Mn(C), and tr = ^Tr the normalized trace on Mn(C). In this case one gets 

A(T) = V|detT| 
1 n 

ßr = - y~^A* > n ^-^ 
ì=i 

where Ai , . . . , A„ are the eigenvalues of T repeated according to root multiplicity, 
and ÖXi is the Dirac measure at A,. 
b) If T is a normal operator (i.e. T*T = TT*) in a factor of type Hi, T has a 
spectral resolution 

T = f XdE(X). 

In this case ßj is equal to tr o E. 

Methods for computing Brown measures have been developed by Larsen and 
the lecturer [HL] and by Biane and Lehner [BL]. 

8. Spectral subspaces for operators in Ili-factors 
In 1968, Apostol [Ap] and Foias [Fol], [Fo2] introduced the notion of spectral 

subspaces for certain well behaved operators on Banach spaces, the decomposable 
operators (see [LN] for a modern treatment of this theory): 

Definition 8.1 [LN, Definition 1.1.1] An operator T on a Banach space X is called 
decomposable if for any open covering C = V U W of the complex plane, there exist 
closed T-invariant subspaces Y, Z of X such that 

X = Y + Z (8.1) 

a(T\Y) C V and a(T\z) C W. (8.2) 
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If T G B(X) is decomposable, it has a spectral capacity, i.e. there exists a map 
E from the closed subsets of C into the closed T-invariant subspaces of X, such 
that 

£7(0) = 0 and E(C) = X (8.3) 

X = E(Vi) + h E(VM) for every finite (8.4) 

open covering C = V\ U \~2 U • • • U Vn 

E(n%=iFn) = n%=iE(Fn), FnCC closed (8.5) 

CT(T\E(F)) Ç F, F C C closed. (8.6) 

Moreover, a spectral capacity is unique (cf. [LN, Sect.l]). 
In this section we will discuss a new method for constructing spectral subspaces 

of operators which works for all operators in "almost all" Hi-factors, regardless of 
whether the operator is decomposable in the above sense. 

Definition 8.2 A IR-factor M on a separable Hilbert space has the embedding 
property if it can be embedded in the ultrapower Rw of the hyper finite Ih -factor R 
for some free ultrafilter u on the natural numbers. 

All Hi-factors of current interest have this embedding property, and in fact no 
counterexamples are known. The question whether every Hi-factor on a separable 
Hilbert space can be embedded in Ru was first raised by Connes in 1976 [Co] (see 
also [Ki2] and [HW] for further discussions about this problem). 

Let M be a Hi-factor, M C B(H), and let T £ M. If K C H is a non-
trivial closed T-invariant subspace affiliated with M, and P = PK is the orthogonal 
projection on M, then according to the decomposition, H = K®K±, we can write 

T=(TIO ä ) ' (8-7) 

where Tu = PTP and T22 = (1 — P)T(1 — P) are elements of the Ili-factors 
Mi = PMP and M2 = (l-P)M(l-P). Let ßTxl and ßj22 be the Brown measures 
of Tn and T22 computed relative to Mi and M2 (respectively) then by [Br]: 

UT = aßTlt + (1 — a)ßr22 (8-8) 

where a = trM(P)-
The main result of [Haa2] is 

Theorem 8.3 [Haa2] Let M be IR-factor with the embedding property, and let 
T £ M. Then for every Borei set B C C there is a unique T-invariant subspace 
K affiliated with M, such that ßTxl is concentrated on B and ßj22 is concentrated 
on C\B, where Tn and T22 are defined as in (8.7). Moreover, TïM^K) = MT(-B), 

where PK £ M is the projection onto K. 

R e m a r k 8.4 If T is decomposable and B is closed, then the subspace K coincide 
with the spectral subspace E(B) characterized by (8.3)-(8.6). However, already in 
the hyperfinite Ili-factor R, there are operators T which are not decomposable. 
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Corollary 8.5 [Haa2] Let T £ M, where M is a IR-factor with the embedding 
property. If the Brown measure ßj of T is not concentrated in a single point, then 
T has a non-trivial closed invariant subspace affiliated with M. 

Remark 8.6 Corollary 8.5 reduced the invariant subspace problem for Ili-factors 
M with the embedding problem to operators T £ M for which ßr = So (the Dirac-
measure at 0). It can be shown that ßj = b~o if and only if 

lim ((T*)nTn)i =0 
n—»oo 

in the strong operator topology on M (cf. [Haa2]). 

In the rest of this section, I will briefly outline the proof of Theorem 8.3. 
Let M be a Ili-factor and let T G M. Define the modified spectrum a'(T) 

and modified spectral radius r'(T) by 

a'(T) = SUPP(^T) 

r'(T) = max{|A| | AG A(T)}. 

Then a'(T) C a(T) and r'(T) < r(T). 
The classical spectral radius formula 

r(T)= lim ||T"[|" 
n—»oo 

has a modified version (cf. [Haa2]): 

r'(T) = lim ( lim | |T" | | | ) 
p—»oo n—»OO n 

where \\S\\P = trM(\S\p)>>, p > 0. 

Spectral subspace lemma 8.7 [Haa2] Let M be a Ih-factor. (Here we do not 
need the embedding property.) Let T £ M and let F C C be a closed set. Then 

(a) There exists a maximal closed T-invariant subspace K affiliated with M such 
that a'(T\.K) C F, where a'(T\.K) is the modified spectrum of the operator T\.K 

considered as an element of the Ih-factor PKMPK (PK is the projection of 
H onto K). 

(b) Let K(F) be the subspace K defined by (a). Then 

trM(PK(F))<ß(F) 

for all closed subsets F of C 

Random distortion lemma 8.8 [Haa2] Let M be a Ih -factor with the embedding 
property and let T £ M. Then 
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(a) There exist natural numbers k(l) < k(2) < ... and Tn £ Mk^(C) such that 

sup [|T„|| < oo. (8.9) 

(b) For every non-commutative polynomial p in two variables 

lim trfc(n) (p(T„,T*)) = tr(p(T,T*j) (8.10) 
n—»oo v 

where trfc(„) is the normalized trace on Mn(C). 
(c) Furthermore, there exists a sequence T'n £ Mk^ (C) such that 

lim \\T' - Tn\\p = 0 for some p>0 (8.11) 
n—¥oo 

lim A(T' - Al) = A(T - Al) for almost all X £ C (8.12) 
n—»oo 

lim ßr> = ßr weakly in Prob(C). (8.13) 
n—»oo n 

The embedding property is needed in (b). To pass from (b) to (c) we use a 
random distortion argument where we put 

T" — T 4- F X Y^1 

where Xn,Yn are random Gaussian matrices with independent entries and en —¥ 0. 
Subsequently Sniady proved [Snl] that by using a different random distortion, one 
can obtain a stronger result, namely in (c), (8.11) can be replaced by 

lim 1 1 ^ - ^ 1 1 0 0 = 0 
n—»oo 

where || • ||oo is the operator norm. 
The random distortion lemma is used to reduce the proof of Theorem 8.3 to 

the case of M = Mn(C) by an ultraproduct argument. For M = Mn(C), Theorem 
8.3 is a corollary of Jordan's normal form. 

9. Voiculescu's circular operator Y and the strictly 
upper triangular operator T 

Prior to the proof of theorem 8.3, Dykema and the lecturer had constructed 
invariant subspaces for special operators in factors of type Hi. An example of 
particular interest is Voiculescu's circular operator Y, which can be written as 

Y=-j=(Xi+iX2) 

where (Xi,X2) is a semicircular system (cf. Section 3.). The von Neumann algebra 
M = VN(Y) generated by Y is isomorphic to L(F2) (the von Neumann associated 
to a free group on two generators) which is a factor of type Hi • The operator Y is far 
from being normal and for some time it was considered a possible counterexample 
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for the invariant subspace problem relative to the Hi-factor it generates. In [HL] 
Larsen and the lecturer proved that 

a(Y) = D (the closed unit disc in C) (9.1) 

The Brown measure ßy of Y is the uniform (9.2) 

distribution on D, i.e. it has constant density A 

Theorem 9.1 [DH1] For each r £ (0,1) there is a unique projection p £ M = 
VN (Y) such that 

pYp = Yp (i.e. the range of p is Y -invariant) (9.3) 

cr(pYp) C {z £ C | \z\ < r} (9.4) 

a((l - p)Y(l - p)) C {z £ C | r < \z\ < 1} (9.5) 

where the spectra in (9.4) and (9.5) are computed relative to pMp and 
(1 — p)M(l — p). Moreover 

trM(p) = r2. (9.6) 

This result was generalized to arbitrary _R-diagonal elements by Sniady and 
Speicher [SS]. Later Dykema and the lecturer proved 

Theorem 9.2 [DH2] Voiculescu's circular operator is decomposable in the sense of 
Apostol and Foias (see Definition 8.1). 

In [DH2] we also considered the "strictly upper triangular operator" T. It is 
defined in terms of its random matrix model: 

Theorem/Definition 9.3 [DH2] Let for each n £ N Tn denote the strictly upper 
triangular random matrix 

(0 è? ••• t\nJ \ 

T 
ni vln 

An) 
A - l , n 

(9.7) 

\ 0 0 ) 

for which the entries (£•" )ì<J are n
2 ' independent identically distributed complex 

Gaussian random variables with densities ^exp(^n |z | 2 ) , z £ C Then there is an 
operator T in a Ih-factor M such that Tn converges in *-moments to T, i.e. 

t rM(P(T,T*))= lim Etrn(P(Tn,T*)) (9.8) 
n—»oo 

for every non-commutative polynomial P. T is called the strictly upper triangular 
operator. 

The strictly upper triangular operator is quasi nilpotent, i.e. a(T) = {0}, and 
therefore its Brown measure ßj is equal to So- In view of remark 8.6 it could be 
a candidate for a counterexample to the invariant subspace problem relative to a 
Hi-factor. However, this is not the case: 
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Dykema and the lecturer proved in [DH2] that 

nn 

tr((T*T)«) = ^ - T T ^ , n £ N (9.9) 

and in [Sn2], Sniady proved 

tr(((Tk)*TkD = {nk+1)], n,k £ N, (9.10) 

a formula which was conjectured in [DH2]. 
Based on (9.10) and its proof, we recently proved 

Theorem 9.4 [DH3] LetT be as above. Put Sk = k((Tk)kTk)i and let F : [0,TT] -4 
[0,1] be the strictly increasing function given by F(0) = 0, F(TT) = 1 and 

^/s inw . A , v lsin2w n ,n•,•,^ 
pi exp(wcotw) = 1 1 , 0 < v < n. (9.11) 

\ V j TT TT V 

Then F(Sk) converges in strong operator topology to the "diagonal operator" D0 

with matrix model 

D, 0,n (9.12) 

\0 1) 

In particular D0 £ VN(T). Moreover VN(T) is isomorphic to L(F2) and the ranges 
of the projections l[0,t](-Do)j 0 < t < 1, form an uncountable family of non-trivial 
invariant subspaces for T affiliated with VN(T). 
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