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SUMMARY,

This thesis explores the mathematical properties of urban equilibrium
models in terms of their structural forms and solution procedures. The
class of models investigated is based on linear input-output relationships
and nonlinear spatial interaction principles, which are elaborated as
spatial multipliers and have a real-time dynamic interpretation. These
models are usually solved using iterative methods which also involve a
pseudo- or solution-time dynamics. The central task of this thesis is to
match these real and pseudo-time dynamics and to exploit their parallelism

in efficient model solution and the generation of new model structures.

The class of models is first generalised through Tinear equilibrium and
nonlinear optimisation theory, thus setting the context for an elaboration
of their dynamic properties. A fully-dynamic structure is derived and

then collapsed back to pseudo-dynamic form in which both static and dynamic
components exist. A typology of pseudo-dynamic models is derived, and

the notion of enabling efficient model solution through pseudo-dynamics is
demonstrated, first for problems involving locational constraints, then for
adaptive calibration of the model's spatial interaction parameters. A
fully integrated solution procedure is then developed embodying matrix

iterative analysis and analogies with control theory.

A more traditional mode of analysis is also presented in treating the spatial



interaction dynamics as a Markov process. Results from discrete

Markov chain theory are applied, thus enabling the sensitivity and

spatial invariance between model inputs and outputs to be assessed.

These methods which involve the way such models are structured, cast

1ight on the empirical quality of many previous applications using

these types of model. This theory is generalised to models with

many inputs and an empirical demonstration provided. Throughout the

thesis, models are tested using data from the towns of Reading, Peterborough,

Greater London, Central Berkshire and Melbourne.
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PREFACE.

I have been associated with the urban modelling field since its early

days in the 1960's. As a junior staff member in the University of
Manchester, I was attracted to the area when it was widely thought that
mathematical social science held the key to the future. Nothing I have
come across since then has dissuaded me from that view although the view

is no longer popular among 1less mathematically inclined social scientists.
This thesis represents some of my more recent work in this field which
builds on some of the earliest developments. During the last 20 years,

I have had the good fortune and privilege to meet most of the contributors
to this field and I have collaborated with many of them. It might therefore
seem strange to some that I should be submitting a doctoral thesis when

I have researched the area for so long. A word of explanation is thus
warranted, and in any case, this preface also provides me with the all-too-
rare opportunity to indulge in some personal reminiscences which provide

a context.

The material I have included in this thesis represents a rather coherent
theme in urban modelling research. It is concerned with technical questions
of model solution which have both substantive implications for urban systems
theory and implications for the relevance of empirical work. About one
third of the work has already been published in journal article form or in
conference proceedings, but the rest has not. Although the material hangs

together well and represents a line of research I have worked on for some

iv.



8 years, I do not feel that all this material can be published in

journal article or book form. In a sense, it is too technical. That

is to say, some of the material is so detailed that journals in the fields
which specialise in this research have not really developed to the point
where the publication of such detailed work is appropriate. In short

the lack of any normal science in this field is reflected in the types of
work journals feel able to publish. I make this point rather strongly

in both the Introduction and Conclusions to the thesis, and readers will
note its recurrence elsewhere. In this sense then, a thesis is an ideal
place to publish such work in an integrated way which should appeal to

a small group of dedicated researchers. This is the main reason why I

have put the material together in this form.

I have many people to thank, for helping me in this research. From
Manchester days, George Chadwick set me on the modelling track which

took me to Reading where I enjoyed a fruitful cooperation with Dave Foot
and Peter Hall. But it was in the Faculty of Engineering in the University
of Waterloo where these ideas firmly took root in my sojourn there in
1974-75. In Waterloo, Lionel March and myself began to explore sequential
processes in urban models using information-minimising principles and we
published two papers (Batty and March, 1976; Batty and March, 1978) which
form the natural antecedents of this research and are strongly reflected
in Chapters 3 to 6. I cannot now remember how I got started on pseudo-
dynamic models as such, but in late 1976, it was Pedro Geraldes who told
me of similar work by Yossi Berechman. I wrote to Berechman and we met

in Buffalo in the summer of 1977. During this period, I read Ian William's
papers on the subject and we also corresponded in 1978.  That was the

period when I wrote early versions of Chapters 3 to 7.



My work really received a boost from the publication of Arie Schinnar's
paper in 1978 which led to Chapter 10 and to my interest in Markov
processes in urban models. Then at UWIST in 1981, I began to work on
James Coleman's Model of Collective Action (Coleman, 1973) in an entirely
different context. Somehow, Coleman's model provided a more general frame-
work for conventional urban models in one sense and a more specific one
in another. Chapter 11 was the result of these ponderings and was
researched and written at the University of Melbourne where I was a
Visiting Fellow in 1982. Richard Spooner helped me a lot with these
ideas and I have to thank the Economic and Social Research Council (ESRC,
formerly SSRC) for grant support which enabled me to write Chapters 2

and 11, and to employ Richard Spooner.

I have to thank my secretary, Beryl Collins, who has done such a magnificent
job typing the thesis at the same time as helping me in all my other diverse
tasks. Finally, I thank my family for their tolerance of my indulgence

in what to them must seem the most curious of projects.

MICHAEL BATTY
Welsh Saint Donats,
Vale of Glamorgan.

March 1984,
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CHAPTER 1.

INTRODUCTION,

“The main role of models is not so much to
explain or predict - though ultimately these
are the main functions of science - as to
polarize thinking and to pose sharp questions."

Mark Kac, Science, 166, 1969, p.699.

The purpose of this thesis is to pose sharp questions, questions
concerning the potential for improving conventional urban models to the
point where such models become operationally useful, and questions
concerning the conditions under which such models can be used in the
most constructive way. It is my belief that there is considerable
latent potential within conventional urban models for addressing a
variety of urban problems and that this potential has, by and large,
not been realised so far. Although the models which form the starting
point of this thesis have been developed throughout the last 20 years,
there have been so many different approaches and so few researchers,
that most of the field has been preoccupied with examining rather
dramatically different strategies for model use and design. Consequently,
the more painstaking, laborious 'normal' science which follows in the
wake of new approaches, has not been engendered in this field. Urban
modelling 1ike many areas in the social sciences, thus lacks the

development of a ‘normal' science in Kuhn's (1970) terms.

In the social sciences, various commentators explain the preoccupation



with conflicting paradigms, the lack of consensus over any 'correct'
approach, and the inability to develop highly contextual detailed
research in various ways, but generally either as evidence of a pre-
scientific situation, or as an intrinsic feature of social science
theory and knowledge. However, there do exist areas of the social
sciences such as mathematical economics and psychology which appear
to be characterised by normal scientific activity, notwithstanding
the considerable controversy which surrounds the value of such work.
Urban modelling is similar to these areas and the fact that it has
not been characterised so far by normal scientific activity is due to
the small size of its research effort and its strong links to practice,
particularly planning practice, which has been particularly unstable

over the last two decades.

It is the contention of this thesis that a major reevaluation of

what has been developed in urban modelling by researching the detail

of conventional models, will lead to new insights of profound importance
to the field. Rather than changing one's approach to modelling when
models do not seem to be yielding the desired results, it might be
possible to modify existing models to cope with such problems, but

only after much more detailed research into their structures has been
accomplished. There is a dramatic example of this strategy in this
thesis. In the evolutionof the field, it was thought that different
approaches would be required to resolve the inadequacies of conventional
urban models in their treatment of time, their ability to characterise
appropriate economic processes and such-1ike. The field is character-
ised by such shifts but failure to explore existing models to an

appropriate level of detail has not enabled the importance of model



structure in generating results to be determined.

One conclusion of this thesis is that conventional models may produce
trivial spatial results because the model's mechanisms are spatially
insensitive to the way its structure is designed. This finding puts
in doubt many model applications made during the last 20 years. It
is a conclusion which takes most of this thesis to develop and it is
built on a detailed knowledge of how the field has developed. But

the fact that it has not been picked up by the field as a major
question to explore shows the field's preoccupation with 'big questions'
which spinoff from the obvious, superficial limitations of urban
models, rather than the small, not so obvious, indeed hidden Timits
which only indirectly reveal 'big questions'. This is a negative
conclusion of this thesis but equally there are many positive findings

which aid better solution and design of conventional model structures.
TWO DECADES OF URBAN MODELLING.

The first urban models were built in the Unitéd States between 1960
and 1965, and during that time, four very different approaches to
simulating urban land use and activity systems emerged. These were
embodied in four very different modelling styles. The simplest
based on linear representations of known urban relationships and
behaviour is best seen in econometric models such as the EMPIRIC
(Hi11, 1965).  Such models unlike their economic counterparts, were
not based on well-tempered urban theory but on commonsense relation-
ships. 1In contrast, their solution was by the latest techniques of

econometric analysis. The second approach was also based on known



urban relationships but embodied these in nonlinear ways, and
particularly made use of well-known nonlinear gravitational relation-
ships. The Lowry model (Lowry, 1964) is the most famous example,
based on more considered urban theory than the EMPIRIC model but

solved in a more ad hoc manner.

These two model types were based on known relationships and did not
contain any implication that such behaviour could be explained as
the outcome of an optimising process. In contrast, both linear and
eventually nonlinear model types emerged where optimisation constituted
the basic way of representing urban relationships. The emphasis on
using urban models in plan-making Ted to Tinear optimising models
based on Tinear programs which 'explained' or 'optimised' the
distribution of land uses and activities through minimisation of
some cost function. Schlager's (1965) Land Use Plan Design Model is
the clearest example. Other models based on individual optimising
strategies as contained in the rationality assumptions of utility
theory were developed. The model due to Herbert and Stevens (1960)
was a linear programming approximation of Alonso's (1964) theory of

the urban land market based on micro-economic utility theory.

These distinctions - linear versus nonlinear, and optimising versus
nonoptimising - reflect basic dimensions which continue to characterise
urban models, but since the early 1960's, there has been a considerable
effort to unify these differences in the effort to see models as
special cases of a more general model structure. As Chapter 2
demonstrates, this quest has been extremely successful and the field

is now characterised by a much clearer view of how these different



model types relate to one another. Moreover, this unification has
succeeded in showing how spatial interaction is central to land use -
activity modelling, and how macro (regional) and micro (urban)
economic theory can be linked to statistical optimisation and econo-

metric analysis through disaggregate theory.

Many of the early reviews of urban modelling (see for example, Lowry,
1965) identified another distinction involving the treatment of time.
Models were classified as static or dynamic with the assumption that
static models represented simplifications, aggregations or cross-
sections of models based on dynamic processes. However during the
last 20 years, progress in building dynamic urban models has been
sTow. Many of the earlier attempts involved simply indexing what
were in effect static models, in terms of time, and thus contained
no theory or analysis of dynamic behaviour. In Samuelson's (1948)
famous phrase, time was not involved in an ‘'essential way' in such

structures.

It was not until Forrester (1969) published Urban Dynamics that
attention became focussed on dynamic processes per se and even then,
Forrester's approach emphasised issues involving simulation and
complexity over and above dynamics. In the last five years, however,
an entirely different approach to dynamics has emerged based on
embedding static urban models into dynamic processes; that is, by
coupling existing urban models reflecting equilibrium conditions to
processes generating disequilibrium, such processes being based on

the dynamics of discontinuity, catastrophe and fluctuation. Wilson's

(1981) work is central to this as is Allen, Sanglier, Boon, Deneuborg



and De Palma's (1981) work and operational models embodying similar
ideas are already making their appearance (Schneider, 1976; Varaprasad

and Cordey-Hayes, 1982).

These developments in linear modelling, optimisation and dynamics all
constitute an essential backcloth against which this thesis has been
written. In particular, the starting point of this thesis will be in
terms of linear modelling, but in developing a linear analysis of
existing model structures,forays into optimisation theory particularly
relating to the statistical derivation and calibration of spatial
interaction models, will be made. The recent advances in urban model
dynamics just referred to will not constitute a theme to be developed
here. They do however provide an important contrast with the dynamics
presented here in that the dynamics elaborated in the sequel are
concerned with the mechanisms and behaviour of static model solution,
rather than the wider processes of urban dynamics. Indeed, the
reference to pseudo-dynamics in the title to this thesis reflects a
definition of the dynamics of model solution, not the dynamics of

urban processes.

To set the context to this work, the second chapter will present a
review of developments in linear modelling and optimisation theory.
These developments are those concerned with the unification of the
field referred to above and in particular, Chapter 2 will emphasise
the value of linear analysis in guiding research into model structure.
In essence, this thesis takes as its starting point the traditional
static urban model such as that portrayed by Lowry (1964) but as

Chapter 2 emphasises, this model is one from a very general class of



urban models. It is thus essential to continually generalise the

results from this thesis to this broader class.

The models presented here will be developed in Tinear form as
equilibrium conditions and the general goal of this thesis is to
examine the kinds of linear dynamics which give rise to such equilibria.
These linear structures will initially be torn apart and their cross-
sectional mechanisms elaborated into fully-dynamic structures which

will then be collapsed back to cross-sectional form. But on the way,
the idea of a pseudo-dynamic model will be identified as a structure

in which its explicit dynamics aids the solution of its cross-sectional
form through notions concerning iteration and the reallocation of

activity.

Once the pseudo-dynamic theory has been developed, it is then used

to examine three problems involved in solving conventional urban models:
the incorporation of locational constraints, the calibration of the
model's global parameters on spatial interaction, and the simultaneous
solution of the model to incorporate constraints and to calibrate
parameter values. Various algorithms associated with these mechanisms
are tested, with each algorithm introduced representing an improvement
or generalisation of the preceding one. However out of this research
there then comes a theoretical statement of pseudo-dynamic processes
based on the distinction between multiplier and spatial Markov processes.
As is indicated in Chapter 2, these various developments present aids

to model design and development in an empirical context which lead to

important results concerning model calibration and spatial variation.



THE CHRONOLOGY AND ORGANISATION OF RESEARCH.

The ideas on which this thesis is built relate to research undertaken

by the author beginning over a decade or so ago. In particular, the
basic idea of tearing apart the linear structure of the Lowry model

and elaborating it in dynamic form through its multiplier relationship,
was used as the basis for a fully-dynamic urban model of the Reading
region in 1971 (Batty, 1976). This type of urban model was also
subsequently developed by Ayeni (1979) and by Webber (1979). A

parallel stream of research by the author relates to examining the
dynamic implications of spatial interaction modelling and in particular,
a dynamic form of information-minimising developed as a two-stage
process (Batty and March, 1976) and as a temporal form (Batty and March,
1978).  These ideas were also developed simultaneously by Snickars

and Weibull (1977) and later by Webber (1979), and this has important
implications for the way spatial interaction models are handled 1in

Chapters 3 to 9.

Other research has been influential in guiding the work reported here.
For example, the pseudo-dynamic form of model developed in Chapters

3 to 9 has similarities to Berechman's (1976) work. The complete

movers pseudo-dynamic model presented first in Chapter 4 but exhaustively
in Chapters 8 and 9 is closely related to Baxter and Williams' (1975)
model. The motivation for Chapters 10 and 11 is based on relating

the ideas of Chapters 6 and 7 to Schinnar's (1978) work on spatial
invariance in the Lowry model. Yossi Berechman, Ian Williams and Arie
Schinnar all commented on the relationship of these ideas to their own

when they were first explored by the author. Since then, the ideas of



Chapters 10 and 11 (and of 2) have been related to other linear
models, particularly to Coleman's (1973) model of collective action
based on social exchange, and the author has developed these ideas

in rather different vein (Batty, 1981a).

It is extremely important for the reader to be aware of the steps in
this research as contained in the subsequent chapters for it is all
too easy to disguise one's tracks in an effort to present a finished
product. Chapters 3 to 11 were written and researched over a five
year period from 1977 to 1982 in the given order, and Chapter 2, the
review, was written last. In fact, Chapters 3 to 9 were researched
over an intensive period in 1977-1978 while Chapter 10 was written in
1979. At this point, the ideas of Chapter 10 were developed in a
different context as generalisations of Coleman's (1973) model, and as
this work accomplished in 1980-1981 is not strictly concerning urban
models in the sense portrayed here, it has not been included in this
thesis. Finally, this work veered back to urban modelling and

Chapters 11 and 2 were written in 1982 and 1983 respectively.

A number of case studies have been employed here based on data for

the Reading urban area (1966), Peterborough New Town (1971), the London
Traffic Study Region (1964), the Area 8 (Central Berkshire) Planning
Region (1971) and Greater Melbourne (1976). As these data bases are
not developed substantively here (the emphasis in this thesis is not

on the case studies per se), no details are given although the
interested reader is referred to other articles by the author for such
details (Batty, Bourke, Cormode and Anderson - Nicholls, 1974;

Batty, 1976; Batty, 1978).



Finally, the chapters are organised as follows. Chapter 2 sets

the context to this research by a review of linear model structures
and optimisation theory, but as this chapter contains a synthesis,
several new results particularly relating to input-output analysis
and linear urban models, are presented. In Chapter 3, the idea of a
pseudo-dynamic model is developed through a fully-fledged dynamic
model incorporating movers and stayers which is collapsed back to
closed form. A typology of model types is generated from this
closed form in Chapter 4, and one model type from the typology

adapted to handle locational constraints in Chapter 5.

In Chapter 6, another version is elaborated to handle Tocational
constraints and to calibrate spatial interaction parameters, and an
algorithm for this is developed in Chapter 7. In Chapter 8, a

further model based on complete mover streams of redistribution and
relocation, related to matrix iterative analysis is presented, and
algorithms for this developed in Chapter 9. The thesis then changes
direction and introduces Schinnar's (1978) results in Chapter 10

where these are generalised in terms of the Markov representation of
spatial averaging contained in Chapter 6. Finally, this generalisation
is taken further and given empirical support using data from Melbourne

in Chapter 11. Conclusions are then briefly drawn out in Chapter 12.

NOTATION AND PRESENTATION.
Each chapter is relatively self-contained in that ideas and equation

systems introduced in earlier chapters are repeated if they are to be

elaborated in the given chapter. This duplication is quite purposeful

10.



and never excessive, and it is also essential in that as the
notational requirements of different parts of this thesis vary, it

is necessary to redefine notation occasionally. Moreover, this
enables key ideas to be continually emphasised. At times, repetition
is necessary because a model is presented with a slightly different
emphasis. For example, the Lowry model in Chapters 2, 10 and 11 is
presented in distributional terms in contrast to the same type of

model in Chapters 3 to 9 which is given in absolute activity terms.

Throughout the text, an effort has been made to maintain notational
consistency. For example, zones are normally subscripted by i and j,
although the number of zones is defined variously as N, M, n, mor I,

J. Other indices k, 1, m, n are used more generally for activities
and/or zones. In terms of the time dimension, time is indexed by

t, 1, T, sometimes by m, n. Where possible variables are defined

using an obvious notation: for example, E, e as employment, P, p as
population, but this depends on context. Where population is endogenous,
employment exogenous, y and x respectively are used to emphasise the

causal relationship.

Vectors and matrices are defined by underlining. Lower case under-
lines, e.g.: x are 1xN row vectors while upper case e.g.: A are NxN
matrices. Matrix multiplication is also based on consistent
dimensioning. Column vectors are usually transposed row vectors,
for example x' or ET but note that the prime' can also mean the
first derivative or a general index while T can be trips or time.

The precise meaning will be obvious from the context. In the sequel,

models will normally be represented in matrix terms where a row vector

11.



y is output from a row input vector x transformed by Aasy =xA
However in Chapter 10, to preserve the comparison with Schinnar's
(1978) paper, such models are given as y = A x where y and x are now
column vectors, with y, x and A clearly transposes of the usual row
defined variables. Apart from these differences, this thesis is
presented using the conventional notation of the field as seen in

books such as Wilson (1974), Batty (1976), Oppenheim (1980) and Foot
(1981).
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CHAPTER 2.

LINEAR AND NOMNLINEAR STRUCTURES FOR URBAN MODELS.

In a field as rich and diverse as urban modelling, it is tempting to begin

a review of technical developments during the last twenty years by attempting
as wide a synthesis as possible. However during its short history, the
field has been characterised by the development of certain significant
themes and in this introductory chapter, it is proposed to review a Timited
number of such themes to give a flavour of the achievements and difficulties
which characterise the wider field. Moreover, a technical review such as
this one must seek to synthesise developments in a constructive way for the
main purpose of this chapter is to point the way forward within the limits
set rather than just review the past. Thus a major conclusion from this
review will relate to those research questions which emerge from the present
state-of-the-art, some of which will form the themes to be developed

during this thesis.

It is useful to first characterise the development of urban modelling in
terms of theoretical contributions and practical applications and elaborations.
When the field first emerged in the early 1960's, developments were practice-

led and rooted in empirically defined problems. Since then the practical
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context to such work has changed dramatically, and together with the
gradual maturation of the field, modellers have looked harder and deeper
into the theoretical foundations of urban systems. The field is now quite
different from its early form in that theoretical work now dominates and
there is a comparative dearth of practical applications. However its
development is characterised by one central theme which relates to the
unification of a variety of modelling styles and techniques, and it is

now possible to tie together the diversity which characterises the field

in a way which has only become possible quite recently.

Unification is best seen in the way descriptive and predictive models of
urban structure can now be tied to their presé%iptive counterparts.  The
main way in which such 'behavioural' models have been linked to "normative'
models is through ideas about optimisation, in terms of substantive questions
related to optimising behaviour and through optimisation methods. It is now
possible to see the models of the 1960's such as those associated with Lowry
(1964), Herbert and Stevens (1960) and Schlager (1965) as forming part of

a more general model framework in which each can be regarded as a particular
case. Closely connected to such developments is the notion that realistic
model structures are neither linear nor nonlinear in terms of the way
variables are related but that both forms of technique can and should be

used to illuminate model structure. This intermixing of different modelling
styles appears in many guises: 1in exploring models as accounting structures,
in model calibration, in extending models to deal with multi-activities and
in integrating major sectors of the urban and regional system such as the
demographic and economic sectors. The major achievement of the last decade
has in fact been in enabling such diversity to be explained, elaborated and
developed in a unified framework, and one major goal of this review is to

illustrate how this has and is being pursued.
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Several other themes can be considered significant. The essential unjty
of land use and transportation was the watchword of the 1950's although

in the early development of urban modelling, many models were designed in
which transportation was implicit or even absent. Since then relevant
models of macro-urban or metropolitan structure have always been under-
pinned by ideas concerning spatial interaction and this may partly explain
the dearth of econometric modelling at the urban land use level. The
field has also been preoccupied by questions of statics and dynamics.
Static models have come to dominate until comparatively recently for

most developments of dynamic models have been static in their original
conception. Less progress has been made here than in the area of optimis-
ation although of late new conceptual insights into the evolution of urban .
systems have been generated by studies of theoretical urban dynamics. In
particular, questions of disequilibrium in terms of demand and supply
issues, and notions concerning discontinuity and threshold have been
addressed through dynamics, and there have been attempts to treat static
models as the equilibrium conditions of such dynamic processes (Allen,
Sanglier, Boon, Deneunbourg and DePalma, 1981; Wilson, 1982). In this
thesis, some of these ideas will be hinted at through concepts involving

the dynamics of model solution rather than urban dynamics.

The broader, more substantive issues will not be addressed here. Suffice

it to say that there are still major questions concerning the relevance

of those aspects of the urban system which are embodied in the mathematical
urban models treated here. Although modelling techniques have advanced
dramatically in the last twenty years, the system being modelled has

remained reasonably stable, notwithstanding equally dramatic changes in

the perceptions of what planners and policy-makers consider to be significant

in urban terms.  Although these questions are important, this review will
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focus on those narrower technical developments associated with the

unification of the field alluded to above.

As an introduction to these questions, a brief account of developments

in linear and nonlinear urban modelling, in optimisation and spatial inter-
action, and in integrated forecasting will be presented in the next section.
Then the main focus of this review will be established: a general Tinear
framework will be presented and various models such as the Lowry model will
be derived as special cases. The use of linear analysis in detecting the
significance of causal structure in such models, and in operational issues
such as the dynamics of model calibration and solution will be noted. The
emphasis will then switch to nonlinear ana]ysi; of the same models through
optimisation. Through these techniques, it will be clear how similar models
can be explored in quite different ways, each way enriching the other and

opening up further significant research questions.
THE DEVELOPMENT OF GENERAL URBAN MODELS.

Urban modelling has always been characterised by the development of partial
models dealing with well-defined subsystems of the urban system and the

use of these models as building blocks in the construction of more general
models. Such partial models have been 'developed in depth and thus their
coupling together to form more general structures has proceeded along fairly
ad hoe lines. For example, regional economic models such as economic base
and input-output have been coupled to spatial interaction models to form
Lowry-type models and such coupling has only been explored in terms of the
resulting more general model in the very recent past. Indeed in the
development of even more comprehensive models where demographic models are

linked to regional economic and spatial interaction, the integration is
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even weaker and as yet there are few if any approaches enabling such

structures to be developed in a direct and consistent way.

In the development of general models in this ad hoc way, different types

of model techniques have been freely mixed. For example, the original
Lowry model was stated by Lowry (1964) as an implicitly nonlinear system
only to be immediately put into a Tinear framework with similarities to
input-output analysis by Garin (1966) and Harris (1966). Wilson's (1974)
development ofthe spatial interaction components was based on nonlinear
optimisation through entropy-maximising but this was achieved within the
linear structure of the original model which he regarded as forming the
constraints and accounts characterisiﬁé the framework within which spatial
interaction took place. It was not until Coé]ho and Williams (1978)
developed the model in a comprehensive nonlinear programming framework

that anything with the power of the Garin linear form was established in
nonlinear terms. Since then the idea of optimisation has been used to
relate the Lowry model to the TOPAZ model (Sharpe and Karlquist, 1980)

and to elaborate this model into various multi-activity versions (Leonardi,
1981). This theme of optimisation as a unifying and integrating feature
in model design will be elaborated here in the context of the linear frame-
work in which models such as the Lowry model have evolved. But before

this review develops this idea in formal terms, a brief history of the

key developments in optimisation, linear analysis and integrated fore-

casting will enable the context to be set.

The general form of spatial interaction model which was stated in analogy
to gravitational force in physics was first developed in the formal frame-
work ofoptimisation in the 1960's. Wilson (1967) amongst others used
entropy-maximising to develop a most probable form for the model while
Murchland (1966) set the model in a general mathematical programming frame-

work which emphasised Tinks to the more substantive question of what was
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being optimised. The link between linear programming transport models

and gravity models was established by Evans (1973) and used by Wilson

and Senior (1974) to establish a more general nonlinear programming frame-
work for entropy-maximising. Since then Erlander (1980) and Leonard (1978a)
have elaborated the framework in diverse ways and there have been attempts

in transport to 1ink distribution and assignment models in this way.

Wilson (1982) himself has been concerned with embedding this approach in a
wider dynamic context in which the activity variables between which inter-

action takes place, vary systematically through time.

In terms of general urban models, entropy-maximising has been used to
establish consistent submodels in terms of thehway locational attractions,
constraints and parameters are handled but until the work of Coelho and
Williams (1978), entropy-maximising was not used to generate general

model structures directly. Coelho and Williams showed how Lowry-like

models could be generated in a nonlinear programming framework which enabled
several developments: Jjoint estimation and solution in contrast to previous
practice where estimation and solution were achieved separately, the
specification of primals and their duals which enabled more efficient
solution and new substantive interpretations of model parameters, and the
establishment of relationships between these models and more disaggregate
behavioural forms. The Coelho-Williams framework has since been built

upon by Bertuglia and Leonardi (1980a) in several works and by Brotchie's
group (Lesse, Brotchie, Roy and Sharpe, 1978). One interesting and
somewhat eccentric early development of general models in the same spirit
was Broadbent's (1973)representation of the Lowry model in an activity-
commodity framework. This was never taken further but has been used recently

in the design of integrated forecasting models.
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The original linear framework for the Lowry model stated by Harris (1966)

and Garin (1966) was suggestive in its relationship to input-output analysis.
However, the model proved difficult to generalise to input-output form due

to the separability of economic base relations and spatial interaction, and
the general problem of reconciling economic base theory with input-output
(see Romanoff, 1974). It was not until 1977 that the problem was finally
resolved by Macgill1(1977) who developed a demand-driven version of the

Lowry model in input-output format which contrasted strongly with the
conventional model in which the economic base mechanism was based on supply-
driven considerations. At present, Macgill's treatment is the only formal
statement of the Lowry model as an input-output model although Williams (1979)
has developed an algorithmic supply-driven fréﬁework of which the Lowry model
is a special case. Leonardi (1978b) and Bertuglia and Leonardi (1980a) have
presented a formal version of the supply-driven framework which will be

used as a starting point here. Finally, the author has used the linear
framework as a vehicle to enable efficient calibration of the submodels

and as a means of assessing the spatial effect of inputs on outputs,
following Schinnar's work (Schinnar, 1978). These developments will be
presented in later chapters in considerable detail as they form the themes

of this thesis, although it is important to note them in context now.

Attempts to integrate the general model withother sectors of the urban and
regional system have been achieved in more ad %oc ways. Gordon and Ledent
(1980) show how the Lowry model can be nested within a regional framework
where input-output and demographic models are integrated (see also Gordon
and Ledent, 1981) and Batey and Madden (1981) develop such integration
between input-output and demographic sectors using an activity-commodity
framework. They also report that the Lowry model can be elaborated within

such a framework. Attempts have also been made to integrate such urban
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models with the conventional transport model (Echenique, 1977; Hutchinson,
1976) while extensions to incorporate household dynamics and transport

behaviour at a highly disaggregate level have been pursued by Mackett (1981).

Several dynamic versions of this form of general model exist but in essence
these are either 'dynamicised' versions of the static model (Said and
Hutchinson, 1980; Mackett, 1981) or versions in which the model's internal
mechanisms are considered as dynamic mechanisms in the temporal sense (Batty,
1976; Webber, 1979). These models all tend to be designed with operation-
ality in mind. More recently however, Wilson (1982) and Allen, Sanglier,
Boon, Deneuborg and DePalma (1981) have taken a different approach to
dynamics in which activities are assumed to change in relatively tractable
ways, and the system behaviour which may be surprising, is characterised

by the interaction of these activities. This approach to dynamics is also
offered by Wilson (1982) as a solution to the problem of matching demand and
supply. In a static context, demand-supply adjustments in urban models

are usually accomplished in ad hoc ways although Echenique, Feo, Herrera

and Riquezes (1974) have developed some consistency in the use of such
technigues. The development of Lowry's (1964) model using the ideas of
Forrester (1969) has found Tittle favour but there are some noteworthy
applications (Burdekin, 1979; Bertuglia, Occelli, Rabino and Tadei, 1980).
Of more operational interest is the recent model of Varaprasad (1980) which
incorporates some of the ideas of nonlinear dynamics being pursued by

Wilson.

This review will now turn to a more formal exposition of certain of the key
themes alluded to above. We will first state a multi-activity Tinear
framework which we refer to as a spatial input-output structure. Conventional

models are special cases of this framework but the value of the general
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model is to point to model structures which have not yet been developed
but might seem relevant and feasible. Moreover such frameworks can be
used to aid empirical development of appropriate model structures and to
anticipate a major conclusion of this review, such theoretical-technical
developments would appear essential in guiding empirical applications.
Nonlinear derivations of urban models will then be reviewed and linked
to the linear framework, emphasising yet another conclusion of this review -
the use of linear and nonlinear frameworks simultaneously to aid modeT
design and application. Most of these developments have occurred since
the mid-1970's and the time would now seem ripe for the use of many of
these ideas in an empirical context. This then will form the major
conclusion to this chapter and will set the tone for the rest of this

thesis.

SPATIAL INPUT-OUTPUT STRUCTURES.

We will develop a general spatial model in which activities are Tinked to
one another in causal terms at a macro-level and linked in spatial terms
at a lower level. Without loss of generality we will assume that there
are N activities and I zones or spatial units over which this interaction
takes place. If interactions are absent, the model can handle these
without reducing the number of activities or zones (to M or J respectively).
This assumption simplifies the presentation. Activities are indexed by
the superscripts n,m = 1,2,..,N and in locational terms by the subscript
indices i,j = 1,2,..,I. Relationships between activities at the causal
level are indexed by mn and at the spatial level by ij. The first index
in each pair represents the origin or source of the relationship, the
second the destination or sink. We will also assume that there are N

exogenous activities in I zones and the framework is able to generate the
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same number of endogenous activities.

With these assumptions, define yg and xg as the respective amounts of
endogenous and exogenous activity n in zone j. These are elements in the
1 x I row vectors ln and 5?. The dependence of activity n on m is given
by the scalar o™ at the causal level while at the spatial level, the
dependence 1is given by AT? which is the typical element in the T x I
matrix A@n. The model is based on the following general relationship:

n ;am” §yT ATS + xg , ¥n o, (2.1)
which clearly represents a set of linear simu]faneous equations, soluble for
[ln], given the usual conditions on the form of the matrix [Awn].

Equation (2.1) displays a major property of the system, that of the
separability of causal from spatial dependence. This condition can be
relaxed but in the development of such models to date in an urban context,
it rarely has been. Note that equation (2.1) has the same form as the

framework presented by Bertugiia and Leonardi (1980a).

In this context where the central interest is on spatial distribution it

is convenient to represent Xn in distributional form. Then

zyl =1, ¥n . (2.2)
j J

The causal relations a™ also satisfy the following conditions

0<a™<land0gzam <1

m

(2.3)

As the model in equation (2.1) is concerned with transforming distributions
into one another, the matrix Amn is defined as a transition probability

matrix or row stochastic matrix where
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i3 =1, Ymn (2.4)

Finally to ensure that the system is closed, the exogenous input xg is

defined as
x? = (1 - zam”)ig , (2.5)

m
the unweighted input ;2 also being represented in distributional form

so that

X% = 1, n. (2.6)
1

J
Using equations (2.2) to (2.6) in (2.1), the model can now be written as

n mn _..m ,mn _ .mny ’n (2.7)

2 5

m i m
which can easily be visualised as a flow structure. The separability of
causal from spatial dependence can also be easily assessed by summing
equation (2.7) over j and using the definitions in (2.2) to (2.6). If it
is required to convert the exogenous or endogenous distributions into

total activity form, it is only necessary to multiply these values by total
activity values X" and Y" respectively. In this way, the outputs from this
model can be linked directly to more conventional model forms such as

input-output models or Lowry models.

We can represent equation (2.7) in block matrix form as

Y= g™y AT L, (2.8)

m
or in supermatrix form as

Yy=yAaA+x ’ (2.9)

where y is a 1 x NI row vector composed of the vectors l], y2,...,¥N,

X is a row vector of similar structure and dimension composed of the
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vectors 5", and A is an NI x NI supermatrix, each block being formed from

o Amn’ Vmn. Equation (2.9) is of the conventional input-output form

and given the definitions in equations (2.2) and (2.6), and assuming linear
independence, the solution is of the form

y=x (-8 (2.10)

(I - A) " is a Leontief inverse and has the usual properties of such a
multiplier, that is, it can be expanded into a converging matrix series
which results if equation (2.9) were to be solved with the initial
starting vector for y as x. Note that I is an identity matrix of
appropriate order and that henceforth wherever I appears it will be such
an appropriately dimensioned matrix. -

MM and Awn’ it is possible to compute a

causal muTtiplier which has the same structure as (I - A)-]. Then if

Because of the separability of «

equation (2.8) is aggregated by postmultiplication using the I x 1 trans-
posed unit vector lT, then the result

1" = 2™+ (1 - ™)
m m

can also be written in matrix form, the solution of which yields the causal

multiplier (I - g)'] where o = Lo

1. In input-output analysis, the vector
x which drives the system is final demand while y is a vector of production
levels associated with the industries required to satisfy this demand.

As mentioned above, Macgill (1977) has used this framework to elaborate

a demand-driven Lowry type model where basic population provides the input.
Bertuglia and Leonardi (1980a) on the other hand use the same framework to
structure a supply-driven model in which basic employment is the input.
Williams (1979) has provided an algorithm for solving equation (2.9) at

the causal and spatial levels, while Gordon and Ledent (1980) have

approximated the supermatrix form in (2.9) at separate causal (regional)
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and spatial (urban) levels. As the conventional urban (Lowry) model is
supply rather than demand-driven, we will concentrate on this version in the
next section although Macgill's (1977) version will have the same structure

as the model which we will derive.

THE LOWRY MODEL AS AN INPUT-OUTPUT STRUCTURE.

In terms of the general framework given in equations (2.8) and (2.9), the
Lowry model is a two-activity spatial model, the activities being population
and employment which are endogenous. The exogenous activity is basic
employment and there is no exogenous population input. Before the model

is elaborated, it is worth Tooking at the general structure of the 2 x 2
supermatrix A and its inverse (I —_A)_1 for important simplifications can

be made. First consider egquation (2.10). If this is post-multiplied by the

matrix (I - A) it is clear that the inverse can be written as

ar-n=1 (2.11)
where @ = (I - A) . Then for a 2 x 2 activity system, the explicit

partitioned form of equation (2.11) becomes

0 I

1 12 AL AR PAY.

| —
|o

(2.12)
21 22 AP

[ 42222

i) I

b=
|

Writing out the matrix by matrix multiplications implicit in equation (2.12)

we get
Q11 - ATy - 12,2152 1 )
IREMENE: P21 - o2 -
1 ally - 2221471 -0 & (2.13)
2141212 P01 - o2 -1
F
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The equations in (2.13) can be solved in several ways for a typical
element gwn of the inverse matrix 2. However we can solve for each Bwn
solely in terms of the known elements amnﬂwn, and for each an, this is
equivalent to considering the relationship mn to be central to the way the
solution is generated hence interpreted. We thus refer to the following

solutions for Emn to be the pure solution form for the inverse Q. Its

significance will be clear later. Then from equations (2.13)

Az G MATT - 1212 - 220221 (21,215

02 - (1 - 22 (%12 (1 AT <2120 L o
@ =t WA 82T - 2P 212

0?2 -1 - 242 L 22 (1 AT (120125

7
We can express each matrix ﬁmn in terms of any other but in the sequel,

the most appropriate ways of looking at tbe solutions will be in terms of

(I-o

(I-a

the key relationship concerning the first activity based on‘91] and the
key relationship concerning the second involving 822. We will thus
write the inverse @ in two ways: first based on gj] which we will call
g] and second based on_gz_22 which we will call gz. Then
] 'ﬂn l E_11 12512(_ 22A22)-1 7
g - 22A22 -1 21 21 11 I 22,22 22,22,~1

) 1a?1a%lg 2%%) ]E_ 21521_i1 ]ZA]Z(I 2%2)~14
'(I-a]] 11)—1 12,12 22 21,21 11 11 -1 ‘ 11 11 -1 12 12 22 A
2

| >

[I+a °A'%0%%a® A% (1-a A

922a2] 21(I_a]TAT1)—1

o
I

| >=

(2.15) and (2.16)

Equations (2.15) and (2.16) will be used in the following sections to display

important insights into the solutions of 2 x 2 spatial activity models.

The two activities in the original Lowry (1964) model were population and
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employment, the linkages between these activities being conceived in terms
of the rate at which population generates service employment, and the
dependence (activity rate) of population on employment. In locational
terms the population is related to employment through the journey-to-work
and service employment to population through the spatial demand for
services. No depéndence of the population on itself or employment on
jtself is assumed and only one activity - employment - has an exogenous
component referred to as basic employment. Given these assumptions, the
above framework can be written in more familiar terms as

l] =P, lz =e, 5} = 0 and x2 = (1-g)b

where p, e and b are 1 x I row vectors of population, total and basic
employment respectively, each measured in distributional terms. B is the
ratio of service to total employment. As implied above, there is no self-
dependence in the system, thus

J2 o, a8, W21o1, aaa e,

where B is the matrix of transition probabilities between population and
service centres, reflecting the demand for services and C is a transition
probability matrix between work and home reflecting the journey to work.
The model can now be written in the form of equation (2.9) y =y A + X
which in partitioned form is

[pel=Cpel [0 gB|+ [0 (1-8)b] (2.17)

cQ
Equation (2.17) provides a very clear picture of the model's structure.
Macgill's (1977) version has the same structure but the input she assumes is
basic population, not basic employment, thus reflecting final demand as in

input-output analysis.

The solutions to the model can now be found directly by using the definitions
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prior to equation (2.17) in equations (2.14) to (2.16). First for the
solution centred on treating population as the central driving force of
the model, from equations (2.14) and (2.15)

Q11

(1-88C17" and

|o
]
]
—

From equation (2.10) in the form y = x g], the solutions for p and e are

immediately derived

o
]
T
pu—
1
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o
|or
o
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| oo
o
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[o1)
=
[a%

(2.18)
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(2.19)

Equations (2.18) and (2.19) are the conventional ones for the Lowry model

as developed by Harris (1966), Garin (1966) and others but these reflect
basic population b C as the driving force. This solution appears eguivalent
to Macgill's model (which is stated in conventional form in Wilson, Coelho,
Macgill and Williams, 1981, pp.248-249)., If this casual observation is
borne out by more considered reflection, this means the framework introduced
here and its partitioning in the manner shown, represents a unified way of

Tinking different types of input-output model to Lowry-like models.

The more usual form of partitioned solution is derived using equations (2.14)

and 2.16). Then

9?2 =r1-a 817, and
1+8BI-gCBI'C  eBLI - AC BI
2
2 =lt-sceilc (I - gC BI
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from which the solutions for p and e using y and 5_32 are

o
1l
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and (2.20)
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(2.21)

Equations (2.20) and (2.21) are those originally stated by Garin (1966)
reflecting the basic employment driven model. The inverses in equations
(2.18) to (2.21) can both be expanded as Leontief series which are
indicative of the generation of activity in sequential form; in the case
of the multiplier gg] starting from basic population (1-8)b C and in the

case of_g22 starting from basic employment (1-g)b

In another sense,
equations (2.20) and (2.21) can be seen as 'duals' of equations (2.18) and
(2.19) respectively. This interpretation is aided by noting that the
transformations in this model are only of population into employment and

vice versa.

GENERALISED LOWRY MODELS.

In the conventional model, there is only one exogenous input - basic
employment, and no feedback (dependence) within each of the two sectors.
Both these assumptions can be relaxed in generalising the model. First
assume that there is an exogenous distribution of population - basic
population h which is incorporated into the input vector EJ as

x' = (1-y)h and x = [(1-y)h, (1-g)b]

y is the ratio of non-basic or endogenous to total population and is set to
aZ]. The matrix A thus becomes

0 gB

|=
1

YC 0
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For the inverse form based on Q], the population and employment equations

are

p=C(1=y)h + y(1-8)b CII - v88 €17 ,  and (2.22)

1

e = 8l(1-y) h + v(1-8)b CICL - v8B CI"'B + (1-8)b . (2.23)

These population-driven solutions can be contrasted with their duals derived

using g? which are stated as

(1=y)h + [8(1-y)h B + (1-8)bICI - v&C BI™|, and (2.24)

C8(1-y)h B + (1-8)bICI - v8 C BI! . (2.25)

P

The two inverses in equations (2.22), (2.23) and (2.24), (2.25) can be
expanded in the usual way reflecting the effects of inputs of population

and employment from exogenous sources respectivély. There are a number

of ways of looking at these duals. Clearly the ratios y and g reflect

the importance (size) of input populations and employments and it is

clear that the other extreme to the conventional basic employment-driven
Lowry model - the basic population-driven model - is derived when g = 1.

In such a case, equations (2.22) and (2.23) are the most appropriate forms.
It is surprising that no applications (to the author's knowledge, that is)

of models in which basic population features, have been developed, for

there would appear to be many situations where this might apply. Indeed

the great value of the framework presented earlier is its ability to enable
generalisation of model structures and to point out 'obvious' model types
which have hitherto been disregarded. Only of late have such generalisations
been attempted and although used for example by Bertuglia and Leonardi (1980a),
the properties of the framework have not been made explicit. In the pen-
ultimate chapter of this thesis, this general framework will be elaborated
empirically when spatial invariance and generalised model structures are

examined.
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We will now generalise the model further and look at the case where self-
dependence of activities is assumed. Then noting that

e, AT oa, o2, and a2,

1

the input vectors x  and 52 become

x| = (T-a-y)h and x% = (1-g0) b

The model is now

[p el=1[pe] oA BB | + [(T-a-v)

| =

(1-8-0)b1 , {2.26)

vC oD

where equation (2.26) has a complete structure. We will examine the
solution to this model using the inverse Q? based on g?z although this is

now arbitrary for such a complete structure. Then

22 -1

2% = [T - oD - vC (I - af) 1

8B1” , (2.27)

which can be expanded first as

0™ = L1+ (oD + v€ (L - oA)78B) + (D + vC(L - ah)

=i o 2

8B)° + ....1. (2.28)

Clearly equation (2.28) can be further expanded in terms of (I - qﬂ)-1 and
this shows the confounded nature of the generation process. For example, an
input of employment generates self-employment through oD, then population
through vC which in turn generates a whole series of self-populations

leading to new employment, further self-induced employment and so on. The
process no longer has the simplicity of the expansions associated with the
Lowry model but it does emphasise the need to think deeply about the causal
relations associated with a structure as simple as this one based on only

two activities. Moreover, it highlights the need for some means of assessing
the importance of such causal relationships in any empirical application.

For completeness, we will state the solutions based on Q?z for population
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and employment. Then

-1 -1

(1=a=y)h (I-0A)™ + [(T-a-y)h(I-cA) !

88 + (1-8-0)b1a°24C(1-0h) ™!, (2.29)

P

C(T-a)h(I - aA)™' 6B + (1-g-0)p] 922 . (2.30)

I

£

Equations (2.29) and (2.30) display the complexity of effects which increase

exponentially with the number of distinct activities comprising the model.

The complete model structure based on two activities is hard to test
empirically due to the difficulties inherent in unravelling feedback effects
and clearly the full model with N activities would present a major
estimation problem. As far as the author knows, a model with more than
two activities considered in the framework developed here, has not been
applied empirically although there have been hybrid versions such as that
due to Geraldes, Echenique and Williams (1978) which make use of Williams'
(1979) algorithm for spatial input-output analysis. A more favoured
strategy for elaborating these types of model structure has been through
disaggregation (see Wilson, 1974) but this has not generally led to new and

different structures.

The major conclusion from the generalisations introduced so far is the

need for a high degree of discrimination concerning appropriate model structlres.
Indeed, the success of the original Lowry model may well be largely due to

its parsimonious representation of causal relationships and its emphasis on

the most significant ones through ad Zoc developments. One obvious simpli-
fication of the complete two activity model which has been suggested relates

to the self-dependence effects. The matrices A and D could be considered

as identity matrices, that is,

A=1 andD=1
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if it is assumed that the population and employment dependences do not have
spatial effects. This seems logical for population where dependence might
relate to the generation of households but less so for services, unless

the zoning system is chosen to pick up just those services which locate
adjacent to those generated from the demands of the population.

Noting then that (I - aA)_] = (1-a)

-]‘l and oD = oI, with these simplific-

ations, the multiplier in equation (2.27) becomes

Q22

1 -1

= [I- (ol + (1-a) 'y C B)] . (2.31)

Only the employment equation need be stated here and this, using equation
(2.31) is derived as

e = 8(1-a) " (T-a=y)h B + (1-g-y)b10?? (2.32)

Equation (2.32) thus has a very similar structure to equation (2.25) which
allows meaningful elaboration in series form and has smaller data requirements.
Moreover the simplifications introduced here also show once again the

importance of the separability of economic base relations from spatial inter-

action in this framework.

To complete this section a simple example of how the framework might be

used to design different model structures which exhibit the property of
parsimony, is worth illustrating. One set of structures which are tractable
is given by a closed chain of activities with no cross or self-dependences.
Using this idea, consider a model driven by basic employment in which the
distribution of demand for services from the population, given by the 1 x I
row vector 31 is different from its supp]y_gz. The demand is generated
from the population as gj = p B and there is a spatial interaction matrix

D which converts a fraction ¢ of this demand into supply and adds it to the

given fraction of basic employment (1-0)b asg2 = qug + (1-0)b. Thus D
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1s a matrix linking demand to supply which detects disequilibrium
effects in the system. The chain is then closed in that the
distribution of population is generated from the supply of employment

as p=eC. This three activity model can now be written as

pe'e’1=tpele?l [0 B 07+000 (T-obl . (2.33)
0 0 o
c 0 o

The solution to equation (2.33) using the pure form inverses are

N
——
—
1
Q
S
|o
|
| oo
—_
|
1
Q
o
)
| oo
—

. and . (2.34)

"
P
u—)
1
Q
A
=a
—
=
]
Q
o
| oo
o
—

The matrices B D C, D C B an

a
o
| oo
|

give the overall spatial interaction
patterns between the same activities in the chain, but the matrices
BD,DCand C B as well as the original matrices all represent patterns
which enable calibration of the model and assessment of the significance
of the causal structure adopted. Furthermore as D is a measure of
disequilibrium, the model might easily be cast in a dynamic framework

in which D is hypothesised to be a function of the mismatch between
demand and supply, gj and g?. If the dynamics enable an equilibrium

to be reached in which D~1, then it is easy to show that the model
collapses back to the original Lowry model in equations (2.18) to (2.21)
although in the structure given in equation (2.34), service employment
gi is considered separately from total emp]oyment'gz. Throughout this
section, the need to test the significance and relevance of the postulated

structure has been paramount, and using the linear framework, it is

possible to embark on useful tests in the manner shown in the next section.
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EMPIRICAL IMPLICATIONS OF THE LINEAR MODEL FRAMEWORK,

The linear framework elaborated so far mainly serves to emphasise and
clarify questions of causality concerning the model's structure. In
general, such questions can only be resolved in terms of the model's
underlying theory, and as already argued, it is not the purpose of
this thesis to research such substantive questions. However, the linear
framework has other implications, particularly in the use of linear
analysis to aid in model estimation and solution. Exploring these
ideas will be the main quest of this thesis and in this section, an
indication of the empirical implications of causal model structure for
the analysis of spatial variation will be giJen. The full power of
this analysis in terms of measurement and estimation, and consequent

interpretation will be addressed in the following section.

We will first examine the importance of the inputs to the two activity
model in spatial distributional terms, and to this end, we will first
examine the model as given above in equation (2.17). In this model,
consider the case where g = 1, and thus the input x = [0 0] is absent

from equation (2.17). The model thus simplifies to

(p el=10[pel

lo
| oo
-

(2.35)
c 0
but the inverse form solution no Tonger applies. To solve equation (2.35)

then, consider iteration starting from an arbitrary distribution vector

[g_e]o. Then for iteration 2t, the following recurrence relations hold
3
el = pe® | (8O 0
' T
| 9 (E_ E_) n . (2.36)
pefls pe® [ o 078
c8)'c o
L - 7




If we examine (C B)" and note that this matrix is stochastic and strongly-
connected in the graph theoretic sense (due to our assumption of a connected

spatial system), then in the 1imit (C B)" converges to

1im (EE)T'*Z ,

T >

where Z is a row stochastic matrix in which each row is identical. Z is
called an idempotent matrix in that upon further multiplication by C B it
is stable and unchanging, that is Z = Z C B. Using this result,
equations (2.36) can be examined in their partitioned form in the Timit

and these become

p(2r)  =p(O)(BOT  =p(0ZC =p )
e(21) = e(0)(C B)" = e(0)Z =e
Tim . 1 i
trw  p(2r-1)  =e(0)(CB)T'C =e(0)ZC =D and ¢ (2.37)
e(2-1) = p(0)(B OB =p(0)Z =&
where p is a row of Z C and e is a row of Z. y

From equation (2.37) and the properties of the idempotent matrices Z C

and Z, the solutions to equation (2.35) in partitioned form are

kcz
I‘Oz
IrDz
|rDr

B C and CB . (2.38)

In short, the iterations on equation (2.36) are dual Markov processes.,
The model without inputs is structurally equivalent to Coleman's (1973)
model of collective action based on the theory of social exchange, and
this has been explored in terms of the structure of its interaction
matrices by the author (Batty, 1981a). Moreover, the special case
derived here is equivalent to a Lowry model without inputs which as
intuition suggests, predicts population and employment to be a function
solely of the interaction pattern. This in itself is a model worth

exploring further.
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If the model's predictions in the case of no exogenous variables are
entirely a function of the interaction matrices, the question must be
asked as to what extent the model's predictions are a function of the
interaction patterns when inputs are present. In the situation where

C B is already idempotent, then it is clear that the inputs would have
no spatial impact on that portion of an activity which is generated
endogenously. Thus to explore the question, it is necessary to see

how close C B is to its steady state form Z or to any other steady state
pattern. To proceed, let us first consider the case where C B is already

in the steady state, that is where
CB=(CB) =2, t =1.

Then examining the traditional Lowry model in terms of its employment

generation given in equation (2.21), the multiplier [I - sg_ﬁj-] can

be simplified as follows:

i
—t
+

™
—
—
]
oo
~
~N

(2.39)

In the sequel, we will just examine the employment equation for the two
activity model, for the population equation is subject to the same type
of analysis. Using equation (2.39) in (2.21), the employment e is now
written as é and referred to as the steady state employment with input.

Then

(1-8)bLI + 8(1—8)_1@ ,

£l

(1-8)b +8bZ = (1-8)b + ge . (2.40)

Equation (2.40) shows that é_is clearly composed of the exogenous input and
an endogenous term s§ which is the steady state employment from equation (2.38),
the model with no input, which is entirely independent of basic employment

in spatial terms.
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In short, the input has no effect on the model and is thus irrelevant
in a spatial sense. A similar result holds for the Lowry model with
population and employment inputs. Using these results, equation (2.25)
becomes

B(T-y)h B+ (1-g)b +vs e . (2.47)

£

The critical issue here is how the predictions from the actual model
compare with its steady state equiva]ents_é and e, say. To explore

this, we must now see how close C B is to Z for if C B = Z, the model is
spatially invariant to its input and the input irrelevant. This possibility
was first noted by Schinnar (1978) and a ful{ formal analysis is developed
in Chapter 10 after considerable empirical analysis of the model's solution
dynamics in the earlier chapters has set the context. Then 4n Chapter 11,
an empirical analysis for Melbourne is attempted which reveals a high
degree of spatial invariance in model predictions in terms of inputs.

This possibility is clearly evident in spatial systems which are highly
polarised, that is dominated by city centres, say, and many previous
applications are cast in doubt by these findings. Moreover these ideas
can be used positively in the design of relevant zoning systems which will

capture essential variation.

LINEAR ANALYSIS OF SPATIAL VARIATION AND MODEL ESTIMATION.

To anticipate the subsequent analysis, results from stochastic matrix
theory taken from Bailey (1964) and Bartholomew (1982), and which will be
presented in detail again later, must now be presented. Any strongly-

connected row stochastic matrix P can be expressed as an additive sum of
Tim

> ol

its steady state form . m_E)T = Z and deviations from this steady state.
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The matrix can be represented as the sum of its eigenvalues and eigen-

vectors. the so-called spectral decomposition, as

xV
J

i
P = 3 A, , (2.42)

-7 5
where it is assumed that there are I distinct eigenvalues Aj for the T x I
matrix and that !j is a matrix associated with the Xj eigenvalue constructed

from suitably scaled right- and left-hand eigenvectors, ry and S5 of P.

The matrix !j is formed as yd = rls. and the scales of L and s; are

L35
chosen so that VoV = 0,0 # 3, VoVi =V, £=Jand 25y U,

1. If

the eigenvalues of P are ordered so that x](=1)>|x2|>...>lkl], then P in

equation (2.42) has the following property

<2

(2.43)

|©
A
1]
[T
—
>
a1
i

J

As A}!] = Z, that is, that the dominant eigenvalue and vectors determining
the steady state matrix, equation (2.43) can be expressed as the sum of the

steady state and deviations from it. Then

I
P'f=7+ = ATv., and (2.44)
== 50 T
N
I
P-Z= %A,V . (2.45)
- - J=2 J =

As t -+ «, equation (2.44) converges to Z which implies that the deviations
in equation (2.45) converge to the zero matrix. We are now in a position

to use these results to determine a decomposition for any matrix series

in which P is a row stochastic matrix and g a ratio between zero and one.

Then

(1- 61T = TP I4s(-e)Z+ T oeri(1-ea) Y, (2.46)

0 J

I ™

2

which is the series representation used by Bartholomew (1982) for manpower
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planning models which have a similar structure. Quite clearly, equation
(2.46) is composed of three effects: an input effect I, a steady-state

effect based on Z and a deviation effect based on yj'

These results in equations (2.42) and (2.46) can now be used to relate

the original two activity Lowry model to its steady-state equivalents

given in equations (2.38) and (2.40). Noting now that P in equation (2.46)
is C B, and that ZJAj and MJ now pertain to C B, equation (2.21) can be
written as

(1-8)b CI + 8(1-8)-] Z+

J

-1
AN

|m
n
I

AL(1 -8
2BJ( B

-1
Ba; (1-835) 7 Vg . (2.47)

1
(1-8)b + g8 + (1-8)b

Jj=2

The last term on the RHS of the second Tine of (2.47) is the deviation

from the steady state with input and it is this effect which measures the
degree to which the input (1-8)b influences the final spatial distribution

of employment. An aggregate picture of this distortion from the steady state
is given by gfé, and it is clear that wherever a series of the form in
equation (2.46) appears in these models, the same type of analysis can be
jnvoked. The same type of analysis can be developed for the two input

model in equations (2.22) to (2.25), and at a more detailed level in terms

of the original matrices B and C and this shows again the power of the

Tinear framework in designing theoretical models with relevant empirical

applications.

Generalising this analysis to the complete two activity model as specified
in equations (2.26) to (2.30) is fairly straightforward although a full
algebraic presentation would be fairly cumbersome. Thus only a qualitative

discussion is developed here. For example, concentrating on the employment
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equation (equation (2.30)), the inner inverse [I - qﬁ]_] can be decomposed
in the manner of equation (2.46) and thus the population input h can

first be separated into true input and steady state effects due to self-
dependence effects generated within the mu]tip]ier_g22 and this enables
the series based on 222 to be decomposed. Finally the portion of this
series remaining also forms a sub-series involving only vCgB and this in
turn can be expressed in the manner of equation (2.46). Even within

this analysis, several different types of approach can be taken by
concentrating on the original interaction matrices or on cross effects,

or by using different criterion for the measurement of spatial invariance-

idempotence.

For models based on more than two activities, algebraic analysis becomes
increasingly laborious as does representing solutions in partitioned
matrix form. In such situations, it would appear that an algorithm is
required for tracing through the effects of idempotence. Such an idea
could be easily implemented in any empirical application. Alternatively
idempotence could be assumed in different interaction patterns and
comparisons then made between different model solutions at an aggregate
level. Finally, the possibilities for developing these ideas at the
higher level of the framework, in terms of the overall structure

Yy =Yy A+ x, seem s1im as A does not have the appropriate Markov form,

The analysis of spatial invariance is first anticipated in Chapters 6 and
7 but is only formally and empirically developed in Chapters 10 and 11.
Before that this thesis embarks on another application of Tinear analysis
in which the dynamics of model solution - estimation and calibration -
are explored through a dynamic elaboration of the models linear structure.

Such a dynamic elaboration is not in terms of real-time dynamics although
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there are hints of this in what follows, but in terms of solution
dynamics which affect computer time, iteration time and so on. Various
elaborations which lead to different model types and algorithms for their
solution are presented starting in Chapter 3 and merging by Chapters

9 and 10 into the analysis of spatial invariance.

To give some feel for this work, consider the problem of estimating the
parameters of the models governing the general model's spatial interaction
patterns. If as is usual practice, the matrices A, B, C, and D are

formed from spatial interaction models, the parameters of these models
need to be estimated, and this usually involves some iterative scheme
(Batty, 1976). Such iterative methods are usually invoked prior to
solution of the linear model framework, or the linear framework is nested
within a wider nonlinear iterative calibration scheme. However, it is
possible to solve the 1inear model iteratively, for example, by working
out each term in the inverse expansions, and this in fact appears to be
normal practice. The calibration method which builds on the work of the
later chapters involves matching these two iterative processes;  that is,
using a single iterative scheme to enable model solution and calibration

to be achieved simultaneously.

To demonstrate the idea, consider the original two activity Lowry model
in equation (2.17) in terms of the equilibrium employment equation.  Then

it 1s clear that

e=geCB+ (I-8)b . (2.48)

One way of solving equation (2.48) is tostart with some estimate of e on
the RHS of the equation and iterate the solution until a convergence Timit

has been met. This is the scheme adopted by Baxter and Williams (1975)
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and Wilson, Coelho, Macgill and Williams (1981) to solve the Lowry model

and it can be presented as

e(r)=8e(x-1)CB+(1-8) b . (2.49)

As already mentioned C and B need to be estimated prior to the use of
equation (2.49) or equation (2.49) is set within some wider process of
estimating C and B.  An efficient strategy has been developed for
estimating C and B using direct iteration on equation (2.49). Formally

then
e(t) = ge(t-1)C(r-1)B(=-1)+(1-)b (2.50)

where C(t) and B(t) are functions involving the distribution of employment
e(t). A variety of schemes are developed in later chapters to enable
efficient solution and estimation to be achieved simultaneously using this
idea and one consequence of equations (2.48) and (2.50) is that if C(t)

and B(t) converge to stable matrices C and B before e is attained, equation
(2.50) collapses back to equation (2.49), thence (2.48). The advantages
of this structure are exploited fairly intensively later and have been

used in a more substantive context by Berechman (1976).

Although this has not yet been accomplished, it would seem quite straight-
forward to generalise these ideas to the higher level and to simultaneously
solve and estimate the supermatrix equation y = y A + x in analogous
fashion. In models such as these usually the elements o™ are assumed
given but even these may be subject to estimation. This type of general-
isation is a direct result of specifying Lowry-l1ike models in the more
general framework of a spatial input-output structure, and it represents
the point that many ideas developed for two or even single activity models
can be applied to multi-activity systems. This point is reinforced in the

next section where we turn to nonlinear analysis of the same types of structure.
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NONLINEAR OPTIMISATION MODELS.

So far in this review, we have emphasised model structure largely through
the embodiment of causal and spatial relations as linear accounts. We
have emphasised how such structural questions should be explored
empirically through relating inputs to outputs but we have not dealt with
the form of the spatial relations assumed for these models. Only at the
end of the last section was any hint given that such spatial relations
might be modelled, although there has been a tacit assumption throughout
this chapter that such interactions do embody nonlinear relations. In
this section, we are going to turn the linear model framework inside out
and study it from the point of view of mode11}ng spatial interactions.

As is well-known, such spatial interaction models are intrinsically
nonlinear, and the nonlinear framework which results, will have different
properties from that developed above. However one central result of this
section will be to show that nonlinear multi-activity spatial models can
be cast into the linear framework to enable the empirical power of that
framework to be of use in evaluating model structures. This interchange-
ability of linear and nonlinear is a major achievement of the field over

the last decade.

First developments of the Lowry model were briefly reviewed in an earlier
section and it was largely Wilson's (1974) achievement to enable consistent
spatial interaction models - residential Tocation and service centre-
shopping models - to be embedded within the overall model framework. In
particular, the rigour imposed by entropy-maximising enabled the process

of building and estimating consistent models subject to realistic constraints
to be handled comprehensively and efficiently. These early developments

however paid 1ittle regard to model structure, and it was not until the
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impetus of treating entropy-maximising methods as special cases within
nonlinear mathematical programming really began, that much thought was
given to how comprehensive model structures could be derived as

generalised mathematical programming problems.

Parallel to the concern for generalised optimisation methods was the
concern over what was being optimised. The relationship between Tinear
programming transport (Evans, 1973) and land use (Herbert and Stevens,
1960) models and entropy-maximising spatial interaction models focussed
the question on the costs and benefits of interaction. Enormous strides
have been made in relating objective functions such as entropy to
consumer surplus, diversity, dispersion, var%ety, utility, accessibility
and related measures of welfare, and the analysis of mathematical
programming duals has enabled a clear picture of the cost-benefit
structure of these models to be established (Harris, 1979; Williams and
Senior, 1978). The Leeds group under Wilson (Wilson, Coelho, Macgill
and Williams, 1981), the CSIRO group under Brotchie (Lesse, Brotchie,
Roy and Sharpe, 1978; Brotchie and Lesse, 1979) and the Turin group
under Bertuglia and Leonardi (1979) have done much to develop these ideas.
We will not review these exciting developments here but they remain an

integral part of the more technical issues emphasised in this chapter.

Coelho and Williams (1978) were the first to present a nonlinear programming
derivation of the Lowry model although subsequently Leonardi (1978a) and
Sharpe and Karlquist (1980) have developed similar versions. Here we

will present the Coelho-Williams model and in the next section generalise

to the complete two activity model. We will also show how these models

can be easily cast back into the linear framework, thus enabling the
previous analyses to be applied. A couple of notational details must be

clarified. Here we will keep to the strict rule that the first subscript
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of any variable relates to the origin of the variable in spatial terms,
the second subscript to the destination. A1l interaction variables will
be origin-constrained. We will not follow the Coelho-Williams notation
in which the subscript i is reserved for population zones and j for
employment zones for reasons which will be obvious when we generalise

their model.

In the original Lowry Model, two interaction variables tij’ the
probability of working in i and 1iving in j, and Sij’ the probability
of living in i and demanding services in j, are required. These

variables are subject to the following origiq constraints
iti. = e 4 and (2.51)
J
IS; s = Py . (2.52)
J

where e, and p; are employment and population respectively defined as

earlier in distributional terms so that

From equation (2.17), the economic base relations can be written as

p; = It.. and (2.53)

(1]
"

BZS
i

..+ (1-8)b

i (2.54)

J
The model is thus subject to constraint eugations (2.51) to (2.54) which
can be viewed as both origin and destination constraints on {tij} and

{Sij}’ thus enabling the model to be seen as two interlocking gravity

models (Wilson, Coelho, Macgill and Williams, 1981).
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Coelho and Williams (1978) now set up an objective function involving
{tij} and {sij} which can be optimised with respect to these interaction
variables subject to known constraints. They choose various objective
functions, in particular a group surplus function which is consistent
with micro-behavioural considerations, but a similar and perhaps more
conventional function leading to an equivalent model is the group entropy

function S.  This is defined and maximised in the following program:

max

t.. S
- A - LN
{tij}’{sij} S =-x t.j[1og 11 -2 s.j[1og < 17 ., (2.55)

ij wjt ijj | s

where NJ.t and sz are the locational attractions of population zones j
and service centres j respectively. Equation (2.55) is subject to the

usual constraints on travel cost

_ t
T tijcij =C and T S

= ¢° , (2.56)
iJ iJ

where Cit’ c1.S are the costs of travel between i and j for workers and

J J
service users respectively and Ct and C° are the associated mean travel
costs. The economic base and origin constraints in equations (2.51) to

(2.54) can be combined as

;tij - BIS . = (]_B)bi ) and (2.57)
J k

Is.. -t . =20 (2.58)
j LN ki

where Coelho and Williams refer to equation (2.57) as the economic base
constraint and (2.58) as a consistency condition although as will be clear

below (2.58) is really another economic base constraint.

In maximising equation (2.55) the constraints in equations (2.56) to
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(2.58) involve setting up the following Lagrangian multipliers: o' and
6> for equations (2.56), £ and p for equations (2.57) and (2.58) where
these will be subscripted according to whether the variable enters the

constraint in origin or destination form. The two models are derived

as follows:
ot ) _att
tij = wj exp{ g, t 05 0 Cij}’ and (2.59)
S S S
.. = W ex . - . - g . 2.
s1J WJ exp{p1 BgJ 8 c1J} (2.60)

The interlocking nature of the models in equations (2.59) and (2.60) is
clearly displayed through the multipliers. The model can be solived and
estimated simultaneously through direct optimisation of the objective
function in equation (2.55) subject to its constraints in (2.56) to (2.58)
However, the dual problem is an unconstrained optimisation problem of
much reduced dimensionality and a more efficient procedure would involve

minimising this dual.

A slightly more general case of this model results if exogenous population
is included as in the modei given in equations (2.22) to (2.25). Equation
(2.53) now becomes
p. = yit.
J i 1

and this can be combined with equation (2.52) to give an alternative

5+ (1-nhy (2.61)

constraint equation to (2.58). Then

?sij - Yitki = (]-Y)h_i i (2.62)

and the model which results from maximising S subject to equations (2.56),
(2.57) and (2.62) is identical to that in equations (2.59) and (2.60)

except that P in equation (2.59) is replaced by \CFE The dual objective
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function would show a greater difference in that (1—y)h1 would appear
explicitly as well as (1-3)b1.
Finally in this section, it only remains to indicate how this model can

be set back into the linear framework. The model is not equivalent to

the Lowry model because of the joint estimation of the spatial interaction
models but it is structurally similar in that once these interaction

model forms are known, the model is subject to the same constraints as

the Lowry model. This is easily seen in linear terms. Noting then that

oA Ly
= 1J = 1
tij ei = and sij Ps Esij >
ju ¢
we can define
I S..
- 1 = 1J
C_ij bt Zt.-- and B_ij ZS-- . (2-63)
g W i

Using these definitions from equations (2.63) in the economic base

relations, equations (2.53) and (2.54), we get the classic form

o
il
™
D
(gp]

v

and (2.64)

e.

J

8 ?piBij + (1-B)bj (2.65)

which is equivalent to matrix equation (2.17). The same is true if the
model with two inputs is considered, and this shows that the techniques
of linear analysis used to enable empirical evaluation of the relevance

of these relations can be used on such nonlinear models.

GENERALISED NONLINEAR LOWRY-LIKE MODELS.

We will now examine the complete two activity case where there is feedback
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within the population and employment sectors. Define the probability
of the population in i interacting with the population in j as pij and
the probability of employees in i interacting with the same in j as ey

These distributions are subject to origin constraints of the form

gpij =Pp; and (2.66)
J
§e1j =es . (2.67)

The normaiisation on {ei} and {pi} is as previously. Now from equation

(2.26), the economic base relationships can be written out in elementwise

form as
P; = “?pij + Ygtij + (]-a-Y)hj 5 and (2.68)

Now noting that we have two additional origin constraints in equations (2.51)
and (2.52), we have six constraints in all which can be reduced to four.
There are various ways to effect this reduction and all are equivalent,

Here we choose to show the self-dependence explicitly in each constraint

by substituting the origin constraint directly into equations (2.68) and

(2.69). Then the four constraints can be written as

Ip.: - aZp,: - vIt s = (l-a-y)h. (2.70)
j iJ K ki K ki i

Z.‘.S_ij - aIPp; T YZtki = (1-oc-y)h_i s (2.71)
J k k

;tij - BISp; " 08y < (1'B'G)bi R and (2.72)
J k k

se.. - pIs,. - oze,. = (1-g-0)b, (2.73)
j iJ K ki K ki i
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The other ways of representing these constraints are through removing
equation (2.70) or (2.71), or (2.72) or (2.73) by substituting (2.70)

into (2.71), or (2.72) into (2.73), or vice versa.

The group entropy function S to be maximised in this problem can be

defined as
D. . S..
. 1 _1q - LA
—_— S = ﬁjpij Clog " 11 ﬁfij [log s 13
{t;:} {e;;} e..
v pt.. [log —3 <17 - £ e, [log —& -171 , (2.74)
1] t iJ e
ij W, ij W.
J ) ]

where wjp and wje are population and employment attractors respectively.
Two additional cost constraints reflecting the self-dependent inter-

actions are required

z P _ P =
ijPigciy = © i i385 %5 = © s (2.75)

P e
where c.. and Cij

13
and CP and C€ are the respective mean travel costs. The problem then is

are travel costs on route ij associated with each sector,

to maximise S in equation (2.74) subject to travel cost constraints in
equations (2.56) and (2.75), and the economic base constraints in

equations (2.70) to (2.73). The Lagrangian multipliers et, 6%, 6" and 6
are associated with (2.56) and (2.75); multipliers ¢, o, Zandu are
associated with (2.70) to (2.73) where an appropriate origin or destination

index is attached when optimisation occurs.

The four interaction models, which are the optimality conditions of the

program just outlined, are
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D.. = w? exp {- (1-a)é; + a0, - epcg}} , (2.76)

1] J

sij = w§ exp {- o; ¥ s(gj + “j) - escfz} R (2.77)
ty; = w§ exp (- £ + v(o; + 05) - etc;;} , and (2.73)
ey = W§ exp {- (1-0) wy ot ogj - eecfz }. (2.79)

Estimation and solution can be achieved efficiently by minimising the
unconstrained dual objective function, and its structure is of interest
for the input variables enter the dual twice as two separate sets of
cost terms. It is possible however that there are more parsimonious
representations of the constraint set than that addpted here. Finally
the model can be cast into its Tinear mould By defining

e..

p..
A = 1J and Dij = ZET? , (2.80)
j i\

and using equations (2.63) and (2.80) in the model given earlier in

equations (2.26) to (2.30).

Extensions to the multi-activity model are quite straightforward. As it

is now regarded that this optimisation model framework is generally

superior to the more ad hoc approach in which submodels are estimated
separately, the linear framework is mainly of use in thinking about

extensions to the model's causal structure and in empirical causal analysis,
although is still of great use in developing insights into model solution

and calibration. There are many extensions however to the use of optimisation
theory and Tinear analysis in both theoretical and empirical contexts.

The addition of other types of constraint, planning constraints for example,
has been examined by Coelho and Williams (1978) as well as by Sharpe and

KarTquist (1980). The optimisation of the model with respect to variables
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other than interaction, particularly locational variables on the supply
side, has been explored (Wilson, Coelho, Macgill and Williams,1981;
Beaumont and Clarke, 1980), and Bertuglia and Leonardi (1980a, 1980b)

have developed a variety of multi-activity versions using accessibility
rather than entropy-maximising. Recently, the distinction between
planning costs and benefits, and consumer surplus in terms of the
objective functjons used in deriving such models has been used to set

the model in a game-theoretic context (Sharpe, Roy and Taylor, 1982).

This is all in the spirit of unification of the field referred to at the
outset of this review, and it is clear that a momentum has been established
which has not yet worked itself out in any sense (Batty, 1981b; Brotchie,

Dickey and Sharpe, 1980).

CONCLUSIONS.

A broad framework in which all the subsequent analysis in this thesis

which concerns model solution dynamics and spatial variation due to model
structure has been established, and this will guide the various themes

which will be developed from now on. As these themes are intricately related,
the framework of this chapter is of use in emphasising relationships

between later chapters. In the sequel, calibration methods and simulation
techniques will be dealt with extensively but it is perhaps appropriate

to end this chapter with some speculation on the field in general, rather

than this thesis in particular. This is particularly apt as this review
chapter was written last in the thesis and thus has been written in the

light of the research in all subsequent chapters.

Although considerable progress has been made in urban modelling in the

last twenty years, this has been mainly in methodological areas such as
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those developed in this thesis. What are now required are applications
building and refining ideas such as those presented here. In the

next decade it is likely that attention will veer towards more substantive
questions, and issues concerning what is to be modelled, rather than
modelling methods, In a sense, one of the great disappointments of
modelling practice has been the inability of theorists to suggest model
structures which capture the qualitative flavour of urban systems and
problems. The systems being modelled are fairly similar to those of
significance twenty years ago, despite major changes by planners and

policy-makers over what they consider to be of current importance.

Perhaps the major problem facing the field now, however, concerns the
dearth of empirical applications. In the social sciences, theory always
proceeds ahead and somewhat independently of practice although for real
progress to be made, practice and theory must frequently meet and gell.
Here for example, the importance of the linear extensions to the Lowry
model and the emphasis on the choice of appropriate structures can only
be complete when these ideas are used empirically. This has rarely
happened, and the synthesis involving optimisation which would have

been useful a decade or more ago when such models were being developed
practically, is now of mainly theoretical interest. Yet the advances
in the field have been so great that there is now the real prospect that
these techniques could be used to design and apply urban models which
perform more sensitively and appropriately than similar models did a
decade ago. If so, such models will have much greater predictive power
with all the consequences for urban planning. Only by extensive but
careful, considered and technically sophisticated applications will the
promise of these advances be borne out and the next decade should be

focussed on developing progressive practice.
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CHAPTER 3.

A THEORETICAL FRAMEWORK FOR PSEUDO-DYNAMIC URBAM MODELS.

In reviewing contemporary developments in urban modelling in the last
chapter, it was argued that greatest progress has been made in the
development of cross-sectional static models, rather than dynamic.
Principles for handling the dimension of real time, and the establishment
of relevant mechanisms for representing processes of urban change have
been difficult to research, and existing dynamic models exhibit a degree
of arbitrariness which is disturbing. The widely known Urban Dynamics
model (Forrester, 1969; Alfeld and Graham, 1976), for example, is really
no more than a demonstration that a dynamic treatment of urban phenomena
is required, for the urban system and its behaviour through time which

is the subject of the model, is hypothetical.

In contrast, the dynamic version of the Access and Land Development model
(Schneider, 1976) although based on a theory of the urban system which is
intuitively acceptable and in part, empirically known, uses a mathematical
framework based on the Lotka-Volterra equations, which is specified -
arbitrarily. The more recent development of urban models based on embedding
spatial interaction models into a similar frameworks which emphasise

catastrophe, bifurcation and fluctuation (Wilson, 1981) are also problematic
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in the same regard although the work of Varaprasad and Cordey-Hayes (1982)
shows considerable potential in such developments. Furthermore, it has
also been difficult to capture the kinds of relationships which characterise
cross-sectional static models in truly dynamic form, and this has led to
dynamic models which lack the richness of the static models which they

seek to improve, and perhaps replace.

To avoid these problems even in a partial way, it appears that a framework
is required in which static and dynamic models exist at opposite ends of
a continuum involving the treatment of time. In this sense, a static
model would have a dynamic equivalent and vice versa, and one could be
derived from the other by aggregation or disaégregation of the appropriate
time dimension. In fact, it is quite easy to suggest frameworks which
reflect this idea; the simplest would be one in which static models
could be made dynamic by simply indexing the variables according to time.
Therefore, for such a framework to be other than trivial, an additional
organising principle is required. Usually only static and dynamic forms
of model identify the ends of the time continuum, and any intermediate
form of model can be identified with one end or the other: comparative
static with static, quasi-dynamic with dynamic and so on. But if a third
model form is identified which contains both static and dynamic elements,
then the framework must be specified at a higher level of complexity to
embrace such a form. This third form will be referred to as a pseudo-
dynamic model, thus representing an intermediate position between fully
static and fully dynamic models. Because such a model contains both
static and dynamic elements, this implies that two or more time streams
characterise the framework and by aggregation or disaggregation of the
appropriate stream, fully static and dynamic models can be derived. In

such a framework, static models will contain implicit time dimensions
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whereas dynamic models will contain explicit ones, while pseudo-dynamic

models will contain both implicit and explicit time streams.
IDEAS CONCERNING PSEUDO-DYNAMICS.

Chapters 3 to 9 of this thesis will be broadly concerned with postulating,
elaborating and applying the idea of a pseudo-dynamic model, and this
chapter will be specifically orientated towards the dynamic framework
through which such models can be derived. In Chapters 4 and 5, more
detailed forms of pseudo-dynamic model will be explored and an attempt will
be made to calibrate such a model to a real situation. Chapters 6 to 9
will be concerned with more fundamental 1ssues~of calibration involving
analogies with the optimal control of a dynamic system and with matrix
iterative analysis but the emphasis in all these chapters will be upon
generating new insights concerning the operational development of both
static and dynamic urban models. As this is to be accomplished through
the device of the pseudo-dynamic model, it is worthwhile discussing the

meaning attached to such a model before it is formally introduced.

Consider the class of dynamic processes which operate through time

other than historical time: for example, models in which solutions are
reached iteratively through trial and error elimination reflect simultaneous
relationships which have to be solved sequentially. These models might be
regarded as pseudo-dynamic if the sequential solution procedure implies

a kind of historical time through which the system is changing. On the
other hand, there are models which are characterised by different types

or 'streams' of historical time; for example, the actual system time

might be distinguished from the time when activity was first generated,

and if one of these time streams were to be collapsed, the model would be
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pseudo-dynamic.  There are many other examples to be found.
Multiplier models in which the multiplier effects pertain to
historical time, but are worked out in terms of model solution

time, models which are static in nature but are 'artificially’

grown to a cross-section in time using some dynamic process, these

are the types of models which are prime candidates for treatment in
pseudo-dynamic terms. Indeed, it might be argued that these models
involve approximations to historical time through a concept of pseudo-
time, and an essential first step is to describe the framework in

which this historical time is explicit.

The dynamic framework to be outlined here, meets the requirements
posed for a fully dynamic process by several researchers in the field
of urban modelling (Sayer, 1975; Williams and Wilson, 1977) and

time will be clearly involved 'in an explicit and essential way'

(Curry and MacKinnon, 1975; Samuelson, 1948). The dynamic frame-
work is fashioned in fairly well-defined terms, and as its equilibrium
properties are well-known, no emphasis will be laid on proving the
existence and uniqueness of equilibrium. Rather the emphasis will be
on exploring the various types of process which characterise the
system, and the ways in which these processes unfold through time.
Furthermore, the focus will be upon presenting operational models,

and thus the equation systems given below will have a numerical
flavour. One essential argument relates to the idea that new insights
into existing models can be gained by setting up more general frame-
works within which existing models can be cast. Indeed, in later
chapters some substance will be given to this notion when existing

models are reinterpreted, and new methods of calibrating these models
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are derived from pseudo-dynamic considerations. Finally, it is
possible to derive new model forms from this type of analysis, and
although new forms will not be extensively discussed, the next
chapter will demonstrate the potential of the framework in this

regard.

In the development of the dynamic framework, the general dynamic
model will be first stated in highly aggregate terms. Two types of
process characterise the model, the first based on the generation of
activity endogenous to the model through time, and the se;ond based
on the location of that same activity to zones of a bounded urban
region. The generation of activity is treated first and the various
processes involving new change and changes in existing activity are
described. The location process also has a dynamic quality in that
Jocational attractions are lagged through time. Appropriate Tocation
models are derived by an information- theoretic method used previously
by the author (Batty and March 1978), and then the complete model is

assembled.

The derivation of a pseudo-dynamic form is accomplished in two stages.
First, a closed form for the dynamic model is derived, and second,
this is aggregated in various ways to derive pseudo-dynamic models.
This chapter ends with a statement of one such model which forms

the starting point of the next two chapters where it is explored

and applied. Although somewhat removed from the immediate concerns
of the present chapter, Chapters 6 to 9 involve an explicit use of
the pseudo-dynamic process in deriving estimation procedures

appropriate for certain existing operational models. But first the
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dynamic model from which all else is derived, will be presented.

GENERAL STRUCTURE OF THE DYNAMIC URBAN MODEL.

In its simplest form, the dynamic model predicts the amount and
Tocation of two related activities from information concerning some
exogenous input activity. For example, population and service
employment can be predicted from basic employment and the way in which
this is modelled, is based upon the sequential generation of each
endogenous activity from the input: that is, ﬁopu]atjon is generated
from basic employment, services are generatéd from population, more
population is generated from services and so on. In principle, this
kind of process can be extended to any number of endogenous and
exogenous sectors, and the model need not be restricted to population
and employment activities. The structure is completely general and

as long as there is meaning to the process of sequential generation,
there is no reasaon why the model should not be applicable to any

socio-economic, perhaps even physical system.

However, specific applications will depend on whether or not the
structure can be meaning-fully applied to the system of interest,

and here the model will be based on the simple distinction into the
population and employment sectors of an urban system. Disaggregation
into different subsectors is easy to accomplish but it would add
nothing to the logic, and as it would give rise to a superficial
complexity which may divert the reader from the essential argument,

it has been avoided. The equations which follow are already

complicated and somewhat cumbersome without the addition of further
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detail. Note that in the following presentation, as one endogenous
activity is directly and simply related to the other, the forms of

the state equations governing the configuration of the system at any

point in time are similar for each activity. Thus usually only one

set of equations need be presented, for the other set follows immediately.

Whenever this occurs, the reader will be forewarned.

Another essential characteristic of the dynamic framework is the
treatment of two types of change: change due initially to changes
in the exogenous activity, and chahge due to changes in existing
activity. The first type of change is the easiest to handfe and is
referred to as new change; it is the direct result of changes in
the input which are 'new' in each period. Note that such change may
be positive or negative, implying growth or decline. The second
type of change relates to changes in the existing stock of activity,
and whereas new change leads to different levels of total activity
in the system, changes in the existing stock only redistribute what

is there already.

At each point in time, the existing stock can be divided into

'movers' and 'stayers' which denote that activity which has redistributed
itself in a previous time period and that which remains stable, that

is, identical to its previous distribution. The movers are notated

using superscript m and the stayers superscript s. So at each point

in time, activity is composed of movers, stayers, and new change. In

the following presentation, two sets of state equations are defined

for employment and population. Net change in activity x in any time

period [t:t-1] is notated by ax(t), and gross. change, that is changes
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in varjous components making up total change by A*x(t) or a'x(t).

The Tower case bold'Tetters all refer to 1 x N row vectors and the
bold capitals to N x N matrices, where N is the total number of zones
in the urban system. Note that it is assumed without Tloss of

generality, that there is population and employment in each zone.

Employment e (t) at any time t is calculated from

e(t) = e’(t) + e

e (t) + a*e(t), (3.1)
where_gs(t), gm(t) and a*e(t) are vectors of the stayers, the movers
and the new change in employment occurring in the time period [t:t-17.
The new change is made up of changes in basic employment (the input)

Ab(t) and changes in service employment A*s(t) which arise directly

from changes in the input. Then

A*e(t) = a*s(t) + ab(t). (3.2)

As it is assumed that basic employment is entirely exogenous to the
system in that it provides the driving force for new change, if it
is to be redistributed, this must be achieved exogenously to maintain
consistency. Therefore only service activity can be redistributed in
any time period, and this implies that the mover-stayer components

refer exclusively to services. Thus

e®(t) = s°(t) +b(t-1),  and (3.3)

M) = s"(t), (3.4)

whereiﬁs(t) and §W(t) are the service stayers and movers in the period
(t:t-11 and b(t-1) is the total basic employment existing at t-1.

Substituting for Afg(t),_gs(t) and gm(t) in equation (3.1) from

+Bo1d symbols are indicated by underlining throughout the text.
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equations (3.2), (3.3) and (3.4) respectively gives

e(t) = b(t=1) + s5(t) + s"(t) + a*s(t) + ab(t). (3.5)

It is assumed that population is derived from employment, and thus
an analogous equation exists for population but without any explicit

exogenous influences:

p(t) = p°(t) + ph(t) + a*p(t), (3.6)

wherelg(t),_gs(t), Em(t) and A*p(t) are vectors of total population
at time t, stayers, movers and new population change in the period
[t:t-1] respectively. The way in which eqdations (3.5) and (3.6)
relate to one another is quite complicated and will be discussed as a

separate process in a later section.
PROCESSES OF URBAN CHANGE.

The endogenous variables, population and service activity, are the
result of complex patterns of generation and in the case of both new
change and change in the existing stock, changes occurring in any
time period [t:t-1] can be the result of original changes in some
earlier time period. In other words, change in the period [t:t-1]
can be made up of a series of components each originating at previous
time periods, and to capture this spectrum of change, it is necessary
to develop a more elaborate notation. The simplest type of change

is new change: for example, the change in activity x at time t can

be traced back to time z which is its initial point of origin, that

is, changes in activity at time z are still working themselves out
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at time t. This type of change can be notated as x(t,z) where
t % z. These two time streams t and z relate, in this model, to
changes in the service activity and population directly associated

with changes in the input, basic employment.

However,‘it is necessary to say something about the form of this
generation process for it is unlikely to continue indefinitely, A
reasonable assumption is that the amount of change generated at time
T originally associated with z, will get less as t gets greater.

In other words, the effect of the original change at z will die away
as more time elapses from z. For the casé of service activity
s(t,z), (population follows an identical process), it is postulated

that
s(z,z) > s(z+1,z) > s(z+2,2)>...>S(1,2)>

and it is assumed that the last significant change s(t,z) occurs T+l
time periods after the original change in time period [z:z-11, that is,
in the period [z+T:Z+T-11.  Thus the change s(z+T+1,z) is assumed to
be zero, and the process of generation has a life of T time units.”
Noting that the total length of significant lag in origin time is T

units, then in any time period [t:t-1], the spectrum of new change

is given as

+ The index T is also used more generally in chapters 3 to 9 to
indicate some future point in time. Wherever this so, the difference
between its use in identifying the 1ife of the generation process, and
jts more general usage, will be made obvious. Note also that T is
occasionally used to define trips and as the matrix transpose operator,
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where s(t,z) and p(t,z) are the services and population activities
generated at t, originating at z. Note that it is not necessary to
use the difference operator A for the time notation is sufficiently

detailed a means of indexing this change.

The situation is more complicated for changes in the existing stock

for it is necessary to distinguish between the time when the activity

is moved T, the time when the activity was first generated w, and the time
of origin when the generation of this activity was first initiated z.

At present, it is only necessary to consider movers because stayers

can always be defined by comparing movers with the previous configuration
of the system and thus the variable x(t,w,z) refers to movers in time «,
who originally entered the system in time w, based on a process of
generation originating at time z. To give substance to these notions,

it is necessary to explore the change in existing activity in more detail.
Because activity has to exist before it can move, then this implies that
the minimum Tength of time from when activity is first generated to

when it is able to move is one time period. In this model,it is thus
assumed that activity is first able to move one time period after it has
been generated. Therefore, T > w > z. Just as new change is a spectrum
of change originating at previous time periods, movers in any time

period [t:t-1] relate to those generated at previous times w originating

at previous times z, noting that t > z.
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As in the case of new change, it is assumed that movers redistribute

themselves according to a similar process of generation (regeneration).

For the case of service movers §W(r,w,z) (population movers follow an

identical process), this assumption means that

m
(

§W(t,z,z) > §W(t+1,z+1,z) >§W(t+2,z+2,z)>...> S (T,W,>Z)

where the origin lag between z and w is no greater than T. Then the
process in which activity originally moves at time t dies away until at
time t+T, the last significant change in the movers from time t is
recorded. However, activity which exists, generates a potential move
at every subsequent time period and thus the spectrum of change which
characterises the movers in any time period [t:t-1] is made up of
movers who originate at aZl previous times z and are generated at «ll

previous times w.

In summing the variable x(t,w,z) over z, the range of summation is from
the beginning of time z=0 which is purely notional as will become clear
later, to z=t-1, t>z (the one period mover lag). The range of w is
from z to z+T where T is the total 1ife of the generation process.

One final complication exists: because new activity originating in the
period [t-1:t-T-11 has not yet fully worked itself out, then it is
necessary to separate out this activity from activity originating prior
to time t-T. Then the services and population movers in the period

(t:t-1]1 are calculated from

m t-T-1 Z+T 0 t-1 t-1 -
s(t) = =& I s (t,w,z) + Z T s (t,w,z), and
z=0 w=z z=t-T w=z
(3.8)
t-T-1  z+T t-1  t-1
gm(t) = I z pm(t,w,z) + I z Ew(t,w,z) ,
z=0 w=z z=t-T w=z
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where Ew(t,w,z) and Em(t,w,z) are the service and population movers

originating at z, generated at w and moving at t.

A similar type of equation based on the equation for movers could

be developed for stayers but as this is also a function of previous
movers and stayers, its form can be postponed until the more detailed
investigation of the model's generation processes is presented in a
later section. It is possible, however, to define the general
structure of the model in terms of the ideas introduced so far, and
to state the overall system constraints which must be met. Then

the change in employment which is made up of movers, new services and

new basic employment, called A'e(t) is given by

t-T-1 z+T . t-1 t-1 m t
r'e(t) = : I s (tw,z)+ T 2 s (t.w,z)+ I s(t,z)+ ab(t),
z=0 w=z z=t-T w=z z=t-T

(3.9)

subject to the following constraint on the total level of service

stayers

s3(t) = e (t-1) - zsl(t) - sby(t-1), 4=1,2,...0N.
i i i i

The same type of equation can be developed for population, and the

gross change A'p(t) made up of movers, and new population is given by

t-T-1 z+T m t-1 t-1 m t
A'p(t) = = I p(t,w,z) + = Ip(t,w,z) + = p(t,z), (3.10)
z=0 w=z z=t-T w=z z=t-T

subject to the following constraint on the total Tevel of population

stayers
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pr(t) = Zp1(t‘]) - pr(t) ] 1=],230-3N'
1 1

Note that the constraints are purely accounting equations which will
be met if the movers are modelled consistently and if the process
of calculating the stayers is related to the known patterns of previous

movers and stayers predicted by the model.

The model stated in equations (3.9) and (3.10) 1is at a highly

aggregated level and the way in which the activities relate to one
another through the processes of generating new change and regenerating
change in the existing stock now need to be described. To do this, the
simplest of the processes - that characterising new change will be
described first, and this will help in demonstrating the process
involved in redistributing movers. Lastly, the process of modelling
the stayers will be treated, and as this depends upon the movers and

new change, it is the most complicated.
MODELS FOR GENERATING NEW URBAN CHANGE.

It has already been implied that the causal structure of the model

depends upon generating endogenous variables in sequence starting from
the initial input, and it seems appropriate that the strength of these
sequences should become weaker as time elapses from the initial input
which starts the process. Consider the case of employment and population:
basic employment generates basic population which requires services.
Services generate their own dependent population which also require to

be serviced and so on. The process is well-known: it exists as the
economic-base method in regional economics, the input-output model of
general equilibrium theory and the multiplier process in Keynesian

economics,  But it is of much wider significance in that it is a model
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of any system in which cause and effect can be characterised in

this uni-directional way.

In this context, the model is organised around the economic base
mechanism where basic employment is taken as the input and service
and population activity as the output. This gives rise to models
which are well-known, for example those of the Lowry (1964) genus,
and it also means that the models presented in this part of the thesis
can be always made operational. The process of generation from an
initial input vector of basic employment aAb(t) is as follows: ab(t)
generates p(t,t) which in turn generates_§Zt,t). In the next time
period [t+1:t], s(t,t) generates p(t+1,t) and this in turn generates
s(t+1,t). For the process to be meaningful, it must converge, that
is, s(t+1,t) < s(t,t) and p(7+1,t) < p(z,t). As stated above, the
process is assumed to have converged after T+1 time periods have

elapsed from the initial change in basic employment in [t:t-11.

The Tlength of the process T could of course be dependent upon t or

it could follow some random pattern over time. The decision to phase
the sequential generation of endogenous activity into fixed time
intervals over the whole process, is only one of convenience, and this
could also be varied if required as long as the process converged in
some sense. Variation in time lags could be easily incorporated into
the model, but the assumption of a fixed lag and length of process does
not involve any loss of generality, and it considerably simplifies

the ensuing algebra. Readers who are interested in exploring the

effects of varying these fixed intervals are referred to Bartholomew
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(1982) for a discussion of such effects in similar linear models of

the Markov type.

The way in which activities are derived from one another is of
considerable importance in this model because it is here that relation-
ships over space can best be dealt with. There are two major
relationships between activities such as employment and population,

and vice versa, and these pertain to scale and distribution. Scale
relationships such as activity rates can be incorporated but the way

in which distribution is handled is more complex. The obvious way

to derive one vector from another is through a matrix of relationships,
and in the case of spatial activities, such matrices would summarise
spatial interactions. In the above process, population p(t,t) can

be derived from employment s(t-1,t) using an interaction matrix A(z,t)
which records the relation or interaction between any employment location
i and population location j. Typically, this might relate to the
journey to work, but it also includes a scaling effect to convert

employment into population.

In deriving s(t,t) from p(t,t), another matrix B(r,t) is required which
scales population to services, and summarises the spatial demands by
the population in j for services in k. Such demands might be measured
by shopping trips, business transactions to the home and so on. The
process of generating population and services can now be summarised:
note that the matrices are square (N x N) but this too is only an

assumption of convenience. Then the process is
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p(t,t) = ab(t)A(t,t), (3.11)
s(t,t) = p(t,t)B(t,t), (3.12)
p(t+l,t) = s(t,t)A(t+1,t), and (3.13)
s(t+1,t) = p(t+1,t)B(t+1,t). (3.14)

Recurrence on equations (3.13) and (3.74) to time t+T leads first to the

population relation

t+T-1
B(t+T,t) = Ag(t) I A(T,t)E(T,t)A(t+T,t), (3.15)
=t

and then to the employment relation

t4T
S(t4T,t) = ab(t) T A(t,t)B(t,t)- (3.16)

=t

In the dynamic model, it is assumed that activity is being generated
from new inputs which occur in every time period. Basic employment
Ab(z) is input at every time z and thus the repercussions from these
inputs in terms of population p(t,z) and service employment s(t,z)

will occur for T+l time periods from the initial input. Thus at any
period in time, new activity change will have originated at the previous
T+1 periods. This process of generation is graphed in Figure 3.1 where
the horizontal axis of the chart refers to the time of generation and
the vertical axis to the time of origin. Clearly at any period [r:1-11,
there are T+1 components of change which constitute the spectrum.  The
appropriate equations for total population and service employment change
in [t:t-11 can be derived by summing equations (3.15) and (3.16) over t.
In this instance, the index z is used to indicate origin time and t

generation time. Then
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t t t-1

T p(t.,z) = T ab(z)m A(t,z)B(t,z)A(t,z), (3.17)
z=t-T z=t-T =2

t t t

r s(t,z) = £ ab(z) 1 A(t,z)B(7,2) (3.18)
z=t-T z=t-T T=Z

For equations (3.17) and (3.18) to be meaningful, it is clear that the
process time T must be so defined that the matrix product converges to
the null matrix 0. Then as in any convergence, a limit matrix e is

defined such that

t
I A(1,z)B(t,2) < e ,
=t-T-1
and this defines T. There are several ways of achieving this and to

conclude this section, it is worth mentioning the more obvious.

The matrices A (t,z) and B(t,z) relate scale to distribution (interaction)
effects, and it is 1ikely that the scale effects will control the
convergence of the process if appropriately sepcified. Assume that the
scale effects can be represented by matrices A(z) and T'(z) associated
with A(t,z) and B(r.z) respectively, and it is clear that these are
dependent only upon the origin time z which is fixed for each process.

Therefore scale and distribution effects are separable and combine as

A(t,z) = T(1,2)A(2), and (3.19)

B(t,z) = S(t,z)r(z) . (3.20)

The matrices T(t,z) and S{r,z) relate to the pattern of spatial inter-
actions associated with service-population and population-service relation-

ships respectively. If it is assumed that the scale effect relating
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one activity to the other is constant over space as well, then A(z)
and r(z) are diagonal scalar matrices with constants A(z) and y(z)
on the respective main diagonals. Note that A(z) and y(z) can be
regarded as the inverse activity-rate and population-serving ratio

respectively, calculated for the whole system.

Forming the matrix product from t=t to t+T for the matrices A(t,z)

and B(t,z) leads to the following simplification

t+T T+1t+T
n A(t,z)B(t,z) = [A(z)T(z)] m T(t,z)S(t,z). (3.21)

7=t =t -

A sufficient condition for convergence would require that the matrix
LA(Z)E(Z)]T converge to the null matrix at T»«. This in fact is the
basis of convergence of the economic base process, and it means that
A(z)y(z)< 1. For a nontrivial economic base process, this must be
true in order that the process generate finite values of population
and service employment from basic employment. It is also possible
that this condition be satisfied if A(z) and y(z) depend upon t as
well; in fact, Goldner's (1974) PLUM (Projective Land Use Model) uses
this idea, although there are problems in generating the correct total
Tevel of activity which have to be resolved by iteration. Finally,
it is worth noting that this dynamic process has already been used as

the basis for a simple dynamic model developed by the author for the

Reading subregion (Batty, 1976).

THE GENERATION OF MOVERS.

The mover variables EW(t,w,z) and EW(t,w,z) were defined above and the
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purpose of this section is to postulate models which simulate their
process of redistribution through time. In fact, the model is

analogous to that used in generating and allocating new change, which

in this case, is a dynamic economic base model. It is necessary

to use such a model to maintain consistency between the way in which
change is first allocated, and then reallocated, but more important

is the fact that the process seems reasonably realistic. If it is
assumed that service activity and population is built up from the
pattern of basic employment, then it seems likely that movers originating
from basic population set off a sequence of mbves through dependent
population and services. Furthermore if thé initial pattern is derived
using an economic base type process, any change within this pattern
must be related to the original pattern to enable consistent accounting.
To explore this process, it is only necessary to examine service movers
because population is directly related to services in the way already
described. Here, as in the previous section, a model of one set of
moves from activity originating at time t, will first be presented, and
then this will be extended to a series of migration streams which
include activity which has originated at all significant previous

periods of time.

Consider the services originating from the basic employment input at
time t. These services are generated in future time periods up to
t+T, and exist as s(t,t), s(t+1,t)...s(t+T,t). Now in time period
t+1, the previously generated services s(t,t) form part of the mover
pool, the pool of activity which is potentially able to relocate. It
is assumed that a fixed proportion 0 < a(t+1,t+1)< I of these services

"

relocate and these new service movers t+1,t,t) are found by applying
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this mover ratio matrix to the initial input Ab(t) and reallocating
this proportion using new scale-distribution matrices é(t+1,t) and

~

B(t+1,t).  These movers are given by

ST(t1,t,t) = ab(t)a(t+T,t+1)A(tH],1)B(t+1,t). (3.22)

Note that a(t+1,t+1) is an N x N diagonal matrix of mover ratios which

may vary zonally; here the later analysis is helped if it is assumed

that a(t+1,t+1) is scalar diagonal (constant o(t+1,t+1) for each zone i).
The process initiated in equation (3.22) sets off a series of repercusssions
through time in which the first service MOvers at t+1 génerate more

service moves at t+2 and so on. Then

sSM(tr2,te1,t) = ST (bt E)A(E42,8)B(E42,t), (3.23)
and by recursion on equations (3.22) and (3.23) to t+T, the general mover

relation is derijved as

ST(E4T, t4T-1,t) = ab(t)a(t+T,t+1) tET_A(T,t)E(T,t). (3.24)
t=t+1

The characteristics of this mover process are assumed to be similar to
the process of generating new change. It is assumed that the life of
the process is T units, that is, the last movers associated with the
initial moves at t+1 are generated in t+T+1. Furthermore, the process
is assumed to have converged at this point, and it is a requirement of
the model that the existing level of activity is preserved through the

matrices_é(r,t) and E(r,t). This will be discussed in more detail later.

This process can be generalised in two main ways: first it is clear

that if the original activity generated at time t gives rise to a
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process of movement starting at time t+1, then the same activity has
the potential for starting a sequence of moves at any time t>t. In
other words, once activity exists within the system, a mover ratio

is applicable in every time period subsequent to the time when it was
first generated. The second generalisation relates to the fact that
activity which has been originally generated at any period prior to
time t is able to set off a sequence of moves which have the form of

equation (3.24).

This kind of complexity in time streams is illustrated by the three-
dimensional Lexis-1ike diagram in Figure 3.2 (Rees and Wilson, 1977).
The three dimensions relate to the three critical time streams character-
ising movers: the time z when the activity originated in the system,
the time w when the activity was first generated, and the time v when
the activity set off the process of moves. As each mover process has

a life of T units, there are at any one point in time T+1 mover streams
associated with any activity originating at z. This is clear by
examining the v-w face of Figure 3.2 for any given time t. It also
means that for any time period [t:t-11, only mover ratios from t to t-T
need be considered in modelling movers, because ratios prior to t-T

are no longer generating significant movers. The equation describing

a move at time t is thus

Alr,z)B(1,2), t-T<vst,

v (3.25)
O<z<t-1.

N =

s"(t,w,z) = ab(z)a(t,v)

The index v is related to the three time dimensions by v=t=w+z, and

it is immediately clear that its range is t-T to t.
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The rest of this section is fairly straightforward, involving sub-
stition of equation (3.25) into equation (3.8) and making the appropriate
summations. Note that the distinction between movers who are associated
with activity which has already generated its complete sequence of new
change, and movers whose activity base is stil1l working itself out, can
be clearly seen from Figure 3.2. If a slice is taken at time T in

Figure 3.2, then the logic for this distinction becomes visually
apparent. First for service movers associated with activity originating
prior to time period [t-T:t-T-1]

t-T-1 z+T t-T-1

t -t . .
g £s (tw,z) = T ab(z) T a(t,v) m A(t,z)B(t,2), (3.26)
z=0 w=z z=0 v=t =

and for activity originating between t-T and t-1

t_] t".l m t-.l t t - -
z s (tw,z) = I ab(z) I a(t,v) T A(t,2)B(7,2). (3.27)
z=t-T w=z z=t-T v=z+]1 =V

For completeness, analogous equations exist for population movers and

these are given as

t-T-1 z+T = t-T-1 t t-1. . -
T T p (t,w,z) = I Ab(z) T a(t,v) H_A(T,Z)E(T,Z)A(t,z), (3.28)
z=0 w=z z=0 v=t-T =V
t-1  t-1 m t-1 t t-1 . . -
z T p(t,w,z) = T ab(z) T a(t,v) T A(r,z)B(r,z)A(t,z). (3.29)
z=t-T w=z z=t-T v=z+] =V

Equations (3.26) to (3.30) determine the movers in any time period
[t:t-1] and these are necessary before the stayers can be calculated.
The process whichrelates stayers to movers is discussed in the next

section.
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THE COMPUTATION OF STAYERS.

The processes described so far are relatively easy to comprehend because
in the case of both new change and movers, the sequence of change begins
from a fixed distribution: basic employment. Thus these processes

show how new patterns are built up on top of what already exists but

the relationship between the process of redistributing existing

patterns and calculating what remains of the existing - the stayers -

is extraordinarily complex. In essence, just as the proportions a(t,z)
of the previous configuration of activities in the system form the
potential movers, the residue [I-a(t,z)Iformthe stayers. However, the
previous configuration of the system depends upon the movers and stayers
at the previous time period, and this recurrence can be traced back
indefinitely, in theory to the beginning of time (which is notionally

taken as t=0 in this model).

To gauge the complexity of the process of finding an explicit equation

to calculate stayers, consider the movers m(

s (t,wsz) in any time t.

The stayers §§(t,w,z) can be calculated as a residual proportion of the
movers and stayers who form the configuration of services at t-1 but
this is only pushing the problem one stage further back. The stayers
have to be calculated now at t-1 and so on. An equation for stayers
can be derived by successive substitution back to the beginning of time
but this is unnecessary. It will suffice to state the general
recurrence relation for stayers and the initial conditions for the

mover-stayer process.

To handte these various migration streams, it is necessary to define
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a new variable s(t,w,z) which is a vector giving the Tocation of
services at time t, generated at w and originating at z. It is clear
that this state variable is based on movers and stayers in the

associated time period, and thus

s(t.w,z) = Em(r,w,z) +_§s(r,w,z), >W>Z, and

s(t,w,z) = s(t,t), t=w=z.

It is possible to take a particular component of service activity
originating from ab(t), say s(t,t),and trace the change in its configur-
ation through time. This process can_be traced diagrammatically in
Figure 3.3  where the change in the origin;1 pattern s(t,t), t<t<t+T

is demonstrated. In the case of s(t,t), this activity is first

generated at time t using equation (3.12) which can be rewritten as

s(tst,t) = ab(t)A(t,t)B(tst). (3.30)

In time period [t+1:t], the movers are given by equation (3.22),

repeated here for convenience

SM(t41,t,) = Ab(t)a(t+T,t+1)A(t+T,t)B(t+T,t) [(3.22)]
Stayers are calculated as a residual from equation (3.30)

$S(t+1,t,t) = s(tot,t)[I-a(t+l,t+1)1. (3.31)

A new configuration of services is then calculated by summing equations

(3.22) and (3.31)
s(t+l,t,t) = sT(t+T,t.t) + s(t,t,t) [I-a(t+1,t+1)] (3.32)

Continuing in this fashion to time period [t+T:t+T-13 and concentrating

upon the equation for stayers leads to
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s3(t+4T,t,t)

"

S(t+T-1,t8,t)CI-a(t+T,t+T)1,

[sM(t+T-1,t,t)+s° (t+T-1,t,t) I1-a(t+T,t+T)1, (3.33)

which is the appropriate recurrence relation.

More generally for any time t,t>z, the amount of activity generated at w,

originating at z which is stable is given by

ES(T,W,Z) [Ew(T-],W,Z) +.§S(T—1,w,z)]Llﬁg(T,r-w+z)], (3.34)

with the initial conditions given by

w+l . ~
s"(wH1,W,z) = ab(z)a(w+1,z+41) T A(1,2)B(t,2), (3.35)
T=z+1 _
and
s W
sT(wtl,w,z) = ab(z)[I-a(w+l,z+1)]1 1 A(t,z)B(7,z). (3.36)
=2

Note that the mover pool ratio in equation (3.34) has the range t-T to t
due to the fact that the generation process indexed by w is only significant

in the interval z<w<z+T.

The final stage in explicitly computing the stayers is to sum the
stayers over all origin times z and generation times w, to find the
stayers in any time period [t:t-1]. As previously, it is necessary to
distinguish between stayers whose activity base has been generated
completely and stayers whose base has only been partly generated. The

equation for total stayers is thus

: t-T-1 z+T : t-1 t-1 )
s (t) = = I ST(t,w,z) + z I sT(t,w,z). (3.37)
z=0  w=z z=t-T w=z

By substituting equation (3.34) into (3.37) and rearranging summation

indices, total stayers can be calculated from

83.



T tT .
$S(t) = & [ oz [s"(t-l.z4t ,z) +5°(t-1,z+7,2) 1 I-a(t,t-r)]
- =0 z=0
t-1 ot ]
+ I T [s (t-1,w,z) + s (t-1,w,z)1[I-a(t,t-w+z)7. (3.38)
z=t-T w=z

Analogous equations exist for population stayers with EW(r,w,z) replacing
§m(r,w,z) in equations (3.37) and (3.38). The initial conditions for
population are slightly different from equations (3.35) and (3.36)

with the matrix product being taken over the range consistent with the
process defined by equations (3.28) and (3.29). At this point in the
development of the framework, the complete model can be assembled as a
set of processes, and in the fo]]owfng section, an analysis of the

properties of the model will be attempted.

BEHAVIOUR OF THE DYNAMIC MODEL.

Substituting the model equations for stayers, movers and new change into
equations (3.5) and (3.6) does not Tead to any new results but it does
demonstrate the intricate nature of the framework and the varying
richness and complexity of its parts. The equation for total employment
(population has the same structure) is given here, and despite its
cumbersome nature,it illustrates the various processes at work. Each

term in the equation is presented on a separate line and these are

organised from simple to complex. Then
e(t) = b(t-1) + ab(t)
t t

+ I 4ab(z) mwA(r,z)B(t,2)
z=t~-T T=Z
t-1 t t . -

+ I ab(z) = a(t,v) m A(r,z)B(r,2)
z=t-T v=z+1 =V -
t-T-1 t t . .

oz Ab(z) = of(t,v) 1 A(1,z)B(1,2z)
z=0 v=t-T T=V



t-1  t-1

+ z L [Em(t—1,w,z) + Es(t-1,w,z)][l;g(t,t-w+z)]
z=t-T w=z
T t-T-1 m .
+ r {1z [s (t-1,z+t,2z) + s (t-1,z+7,2) 1} I-a(t,t-1)]
=0 z=0

(3.39)

The first line of equation (3.39) gives the exogenous basic employment
which is input to the model, the second line gives the new change

which is a simple function of the input in the previous T+1 time periods.
The third and fourth Tines show the movers who are a function of
processes originating in the T+1 previous time periods, and involve all
previous changes in the input. The fifth and sixth Tines. relate to
stayers who Tike movers have the same dependence upbn processes in the
previous T+1 periods but are a function of the movers and stayers
associated with all previous time periods. In the case of both movers
and stayers, activities associated with the redistribution of new
change processes still working themselves out, are stated first, on the

third and fifth Tlines.

It is now possible to examine briefly the equilibrium behaviour of this
model, before looking at the data problem involved in its construction.

If the input ab(t) were to cease, then t+T time units later, the last

new change would be generated, and from then on change would be solely

due to movement of the existing stock. Only if the mover ratio matrix

a(t,z) were to become null would the system approach a static position,

and this would be of Tittle interest. However, it is useful to examine

the effect of stable movement patterns on the system. .It seems intuitively
likely that if the input ceases completely, and the pattern of redistribution
becomes stable, then given enough time, some kind of steady state will be

reached in which the system simply reproduces itself. Even if the re-
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distribution matrices A(T,Z) and Ejr,z) do not become constant over
t and z, it seems likely that the earlier configuration of activities
in the system will make a weaker and weaker contribution to the

present patternas time increases.

To illustrate these effects, consider the stayers associated with the
stream s(t,t,t). Because of the additive nature of the mover-stayer
process in the model, the analysis of any particular stream can be
generalised to all streams, and thus it is appropriate to look at
changes in s(t,t,t). Stayers associated with this stream §§(t+T,t,t)
at any time t+T are given by the general recurrence relation for

stayers presented in equation (3.34). In this case

SS(E4T,t,t) = [ST(t+T-1,t,t) + s (t+T-1,t,£) II-a(t+T,t+T)1  (3.40)

where the time index T is now being used as a general index for the
increase in time, not solely as the fixed time of the generation process.

Explicit recurrence on equation (3.40) back to time t leads to

. t+T-1 - t+T-1
s (t+T,t,t) =  {s (t.t,t) @ [I-o0(z+1,2z+1)]}
=t+] z=t
t+T
+ s(t,t,t) n  [I-o(z+1,z+1)1. (3.41)
z=t+1

The positive elements of the diagonal matrix [I-a(z,z)], t+lsz<t+T,
must fall in the range 0<a1i(z,z)5J for the process to be able to
generate movers, and thus it is clear that the last product term in

equation (3.41) approaches the null matrix 0 at T-~. Formally,

Tim t+T I-af ) ( )
n [I-a(z,z)1 =0, O<a..(z,2)<]1.
T—)oo Z=t+] e —_ —11 —
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This is an explicit demonstration that the effect of the original
pattern of activities s(t,t,t) dies away as the pattern is successively
reordered through time. It also illustrates the fact that not only

the original pattern, but all changes to the original pattern in the
form of movers, die away as the time from the move increases. The
same kind of 1limiting argument can thus be applied to the first set

of product terms in equation (3.41).

To give some substance to this effect, assume that aii(z,z) is constant
for all zones i and time z. Then each term on the main diagonal of

the above matrix product has the form (1-a)T where T is the number of

time units from the origin of activity at t. Clearly (1-u)T+O as T,

and it is worth noting how quickly some limit is reached for various
"typical’ values of o and T. A reasonable Timit for (1—a)T to come
within, is 0.01 which would imply that only 1 percent of the original
pattern would contribute to the total pattern at time t+T; to all intents
and purposes, it might be argued that the effect of the original pattern
has then become insignificant. Realistic values of a are difficult

to measure from population census data, for movers within the same spatial
unit are missed, but it appears that for relatively prosperous communities
o might be as Targe as 0.2 per annum: that is, 20 percent of activity
makes a move each year. It would take 21 years for only 1 percent of

the original pattern to remain in this case, and after 10 years, some

11 percent would remain.
However, a typical value for o is more like 0.05 per annum in South

East England, and in this case, it would take 89 years for the pattern

to become insignificant in terms of the 1 percent level. In some
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senses, this type of mover behaviour is highly unrealistic for it
presupposes that all activity is potentially movable. This is

clearly not the case for some activity, for example, certain population
groups and service sectors are by their nature inert for long periods.
This could be handled through the mover pool mechanism in a disaggregated
version of the above model, but it may be possible to treat it in the
manner used in the semi-Markov model where the distribution matrices
themselves are partitioned into movers and stayers (Bartholomew, 1982;
Curry and MacKinnon, 1975). This is a matter for further research but

it appears a promising line of inquiry.

A much simplified version of the model in equation (3.39) has already
been built for the Reading subregion (Batty, 1976). The full model
contained in this chapter however, has enormous computer storage
requirements, and thus simplification would be necessary if it were to
be made operational.To demonstrate the size of the problem consider the
number of matrices which have to be distinguished, and held in store
during a simulation. Table 3.1 gives a list of the key variables
(excluding explicit intermediate variables) which are essential for
the operation of the model over a simulation of T' years (T'-1 time
periods). It is clear from this table that the critical storage
requirements relate to the matrices A(t,z), B(t,2z), A(r,z) and_ﬁ(r,z).
The storage requirements presented in this table could be reduced if
information is output as soon as it is computed, and if the storage
space for this information is continually reused as soon as the
information is no longer needed. Here it is assumed that such space
is used for the intermediate variables involved in the computation.

A typical problem might involve, say,a total 1ife of the generation

processes of T=10, a simulation period of T'=15 and a variable number
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Table 3.1:

Dimensions of the Dynamic Model.

Variables Dimensions

Zones Origin Generation Simulation

Time Time Time '

b(t) N T
s(t) N T
e(t) N T
p(t) N T
Ab(t) N T T+1 T'
5(152) N T T+1
p(1,2) N T T+1
sT(t) N T
s"(t,w,z) N T T+1 T
s5(t) N T!
5°(taw,2) N T! T+1 T!
() N T
P (tsw,z) N T T+1 T!
pe(t) N T
P (t,w,2) N T T+] T!
A(t,2) N T+1
B(t,2) N T+]
A(1,2) N T T+]
B(<,2) N T+
a(t,z) N2 T T'
1 N°

Total Dimension

= N{T" [9+2(T+1) + 4T'(T+1) + 4N(T+1) + NT'Q +N }

89.



of zones N. In the Reading example, N=18 and this requires oves 473K
of computer store. If the number of zones is increased to 50, the

store required increases by a factor of 5% to over 2733K.

These are quite reasonable problems, for the degree of disaggregation

of the time dimensions is commensurate with the spatial disaggregation.
But it is clear that some simplification is necessary for feasible
computation and this can be achieved in several ways. It may be possible
to disregard previous service and population patterns if the simulation
period and mover ratios are large enough for  initial patterns to become
insignificant. However this is unlikely in the context of the given
example which has only 15 time points in the simulation. A more
acceptable way, and one which was used in the Reading model, is to
aggregate the distribution matrices over the generation times, that is,
to form new matrices which have the form A(t,z) = T(t)A(z) where the
matrices T(t) and A(z) are as defined previously in relation to equations
(3.19) and (3.20). Such a simplification reduces the store required

for the 18 zone example by 38 percent, and for the 50 zone example by

51 percent. Other aggregations can be made but all will depend upon

the specific application and the hypotheses concerning change processes
which are testable from any given data base. Examples of these types

of aggregation will be developed in the next chapter.

Now that the structure of the model and its generation processes have
been outlined, it is necessary to turn to the processes of Tocating
activities through the distribution matrices, for these too can have
a dynamic form. To derive appropriate forms for matrices such as

A(t,z), there already exist consistent frameworks based on generating
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the most Tikely forms of statistical distribution (Wilson, 1974) and

on other concepts such as the maximisation of economic utility
(Beckmann, 1974). In this chapterWilson's (1970) information-theoretic
framework will be generalised to a dynamic form, and various forms of
lagged relationship will be derived. The approach builds on previous
work by Batty and March (1978) which developed in parallel with the
work of Snickars and Weibull (1977) and Webber (1979).

DYNAMIC INTERACTION MODELS:  DERIVATION BY INFORMATION-MINIMISING.

In developing a method for deriving the form of the matrices such as
A(t,z), it is necessary to distinguish between the scale and distribution
effects. It is assumed that the scale effects are determined exogenously
in accord with the hypotheses concerning generation, therefore the
framework of this section is useful only in the derivation of distribution
models. It is convenient if the reader has in mind the separability of
these effects according to equations (3.19) and (3.20); 1in this case,

the present section is concerned with estimating the matrix components such
as T(t,z) of A(t,z) although there are other ways of incorporating scale
into A(t,z) than that given in equation (3.19). In the following argument,
it will also be assumed that the elements of T(t,z) can be represented

in probability form. Ways of expressing these probabilities in the
distribution matrices are relatively simple and will be briefly mentioned

later, and in greater detail in the next two chapters.

Just as the generation of new activity depends on past activity, so
the distribution of this activity to zones is Tikely to depend on past

distribution patterns. A consistent way of deriving models which adopt
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this assumption is to use a framework in which a Tleast prejudiced
estimate of a new distribution is made in terms of some previous
distribution and the change in that distribution's characteristics over
the time period of interest. The characteristics of any distribution
are referred to as information and a framework must be used in which
this information is encoded into the new 'predicted' distribution
through constraints on its form. Given such a framework, it would
then be possible to use it recursively to continually 'update' the
distribution in terms of new information. Clearly, information would
be exogenous to the model, in the sense that it represents the force

governing changes in distribution.

A static version of this framework in which a Teast prejudiced estimate
of the form of some system is derived subject to information about the
absolute structure of the system, is the entropy-maximising method
originally due to Shannon (1948), popularised by Jaynes (1957) and
extensively applied in urban modelling by Wilson (1970).  However,
there are philosophical difficulties concerning the measurement of
absolute information and increasingly, the entropy-maximising method

is being challenged on this question. The argument has been elaborated
in diverse ways, and it does appear that a more general framework is
one which uses information relative to some base, whether that base be
a previous point in time or not. Indeed, even the use of Shannon's
(1948) equation in communications engineering has been based on

measuring information differences, rather than absolute information.

Relative information can be used to generate least prejudiced models

by minimising a function relating the predicted 'posterior' distribution
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to the known ‘'prior' distribution, subject to the information change
characterising the prior distribution. Rather than maximising an
entropy function relating to uncertainty, a function of information-
gain is minimised. There are many such information functions (Reyni,
1960) but the function adopted here is well-known in the social sciences,
and has been widely used by Kullback (1959) and Theil (1972).  This
framework for deriving least prejudiced models originates with the
work of Hobson and Cheng (1973) but an early version can be found in
Perez (1967). In urban modelling, these ideas continue those found
in the papers by Batty and March (19765 1978) and by Snickars and
Weibull (1976) and Webber's (1979) book. '

More formally, the idea is to minimise an information function

I(t,w), t™>w, subject to the expected values of information Xk(T,W),
where the index trelates to the present time, and w relates to some
previous time. Note that w is not being used here as a generation
time index but is being used as a general index to denote the existence
of a distribution at a previous point in time. There are K+1 pieces
of information xk(r,w), k=0,T,...,K, and these may also be indexed in
terms of zones i, j or the interaction between zones 1ij. In the
following discussion, the probabiiities of interaction between any

zone i and any zone j at times t and w will be denoted pij(T) and pij(w),
and information change pertaining to this spatial interaction is given

as K(r,w). The difference (t-w) gives the temporal order of the

process: a first order process t=t, w=t-1, will be illustrated below

and then the concept will be generalised.

The first information function I(t,t-1) is defined, following Hobson
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and Cheng (1973), as

pij(t)
I(t,t-1) = §§p1j(t)£n by (ET) . (3.42)

To derive a model for the distribution {pij(t)}’ the information gain
in equation (3.24) must be minimised subject to a set of constraints
on the expected values of this distribution. There are K+1 such
constraints which pertain to new characteristics of the posterior
distribution at time t. These are written as

??pij(t)fk[x;3 (tst-1)1 = <XX(t,t-1)>, k=0,1,....K, (3.43)
where fk is some function of the information change xJ}
t-1 and t, and <Xk(t,t-1)> is the expected value of this function

between time

known exogenously. Note that fois defined as the unit function and

therefore <XO

(t,t-1)> =1, the normalisation constraint.

The process of minimising a function such as I(t,t-1) in equation
(3.42) subject to constraints such as those in equation (3.43), is

well known. A Lagrangean is formed and minimised with respect to

the probability distribution {pij(t)}’ and the undetermined multipliers
which reflect the constraints. This yields a set of equations which

can be solved simultaneously: wusually the model is expressed as

pii(t) = Z7p (t-1) £ expi-u¥F¥IxK (et (3.44)
J 1 k>0 H
where Z is the normalisation or scaling constant defined as
_ keoko ok
Z = ZZpi.(t-1) z exp{-uf [xy5(tst-1)13, (3.45)
ij k>0 L

uk,k=1,2,..,K are undetermined multipliers, and note that the normalisation

multiplier uO which relates to Z, is determined by substitution (Batty

and March, 1978).
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Equation (3.44) defines a recurrence on pij(t—])’ therefore it is
possible to express any probability pij(t) as a function of any
previous probability pij(t'T) and the sequence of information change
from t-T to t. Defining Lij(t’t'1) as the information operator
which updates pij(t']) to pij(t)’ then

_ =1 _keko ok
Lij(t,t 1) = Z kEoexp {-uf [Xij

and thus equation (3.44) can be written as

(t,t-1)11 ,

pi5(t) = pys(E-1)Ly (Est-1). (3.46)

iJ ij
Recurrence on equation (3.46) from the change in period [t-T:t-T-1]

to [t:t-1] leads to
t

pij(t) = pij(t'T']) w=2=¥:1 ij(w,w—1), (3.47)
which gives a clear indication of the compounding effect of first
order information change. Generalisation to n'th order information
functions and models is quite obvious in that the lag in equation
(3.47) would be (w,w-n) and the distribution at the starting point

{pij(t-T-n)}. Some properties of these models are discussed in Batty

and March (1978).
ALTERNATIVE LAG FUNCTIONS.

Although it is possible to derive a model with any length of lag by
using the appropriate information function, models with a series of
lags can only be consistently generated using information functions
which relate to the series of information changes consistent with
the lags. Thus to generate a model which predicts a probability

pij(t) as a function of the previous T probabjlities and associated
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information changes, an appropriate information function needs
to be defined. Consider the composite information gain I(t) which is

a sum of previous significant information gains from t-T to t.

t
I(t) = T I(t,w-1). (3.48)
w=t-T

Other composite functions could be formed. A weighted summation of
information in which each term I(t,w-1) was modified by its contribution
to I(t), may be appropriate in some contexts, and the weights might be
prespecified according to some other dynamic model, or may possibly be

the subject of a calibration. The function in equation (3.48) has an

interesting interpretation: it can be written out and rearranged as
I(t) = 13 : 0. .(t)&n Pit) ,
ij wet-T 1 Py3(vT)
t
= ??pij(t)[(T+])zn pij(t) - w=i-T£n pij(w—l)], (3.49)

and if the average of equation (3.49) is taken over T+1 time periods,

the equation becomes

t
' _ ) _ 1 -
) il - -y mey) | E o py(eD)
+ zzpij(t)ﬂn pij(t)' (3.50)

iJ

Equation (3.50) is the average of the expected information inaccuracies

defined by Kerridge (1961) minus the uncertainty due to Shannon (1948).

The model derived by minimising I(t) or I(t) subject to constraints on
the form of {pij(t)}’ is one in which T'th order information changes are

applied to the previous T probabilities. Then the constraints to which

965



{pij(t)} is subject are
ko ok k _
ZIP; s (E)F X, (tow=1)1=<X"(t,w-1)>, k=1,2,...,K
i3 1] 1]
w=t-T,t-T+1,...,t, (3.51)

and

ZZpi.(t) = <1> . (3.52)

ij 1

Note that for this composite model, the normalisation is only defined
once, and thus it is stated separately. The derivation is thus subject

to K(T+1)+1 constraints, and the model is then given by

R K k. k
p::(t) = Z I p..(w-1) = exp{-p (w-1)f [x;.(t,w-1)1} ,
W w=t-T k>0 i
t
= w=¥-T Pig (W-1)Ly;(tam-1), (3.53)

The variables Lij(t’w_1) are appropriately defined and Z is the normalis-
ation constant which ensures that equation (3.53) sums to unity over i
and j. Note that this constant must be defined as part of one

L..(t,w-1), usually Lij(t,t-l) as in equation (3.46) but this choice is

ij
arbitrary.

Equation (3.53) Tike equation (3.44) is a recurrence relation and it is
thus possible to express pij(t) as a function of the series of significant
information changes from the most previous probability distribution.
Assuming that the previous T probabilities are significant in determining
each of the T probabilities in equation (3.53), the equation for pij(t)

can be written as

t -1
b =p..(t-T- . (Tyt-1 (w=1)L, L (Tow-1). 3.5
pigl8) = pyg(ETN) T Lygleer) o pyguelyg(encl). (3.58)
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When the time T=0, equation (3.54) simplifies to the first order

model given previously as equation (3.46). One final point needs

to be made before this type of logic is used to estimate the form

of matrices such as T(t,z): the model in equation (3.53) or (3.54)

js completely general and the parameters ﬁk(w-1) will determine the
jmportance of any information change in the model. If there has been
no change between two time periods, then the information gain I(t,w-1)
will be zero, information change Xig(t,w~1) will be zero, and the
parameters pk(w-l) will have to be calibrated for every application
and thus the order of the model can be determined empirically. Figure
3.4 provides a diagrammatic illustration of the lagged structure of

of such a model.
INFORMATION-MINIMIéING IN THE DYNAMIC URBAN MODEL.

To conclude this discussion, an indication of the way in which dynamic
information minimising can be used to generate forms for the model's
distribution matrices, will be presented. Assume as preyiously that
these matrices can be partitioned according to equations (3.19) and

(3.20) which are repeated here for convenience

A(t,z)

ytg)=%TJEU). [(3.20)1]

T(t,z)A(z),  and [(3.19)]

The matrices é(r,z) and é(f,z) have a similar structure and the following
argument can easily be generalised to these mover redistribution matrices.
Then as the matrices T(t,z) and S(t,Z) deal with distribution from one
sone to another, their cells contain the proportion or probability that
an activity originating in i will locate or interact with another at

j. To preserve the activity generation processes, these probabilities
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are normalised to unity for each activity interaction emanating from
zone i. In short, these matrices are singly stochastic and their
elements can be easily derived from the probability interaction models
presented above, if these probabilities are first normalised to unity

by summing over j and scaling.

Consider a first order lag: using the above framework, it is possible
to update matrix T(t-1,z) by applying a matrix F(t,t-1,2z) whose
elements are computed from the information change operator Lij(T,T‘]).
Note that the matrix change operator is notated according to the origin
of the generation process. The matrix E(r,;;l,z) may not be computed
explicitly, for the model may not be operated in matrix terms, but

such matrices could easily be found if desired, and may contain useful
information about the dynamics of the process (Batty and March, 1978).
Assuming that the period of significant information change is T+]

time periods, and that G(t,t-1,z) represents the information change

matrix operator appropriate to S(t,z), matrix recurrence equations

analogous to equation (3.47) can be stated as

t+T

T(t+T,z) = T(t-1,z) @ F(t,t-1,2), and (3.55)
=t
t+T

S(t+T,z) = S(t-1,z) I G(t,t-1,2). (3.56)
=t

Generalisation of equations (3.55) and (3.56) to n'th order lags,

and to the redistribution matrices characterising movers and stayers,
should be quite clear. The specific details of the elements on which
these matrices are based, and how they are derived using information-

minimising can be found in the next chapter.
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The complete dynamic model has now been elaborated through its
activity generation processes characterising new change, movers and
stayers, and through the generalised lags in locational interactions
which determine the distribution processes. It is not worthwhile
substituting T'th order equations based on forms similar to equation
(3.54) into the general model equation (3.39), for the resultant
form would be long and cumbersome, and would add Tittle of value.
However it is worthwhile illustrating how a T'th order process of
information change affecting spatial interaction combines with an
activity generation process based on a 11fe of T+1-time periods.

The simplest demonstration is based on the simplest process, that of
generating new change. Using matrix equations for T(t,z) and $(t,z)
with elements calculated from equations similar to (3.54), the amount

of new service activity generated at any time t A*s(t), can be written

as
& t
a*s(t) = T _ab(z){ I A(2)r(2)
z=t-T =2
T w=1
[T(x-T-1,z) 1 F(w,w-1,z) 1 T(v-1,w)F(w,v-1,2)]
w=t-T v=w-T -
T w-1
[S(t-T-1,z) 1m F(w,w-1,z) 1 S(v-T,w)G(w,v-1,2)]
w=t-T v=w-T N

(3.57)

In equation (3.57), the first 1ine contains the summation of new

change generated in time t which results from the product of previous
distributions of new change associated with the input back to time period
[t-T:t-T-11. The second and third 1ines deal with the T'th order

distribution processes for population and services - the journey to
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work and population demand for seryices - and these illustrate in
themselves lags in the significance of information back T+1 time

periods.

To summarise, the activity process, the order of the distribution
process and the significance of past information are all associated

with lags of a maximum of T+1 time periods. Of course, these

maximum lags could vary, and be dependent on time themselves which

would further complicate the process. Even more complicated expressions
would result by making similar substitutTong\for the movers and stayers,
but enough has been presented to give the reader a taste for the
richness of the model. In the rest of this chapter, pseudo-dynamic
models will be explicitly derived as a basis for their development

in subsequent chapters.

A CLOSED FORM FOR THE DYNAMIC URBAN MODEL.

The general definition of a pseudo-dynamic model presented in the
introduction, suggested that such a model could be derived by
aggregating a fully dynamic model with respect to time. As a first
step in this process, it is necessary to express the dynamic model in
closed form over a fixed time interval so that the input and influences
of previous changes in time are well-defined. Indeed in operating

the dynamic model itself, some degree of closure is necessary with
respect to the simulation period, for it is unlikely that all previous
influences on change in the simulation period are known. Thus approxi-
mation and an arbitrary starting position must be adopted as in the

application of this type of model to the Reading region (Batty, 1976)
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and all changes outside the simulation period must be known, assumed

or ignored.

In applying the model to a closed interval of time, a number of fairly
strong assumptions must be made. The time interval of the simulation
is set from time period [t-T:t-T-11 to [T+T+1:t+T1, and this interval
is formed in the following way. From time period [t-T:t-T-11 to
[t:t-1], there is input of activity ab(z), t-T<z<t: prior to time t-T,
the system is empty, and thus the period [t-T:t-T-1] constitutes the
beginning of the world from the point of view of the model. Approxi-
mations to the past history of the system up to time t-T-1 would be
required at the start of the process if the dynamic model were to be
applied in this way, and the closed form prediction would simply be

added to the past history to generate the present.

At any point in time t-T+t, O<t<t, the total exogenous activity input

so far must be positive; that fis, z;;lfﬁqg(z);g, thus ab(t-T)>0,
although AE(t-T+T)%‘9} >0, as long as the cumulative input is positive.
The 1ife of the generation process is T time units, thus by time t,

the last new changes in population and services associated with the
first input ab(t-T) have been generated. In similar fashion, the last
changes associated with ab(t) are generated in the period [t+T:t+T-113,

and after t+T, no new changes occur. In short, by t+T, enough time

has elapsed for the input to have completely worked itself out.

Activity is able to first move one time period after it has been

generated and thus the first movers and stayers associated with the
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first input occur in [t-T+1:t-T]. It is assumed that all activity
is able to move at least once in the closed interyal, and as the last
new change is generated in time period [t+T:t+T-11, this activity
generates its first movers in [t+T+1:t+T]. Therefore the closed
interval runs from the time of the first input to the time when the
last generated change from the last input, makes its first move: this
interval is from t-T-1 to t+T+1. It is also assumed that the mover
ratio a(t,z)>0, t-T+l<z<t+] and a(r,z) = 0, z>t+l.  Thus the last
input in time period [t:t-1] begins its sequence of moves in [t+1:t]
using the ratio a(t+l,t+1) and generate§ its Tast move in [t+T+1:t+T1.
The organisation of the closed interyal from t-T-1 to t+T+1 is shown
in Figure 3.5 and from this diagram, it is clear that the interval
can be analysed in three subinteryals. In the following section,
closed form equations for the employment vector will be derived, and
as previously, analogous equations for population immediately follow
and are thus not stated. Equation (3.30) will be used as a basis

for these derijvations.

It is clear from Figure 3.5 that the closed interval can be divided

into three periods. 1In the first period [t—T:t-T-]], there is only

new change at the start of the process for no movers are yet possible.
From [t-T+1:t=T] to [t:t-1] inputs occur, and movers and stayers are
generated from previous activity. Finally in the interval [t+1:t]

to [t+T+1:1+T], there is no input, only new change and movers
originating from previous inputs. The three subintervals are character-
ised by exogenous change, exogenous and endogenous change, and endo-
genous change respectively. In terms of the first two subintervals,

the system is being driven externally whereas in the last subinterval
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it is approaching a kind of equilibrium as the momentum already
established begins to lessen. It is necessary to distinguish
between these subintervals because equation (3.30) simplifies in
different ways for change within each of these periods. First for

the period [t-T:t-T-1], employment is calculated from

e(t-T) = ab(t-T) + Ab(t-T)A(t-T,t-T)B(t-T,t-T). (3.58)

At t-T, there are no movers for these only begin in the following
period [t-T+1:t-T], and thus from this period until time t, employment

must be calculated using a more complicated expression. Then

z=t-T =2
r-1 r ro. %
+ I Ab(z) ©m afr,v) T A(r,z)B(t,2Z)
z=t-T v=z+1 =V
r-1 r-l - :
+ I t [s (r-T,wsz) + s”(r-1,w,z)1L I-a(r,r-w+z)l,
z=t-T w=z

t-T+1<r<t, (3.59)

Equation (3.59) is a simplification of equation (3.39) in that up to

t, new change is still working itself out and there are no movers

and stayers associated with past inputs which have completely generated
their associated activity. Like equation (3.30), equation (3.59)

is organised to demonstrate exogenous activity on its first line,
endogenous on its second, third and fourth lines, namely new change,

movers and stayers. Noting that ab(r)=0, r>t, a(t,r)=0, r>t+l, and

106.



ﬁ(r,z);g,_g(r,z)=0,_A(r,z)=0,.é(r,z)=0, r>z+T, equation (3.59) could
be used to compute change in the subinterval t+1<r<t+T+1. However

there is a clearer expression for change in this period.

Following the structure of equation (3.39) and using the definition

b(t) = Zzzt_qu(z), employment e(r), t+l<r<t+T+1, can be calculated
from
e(r) = b(t)
t r
+ T ab(z) ©m A(r,z)B(t,z)
z=r-T T=Z
t t+1 ro.
+ r ab(z) £ a(r,v) T A(r,z)B(7,z)
z=r-T v=z+] T=V -
r-T-1 t+1 ro.
+ I Ab(z) = a(r,v) m A(r,z)B(t,z)
z=t-T v=r-T T=V
! r=1 m S
+ I B (s (r=1,w,z)+s7(r-1,w,z) I I-a(r,r-w+z)]
z=r-T w=z+r-t-1 —
T r-T-1 m s
+ B z  [s(r-1,z+47,2)+s7(r-1,2z+1,2) I I-a(r,r-1)]
t=r-t-1 z=t-T
r-t-2 t s
2 T sT(t+T+l,z4T,z), tHl<r<t4T+1, (3.60)
=0 z=t-T

Equation (3.60) differs from equation (3.30) in a small but important
way. The number of components which form the mover-stayer recurrence
equations decreases as r increases, due to the fact that no new input
occurs after the period [t:t-11 and no new mover sequences are begun
after [t+1:t] . Those sequences which have begun previously finish

and eventually in the period [t+T+1:t+T1,the last movers are generated.
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This decline in the number of new changes and movers is due to the
termination of the input in [t:t-1] and the last of the mover
sequences beginning in [t+1:t]. Clearly as the components of
change get less, the number of stayer components increases to
compensate, and the last line of equation (3.60) includes the
stayers which are constant from r to the end of the simulation period.
Note that these stayers only exist for t+2<r<t+T+l. For r=t+l,

the summation over t is out of range and is assumed to be undefined.
The stayers which make up this term, are those which represent the
final pattern made up of movers and stayers to t+t+]1 for each
component, and these are unchanging after this time due to the

termination of the associated mover sequence.

Another way of demonstrating this movement to a static situation at
time t+T+1 can be illustrated by examining equation (3.60) at the

end of the closed interval. Then at t+T, employment is given by

gty = ()
+ Ag(t) H.A(r,t)g(r,t)
=t
t+T .

b(t)a(t+T,t41) T A(t,t)B(7,t)
t=t+]

-+

t-1 t+1 t+T . ~
+ I ab(z) I o(t+T,v) m A(r,z)B(t,2)
z=t-T v=t T=V

[ST(t4T-1,t+T-1,t)+s5 (t+T-1,t) ILI-a(t+T, t+1)]

+

;
v 0 {5 ISN(T-T,zen,2) 485 (44T-1, 241, 2) 10 t4T, t4+T-1) ]
:
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i
z _§s(t+r+1,z+T,z). (3.61)
t

Equation (3.61)shows that at time t+T, the last new change associated
with the input at time t, is generated (second Tine). In terms of
new movers and stayers, there is only one component associated with
the input at time t (third and fifth Tines), and for movers and
stayers whose generation process is fully worked out, there are two

components for each input up to time t-1.

At time t+T+1, no new change is generated, and there is only one component
for the movers and stayers originating from each input (from C[t-T:t-T-1]

to [t:t-11). Then at t+T+]

e(t+T+1) = b(t)

- B t+T+1. ~

+ T Ab(z)a(t+T+1,t+1) 1 A(t,z)B(t,2)
t-T— t=t+1

t
+ z EEW(t+T,z+T,z)f§s(t+T,z+T,z)][lfg(t+T+1,t+1)]
t

z=t-T
T-1 t s

z T sT(ttr+l,z+t,2), (3.62)
=0 z=t-T

and it is clear that the process involves only the last components of
change associated with the movers. Readers can also check this number
of components of change from Figure 3.5 where the gradual movement
towards the static position is traced diagrammatically. At time t+T+2,
there are no movers, only stayers and the fixed input, thus e(t+T+2)=
e(t+T+1), and the process has reached a static equilibrium which defines
the end of the simulation period. This closed form model can now be

used as a basis for temporal aggregation.
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THE DERIVATION OF PSEUDO-DYNAMIC URBAN MODELS.

In the fully dynamic model, there are two significant time streams
which might be aggregated to provide more macro forms. First there
is the origin time z and second, there is current system time t: as
generation time w is always associated with an origin time z, w and z
both index the same process, and thus it is only necessary to treat
one of these, say z. It is now possible to provide a technical
definition of a pseudo-dynamic model with the fully dynamic model

in mind: a pseudo-dynamic model, then, is a model with an explicit
dynamic form characterised by two or more significantly different
time streams, some of which are aggregated and treated statically,
others of which remain in their basic form. Such a model has both
static and dynamic elements, and it goes without saying that the
temporal aggregation must be accomplished in a meaningful way. In
this and subsequent chapters, pseudo-dynamic models are derived from
dynamic ones in two stages: first by expression of the dynamic model
in closed form and then by temporal aggregation, although this does
not necessarily appear to be the only way to derive such models. It

has been introduced here purely as a matter of convenience.

Even at this stage, there are several different pseudo-dynamic models
which could be derived from the closed form in equations(3.58) to (3.60).
For example, it is possible to aggregate the input activity from t-T
to t and to assume that the process begins in the perjod [t:t-11.

The process would be subject to exactly the same previous assumptions

concerning a(t,z), and it is thus clear that only one sequence of movers
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would be generated beginning at [t+1:t]. However a richer model

would be one in which it was assumed that the input was aggregated
prior to the start of the process in [t-T:t-T-11, and that the

process was the same from then on.  This would imply that the activity
would generate T+1 series of moves rather than only one, although

the first model could be derived from the second, and in both cases,
the essential idea is that the T+1 distinct streams of activity
associated with the T+1 origin times z are aggregated to one stream,

and treated according to the closed form dynamic model.

In these applications, it is assumed that it is the origin times which
are aggregated, and this has implications for the system time t.

No longer can t take on the same significance for this dimension now
becomes associated with a single input, and thus it might be inter-
preted as a kind of composite system time, or more likely model time.
In the event, it represents an approximation to the real dynamics

as in any process of aggregation. The fuller implications of this

point will be spelt out in the next chapter.

The second of the above pseudo-dynamic models will be elaborated
here. First, consider that the process of aggregating the input
Ab(z) is outside the simulation period [t+T+1:t-T-11. Then

t-T

b= 1 ab(z), Cab(z)=0,z>t-T]

z=0
where z=0 represents some notional origin of the system. In fact,
in applications of such models, b would be measured directly at

t-T. Given these two assumptions concerning the input, the process

is then identical to that outlined in equations (3.58) to (3.60).
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However, certain simplifications arise due to these assumptions, and

thus it is worthwhile seeing how these are reflected in the equations.

Furthermore, it is necessary to derive an explicit form for this
pseudo-dynamic model which will represent the starting point for
later chapters. As the origin time z has been aggregated to one
period, then variables no longer need to be notated by z. The
equation for the first subinterval of the simulation period for

exogenous growth only, analogous to(3.58) is

e(t-T) = b + b A(t-T)B(t-T). (3.63)

In the subinterval [t:t-T], employment e(r) is calculated from

e(r)= b

r-1
+ z [sm(r—1,w)f§S(r—1,w)]Lng(r,r—w+t-T)],

w=t-T
t-Ter<t, (3.64)

and it is clear that the four lines of equation (3.64) are analogous
to the Tines of equation (3.59): note that in equation (3.64), each

term can be derived from (3.59) by suppressing z.

In the final subinterval from t+1 to t+T+1, the new change in the
second line of equation (3.64) disappears and the process begins
to lose its momentum immediately. An equation analogous to (3.60)

but missing the mover-stayer terms associated with inputs generating
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new change, can be derived as

e(r)= b
t+1 ro. .
+b = a(r,v) mA(t)B(1)
v=r-T =v
T m s
+ T 0sT(r-T,t-T+t)+s (r-1,t-T+t) IlI-a(r,r-1)]
T=r-t-1 o
r-t-2 s
+ TS (thr+l,t-THr), tHI<r<t+T+1. (3.65)
=0

In the final period [t+T+1:t+T], the last movers are generated and

equation (3.65) simplifies to

e(t+T+1) = b
- T+, .
+ b a(t+T+1,t+1) 1 A(7)B(T)
=t+1~

+ ISM(t4T,t) 455 (44T, ) ILI-a(t+T+1,t+1)]

T-1 s
+ I sT(t+r+l,t-THr), (3.66)
=0
At t+T+2, there are no movers, and the system is effectively static.
The pseudo-dynamic model in equations (3.64) to (3.65) is the one
which will be used in subsequent chapters in this thesis. Other
models are possible and will be explored in future research, but

the model derived here is sufficiently general to form a basis for

reinterpreting existing static models and designing better ones.
CONCLUSIONS.
It has taken some time to present the idea of a pseudo-dynamic model
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but a thorough understanding of the dynamic processes from which

such a model is derived, is an essential prerequisite in the
development of this concept. Of particular importance in the study
of pseudo-dynamic models is the way in which explicit processes
dealing with new change, movers and stayers have to be reinterpreted
when temporal aggregation occurs, and in subsequent chapters such
processes will take on new roles involving the control of the
pseudo-dynamic process. Indeed, it is difficult to know how
equations such as those in (3.63) to (3.65) could have been derived
without the full development of the dynamic model, and as will become
clearer later,this pseudo-dynamic model can be used to derive new
forms of static model; and it is suggested that this Tine of inquiry
is as relevant a way of improving existing models as other schemes such

as sectoral disaggregation.

In the next chapter, the pseudo-dynamic model in equations (3.63) to
(3.65) will be used in deriving a typology of models, some of which are
already known, some of which are new. Insights into what existing
models emphasise and what they do not are obtained, and these lead on
to new ways of modelling constraints which these models have to meet.
The information-minimising framework outlined above will also be used
to generate specific forms of dynamic interaction model, and a particular
pseudo-dynamic model will then be developed and applied to the Reading
subregion in Chapter 5. This model will be calibrated in a static
way, but in Chapter 6, a new method of calibration based on the
dynamic structure of the process will be presented. This method is
analogous to a process of optimal control of a dynamic system, and

it is here that the notion of a pseudo-dynamic model helps in re-

interpreting existing methods. In fact, the calibration method 1is

114.



considerably more efficient than existing practice, and the use of

the method on existing models which have the minimal of pseudo-dynamic
structure, has obvious advantages. In Chapter 7, the method is explored
on an urban model of Peterborough, while Tater chapters explore the

calibration process using yet another variant of the pseudo-dynamic model.

These developments are based on the notion that improvements to
existingurban models must come through reinterpretation and extensions

to such models, not just through radically new formulations. The

models which will be presented despite their apparent theoretical
simplicity, have the prime advantage that they can be applied to real
situations, and involve urban activities which are of potential

interest to land use planning. Despite the fact that there are
continuing calls for the abandonment of such models due to their
simplistic structure or seeming irrelevance (see for example, Lee, 1973),
they continue to be built. The difficulties which plague the development
of theory in social science, should be enough to convince even the most
extreme, that improvements to present practice, are worthy of time and
effort, even if only to demonstrate the limitations on the state of the

art.
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CHAPTER 4,

A TYPOLOGY OF PSEUDO-DYNAMIC MCDEL FORMS,

The pseudo-dynamic model introduced in the last chapter is designed to
simulate processes of urban change whose form is implicit, rather than
explicit. There are many situations where the phenomena of interest
can only be explained in a temporal sense but frequently the dynamic
processes which determine the phenomena cannot be observed due to lack
of information or due to their intrinsic nature. In these circumstances,
there appear to be two possible approaches:  to assume the dynamics

of the process and to build an explicitly dynamic model which cannot be
tested against any available data, or to build a static model with an
implicit dynamic structure which is capable of testing against cross-
sectional data. The first approach is the one adopted by researchers
such as Forrester (1969), the second is the approach postulated here

which involves the construction and application of pseudo-dynamic models.

Although the idea of a pseudo-dynamic model was explored at length in
the last chapter, it is worthwhile summarising its structure before the
formal elaboration of the model begins. A pseudo-dynamic model 1is

defined as a model in which both static and dynamic elements exist.
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In essence, the model is neither wholly static nor dynamic for it
contains elements which pertain both to cross-sectional and time-series
data. Such a model can be derived from a fully dynamic model which is
characterised by two or more related dynamic processes, by aggregating
a subset of these processes with respect to time. The resulting model
thus contains at least one dynamic process and at least one static
approximation to such a process. There are several types of process
which might be treated in this manner. For example, it may be necessary
to design a static model in which the static nature of the phenomena is
grown 'artificially' to the cross-section in time. Such are the models
which originate from Lowry's (1964) {dea of the 'instant metropolis'.
Models in which constraints on the phenomena are necessary, can often
be interpreted in pseudo-dynamic terms. As activity is built up by a
model, constraints on the amount, its location, the patterns of inter-
action generated by it and so on come into play. Usually in static
models, such constraints are met by iterative solution but often, a
dynamic interpretation of the rationale for such constraints is

meaningful, and thus a pseudo-dynamic treatment is relevant.

The model derived in Chapter 3 was based on the distinction between
processes of new change, and processes of redistributing existing
activity. In short, exogenous changes originating outside the system
led to changes within the system which involve allocating urban
activity to space whereas changes within the system led to the re-
allocation of that same activity to space at some time after it had
first originated.  The amount of activity reallocated was referred

to as mover activity and activity which was stable as stayer activity.
The pseudo-dynamic model retains this distinction between new change,

movers and stayers, and the idea of allocation and reallocation
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associated with these processes is a useful means of modelling the

effect of constraints in static models. For example, models in which
solutions have to be reached iteratively due to the simultaneous
relationships between activities in an urban system may have to be

solved and then re-solved to ensure consistency. Constraints on location
or on the pattern of interaction between activities might be met by
initial allocation followed by successive reallocation, and thus the
structure of the pseudo-dynamic model seems eminently suited to hand1ing

these procedures.

In this chapter,the pseudo-dynamic model presented in equations (3.63)

to (3.66) will be presented and extended a little further. By varying
certain elements which characterise the model's processes, it is possible
to generate a family or typology of related models and this chapter will
be concerned with elaborating this typology. Some interesting insights
into new and existing model forms are gleaned from this discussion, and
then in the next chapter, the idea of using these models to simulate

the effect of locational constraints is explored. At this point, an
application of one of the models derived is presented. The model is
first stated in a computable form and then the use of the information-
minimising framework to derive the allocation and reallocation submodels
is described. The resulting cross-sectional model is calibrated to

the Reading subregion and a brief comment on its performance is made.
The static nature of the calibration is somewhat arbitrary and this
leads on to the notion of dynamic calibration through the model's

pseudo-dynamic structure, the subject of the later chapters.

THE FORM OF THE PSEUDO-DYNAMIC MODEL.

The time period over which the model operates is divided into three main
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intervals, together with an initial input stage. It is assumed that
the initial input is calculated prior to the operation of the model,
and that there is only one input driving the whole process through the
simulation period. In fact, the aggregation of the input from each
time period into one total input is achieved by aggregating the inputs
of the fully dynamic model, thus deriving the pseudo-dynamic form and
a detailed discussion of this has already been given. It is also
assumed that the new change generated by the input has a iife of T time
units, and that the Tife of each process which involves redistributing
the new change also has a life of T units. Furthermore, it is assumed
that at every period after a new change has occurred in the system, a
new process of re-allocation involving movers begins,and ends T units

later.

These assumptions imply that the simulation period can be divided into
three main intervals: the time period [t-T:t-T-1] the beginning of the
simulation when only new change is generated, the period [t:t-T1 which
is characterised by new change, movers and stayers, and the period
[t+T+1:t] which is characterised by only movers and stayers. At time
period [t+T+2:t+T+1], the system is in equilibrium for there is no new
change and no movers, only stayers. The model can now be formally
stated: note that in the following presentation only equations for
employment are presented, for population equations immediately follow
as demonstrated earlier. However, in the next chapter on the application
of locational constraints, and on the development of the model for the
Reading subregion, the population equations will be given. Notation
conventions are as in Chapter 3, that is, bold lower case letters are

1 x N row vectors and bold capitals are N X N matrices, N being the

number of employment-population locations (zones) in the system.
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Existing definitions of variables will be restated when necessary.

The initial input of basic employment b is aggregated from changes in
such employment ab(z) from the beginning of the system's history z=0
which is purely notional, to time t-T.  Then

t-T

T ab(z) , [ab(z) = 0, z>t-TI.
z=0 ~ -

|or
il

New change generated from the input b in time period [r:r-11, r>t-T,

is called a*s(r). Movers associated with new change generated in time
period [w:w-1], and associated with [r:r-11 are §W(r,w) and stayers Eé(r,w).
The model can now be written in terms of the three time intervals

defined above. Readers should note that although this discussion is self-
contained on the formal level, it may be necessary to occasionally

consult the last chapter to refresh the model's Togic.

In period [t-T:t-T-1], total employment e(t-T) is given by

e(t-T) =Db + a*s(t-T). (4.1)

Equation (4.1) is the same for all the models presented here and 1t will
not be repeated again. Then in the second interval, [t-T+1:t-T1 to

[t:t-11, t-T+l<r<t, employment e(r) is calculated from
r-1 r-1

e(r) =Db + a*s(r) + z sm(r,w) + I ss(r,w). (4.2)
- w=t- w=t-T"

The last new changes are generated in [t:t-1] and thus in the interval

[t+1:t] to [t+T+#1:t+T], t+l<r<t+T+1, a*s(r) = 0.  For this interval,

the system is only redistributing itself, and these redistribution

processes are losing momentum in themselves.  Then for this interval
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t . t 8 r-T-2 s
e(r) =b+ s (r,w) + I ST(r,w) + IS (wrT+T,w).  (4.3)
w=r-T-1" w=r-T-1 w=t-T

In fact, at time r=t+1, the last term in equation (4.3) is out of range
thus indicating that the system is at the point of balance between its
initial growth and redistribution to time t, and its subsequent movement

to stability from t+1 to t+T+1. Strictly speaking, an additional equation
should be developed specifically for t+1, although this is not sufficiently
different from equation (4.3) to warrant separate treatment. Fiqure 4.1
presents these processes diagrammatically and also serves to show the
organisation of the simulation into three time intervals. Note that the
central time period [t+1:t] indicates the change from growth to redistri-
bution. At time t+T+2, equation (4.3) demonstrates that the system is

composed entirely of stayers, and thus is in equilibrium.

Models for each of these processes were postulated in the last chapter
where it was suggested that employment was related to population, and
population to employment through a series of non-negative matrices
reflecting the scale relations between these variables and their spatial
interaction. For new change, service employment A*s(r) can be derived
from the successive application of matrices A(t) and B(t) to the initial
input b: in effect, the process is one of calculating population from
employment through the matrix A(t) and further employment from population
through the matrix B(t), and it is in this sense that the population and

employment equations are linked. Then

r
P A*s(r) = b m A(r)B(rt), (4.4)

=t-T
and as it is assumed that A*s(r)<a*s(r-1), it is clear that the matrix

product A(t)B(t) must be convergent in the Leontief sense (Gale, 1960).
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Figure 4.1: Temporal Structure of the Pseudo-Dynamic Model.
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Movers are also modelled using a similar process which is lagged behind
the process of new change but has a similar convergent character. The
initial input b is redistributed using new scale and distribution
incorporated in the matrices A(r) and E(T), and a proportion of activity
a(r,r-u) is subject to redistribution. a(r,r-u) is an N x N scalar
diagonal matrix where it is assumed that ¥ is constant. The index

u is defined here as u=w-(t-T)=w-t+T, the amount of time between the

generation of new activity and its origin. Movers are calculated from

r ~ ~
s"(r,w) = b a(r,r-u) T A()B(t) , (4.5)
=r-

- u

and stayers are then computed from the recurrence relation

Es(r,w) = EET(r-1,w)f§S(r-1,w)][l;g(r,r-u)]
r-1 T . r
= b T a(t,T-u) n A(z)B(z) n [I-a(v,v-u)l +
T=W+1 z=t1-U v=T+]
W r
b 1 A(z)B(z) m [I-a(v,v-u)l. (4.6)
z=t-T v=w+]

The amount of activity moving is controlled by the ratio matrix a(r,r-u)

which is dependent upon the system time r, and the generation time r-u.

In the original statement of this model, the recurrence relation used

to calculate stayers was not expanded to the detail presented in equation
(4.6). Here it is necessary to be more specific for in the typology

of models to be developed below, it is necessary to examine the final
configuration of the system at time t+T+1; hence the need for equation
(4.6). Furthermore, the last term in equation (4.3) which concerns the
activity which is stable, that is, stayers from previous times which are
unchanging, needs elaboration. Equation (4.6) is not completely

general for the stayers who actually remain stable as the model moves to

123.



equilibrium, include the movers from the last significant time period

who no longer move. Then
: w+T+1 T . . WHTH]
sT(wtT+l,w) = b I a(t,t-u) T A(z)B(z) m [I-a(v,v-u)]
T=W+] Z=T1-U v=1+]
w w+T+]1
+b 1w A(z)B(z) m [I-a(v,v-u)l. (4.7)
z=t-T v=w+]1

As equation (4.7) does not depend upon r, it is constant for the

appropriate point in time associated with equation (4.3).

Within the structure of this model, there are several elements which
might vary and thus generate specific model types. In particular, the
scale and distribution matrices A(t), B(rt), A(T) and E(T) might take on
different forms, as might the matrix a(r,z) which controls the amount of
activity which moves. In developing a typology of models based on
specific forms for these elements, it is necessary to be fairly
restrictive, that is, to assume that these elements are constant in
different ways. By generating extreme cases of this type, it is
possible to examine the Timits of such a pseudo-dynamic model, but at
the same time, some rather interesting structures emerge. In fact,
these model types are fairly realistic in certain respects, and are
useful in emphasising and simulating certain special processes. Many
existing models which have a potential pseudo-dynamic interpretation
can be generated in this manner, thus illustrating the richness of the
typology. The main assumption adopted here which structures the
following classification concerns the constancy of a(r,z). It is
assumed that o(r,z) = o which is independent of mover and generation
time, and that three model types are significant: o=0 models, a=T

models and O<a<I models, thus implying models with no movers, models
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with all activity distributed so far subject to redistribution, and
models with partial but constant redistribution of the generated

activity.

Within these three types, it is possible to make assumptions about the
distribution of new activity and the redistribution of existing activity.
Six cases are defined: first, the original model in which the
distribution and redistribution effects vary through time;  second,

a model in which the redistribution effects are constant, that is

A(t) = A and B(t) = B; third, a model in which the distribution effects
are constant, that is A(t) = A and B(r) = B; fourth, a model in which
both distribution and redistribution effects are constant; fifth a
model in which distribution and redistribution effects are constant and
equivalent; and sixth, a model in which the distribution effects are
variable but equivalent, that is A(t) = éﬂr) and B(t) = B(t). In the
sequel, o=0 models will first be developed followed by o=I models. A
separate section is devoted to a=I models with equivalent but variable
distribution and redistribution effects, and finally O<a<I models are
developed. In the next four sections, the model in equations (4.2) to
(4.7) is first simplified according to the various assumptions concerning

a and then each of the six cases is developed where appropriate.
=0 MODELS:  NO REDISTRIBUTION OF EXISTING ACTIVITY.

These models are by far the simplest in the typology for the lack of any
redistribution-mover effects due to a=0 collapses the model structure

quite substantially. If there are no movers, it is intuitively obvious
that the stayers will correspond to the new change generated so far which

becomes immediately stable. Moreover, the only significant time interval
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is from [t-T:t-T-11 to [t:t-1]1 for after that time, the system is
stable. Substituting equations (4.4), (4.5) and (4.6), e(r), t-T+lzr<t

into equation (4.2) gives
4 s

e(r)y=b+b I A(t)B(r) + T s7(r,w). (4.8)
t

From the recurrence relation in equation (4.6), §§(r,w) simplifies to

W
sS(row) = s>(w,w) =b T A(2)B(2), (4.9)
t-T

oy

and thus equation (4.8) can be written as

r W
e(ry =bIlI+ I m A(t)B(t)3. (4.10)
w=t-T 7=t-T

This is the same as Berechman's (1976) model in which he formulates

the distribution matrices A(t)B(t) using a non-stationary Markov process.

Only two of the six cases apply for this type of model and these relate

to variable and constant distribution matrices. In the case of variable
distribution matrices, there is little more to be said for the model is

as given in equation (4.10). No further simplification is possible

unless specific forms are adopted for A(t)B(t) using some additional

model structure, such as information-minimising (Batty and March, 1978)

or a Markov process (Berechman, 1976; Stone, 1970).  However, considerable

simplification is possible if A(t) B(t) = A B, and then equation (4.10)

becomes
r w-t+T+1
.g(r) =b [I+ b (Alg) 1. (4.11)
T w=t-T
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Under certain conditions, the matrix series in equation (4.11) is
geometrically convergent in the sense that 1i2(ﬁ_§)T= Q0.  For

example, the assumptions about the form of A and B made in the last

chapter in equations (3.19) and (3.20) would ensure convergence, and

because it has been assumed that the process is, to all intents and
purposes, convergent after T+l increments of new change have been generated,

then the series can be approximated by the inverse (I - A_g)_]when

r=t. That 1is

e(t) = b1 -ABI . (4.12)

This is, of course, a well-known form. It is one version of the so-called
Lowry model derived simultaneously and independently by Harris (1966)

and Garin (1966) from Lowry's (1964) original Pittsburgh model. It
represents the simplest spatial equivalent of the input-output model
presented in Chapter 2. Equation (4.12) also represents the model from
which much of this analysis has been derived and it is the basis of the
dynamic framework developed in Chapter 3, and already used for a model

of the Reading subregion by the author (Batty, 1976). As such, it is

the simplest of all the models presented here and has perhaps the least

interest due to its well-known form and widespread application.
o=1 MODELS:  COMPLETE REDISTRIBUTION OF EXISTING ACTIVITY.

In this class of model, all the activity generated so far is reallocated
in the subsequent period of time. In essence, all existing activity is
moved, no activity remains stable. The simplification of the original
model is not as substantial as in the previous set of models, although
it is still considerabie. For t-T+l<r<t, the employment equation is

based solely on the input, on new change and on movers
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r r . ~
y+b 1 T A(c) B(1). (4.13)

e(r) = b +
v=t-T+1 7=v

|o
=

=

o~
A

g
w

~
A

Note that the term which models movers in equation (4.13) demonstrates
that all the activity generated up until r-1 is reallocated. From

t+1<r<t+T+1, the model equation becomes

t+1 ro . - r-T-2 w+T+1 . -
e(r) =btb = m A(t)B(t) +b = m  A(z)B(z), (4.14)
v=r-T t=v w=t-T z=t+1 -

and it is obvious from the range of summation and multiplication in the
above equations that the movers are lagged one period behind the original

generation of new change.

A clearer demonstration of the movement of all the existing stock

according to new distribution and redistribution matrices at time r can

be made in relation to equation (4.13). Equation (4.13) can be rewritten
as
r r-1 r-1 . . o
e(r) =b {I + m  A(t)B(t)+CI + z m A(t)B(t)JA(r)B(r)?.
- r=t-T v=t-T+1 1=v -
(4.15)

From equation (4.15), it is clear that the original pattern is lost
jmmediately and that at each time period, the original sequence of
generation begins to be reallocated afresh. By time t+1, all the

activity is generated as new change has been reallocated. In short, the
original distributions have been destroyed, and it might be argued that
there is no purpose to including them. But in models of this type as

will be evident later, there is often positive feedback at each stage

from the state of the system to the form of the distribution and re-
distribution matrices used at the succeeding stage, and thus the processes

as specified above are all essential.

No further analysis of the case where the distribution and redistribution
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effects vary through time is possible other than that already presented
in equations (4.13) to (4.15) but substantial simplification occurs for
the second case in which the redistribution matrices are constant over
the simulation. Taking equation (4.15) and setting A(<) = A and B(t) = B

yields the following form

r r-1 i =
e(r) = b{I+ 1 _A()B(c}I+ T (AB) 'IAB
=t-T v=t-T+] -
r ~ et T 3 ona=lr
= b{I+ T A(t)B(r)+[I-(A B) 10I-A B17'A B}. (4.16)
t=t-T - T

Using the series simplification for movers redistributed by the constant

matrices_é'g leads to stability at r=t+1.  Then from equation (4.14)

]
k=2
prel
—
+
—/
|—
1
——
=
loo
o

e(t+)

1
(o
—~
—
+
I
(o ¥
[}
-
]
I=2
(o I
[l
[
—

= b{I-A BI™' . (4.17)

Equation (4.17) is identical to equation (4.12) with A.E replacing A B

and it leads to the obvious point that if A_E_is known before the start of
the simulation, there is little point to the model process as specified

in equation (4.16). However, there is a use for the model if B_E_is
determined after e(t-T) has been calculated or if a=0 until r=R when

o=1 and A_E_is formed. In this sense, there is no guarantee that the
complete mover process need be initiated at the start of the simulation,
and it would only be operative if some particular condition were met at
r=R. In this situation, equation (4.16) would still be applicable but
only for r>R.  For r>R equation (4.10) from the previous class of models

would hold,

The case in which A(t) = A and B(t) = B does not lead to any significant
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form, and in the case where this constancy in distribution is combined with
the above constancy in redistribution, the model form is similar to that
in equations (4.16) and (4.17) with the matrix product nrzt_T_A(T)g(T)

)M The fifth case where the distribution

being replaced by (A B
and redistribution is constant and equivalent is trivial for redistribution
does not change the original distribution and thus the model is identical
to the Garin-Harris version of Lowry's model in equations (4.11) and

(4.12).

The sixth and final case in which A(1) = A(r) and B(rt) = E(r) is by far

the most interesting for it involves the same process for redistribution

as distribution but with the additional point that the lag between
distribution and redistribution is one time period. Thus new activity

is generated and distributed in the same way that existing activity is
regenerated and redistributed. A version of this model has been developed
recently by Baxter and Williams (1975) in a somewhat different guise,

and this model type is so important that a separate section for its
elaboration is warranted. These types of models are henceforth referred

to collectively as Baxter-Williams type models.
BAXTER-WILLIAMS TYPE MODELS.
Assuming the equivalence of the distribution and redistribution matrices

defined above, the employment equation for t-T+l<r<t can be derived from

equation {4.15). Then

r r-1 r-1
e(r) = b{I+ 1m A(T)B(t)+[I+ T n A(t) B(t)JA(r)B(r)1,
- T or=t-TT T T oy=t-T+l  t=v
r r
=b{I+ © 1 A(r)B()}. (4.18)
v=t-T t=v
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Equation (4.18) is very similar to Berechman's (1976) version of the
Lowry model but there is a significant difference in the way the matrix
product is taken. In essence, equation (4.18) is a backwards version
of Berechman's model in which basic employment and its repercussions

in terms of new change are being reallocated using the distribution

matrices taken from r back to t-T.

The essential structure of this model can be made apparent by rewriting

equation (4.18) as

r-1 r-1
e(r) = b{I+[I+ = T A(1)B(r)IA(r)B(r)} ,
v=t-T r1=v
= b + e(r-T)A(r)B(r). (4.19)

Equation (4.19) shows that all the employment generated so far is re-
allocated in the subsequent time period together with the relevant new
change. This equation is the one derived using a different argument by
Baxter and Williams (1975) who develop it for purposes of easing the
calibration problem of the urban model proposed by Echenique, Crowther
and Lindsay (1969). Moreover, as will be demonstrated in later chapters
the model is eminently suited to dealing with locational constraints in

a manner not applied so far. The original model derived by Baxter and
Williams (1975) is presented in Appendix 1 from which it is clear that

their model has a pseudo-dynamic form.

It is now necessary to examine the form of the model after time t when
new activity is no longer being generated. Equation (4.14) holds for
this process and it is of interest to examine the specific structure of
activity in the last time period of the simulation, that is, when

r=t+T+1. Then
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t+T+1 t-1  w+T+]

e(t+T+l) = b + b m A(t)B(r) +b =z n A(z)B(z),
=t+1" w=t-T z=t+] -
G w+T+]1
=b{l + = m A(z)B(z)}. (4.20)
- w=t-T z=t+]

Equation (4.20) is extremely interesting for it indicates that the final
distribution of activity is distributed according to the a=0 type model
but with the sequence of distribution taken from the time when all the
activity in the system has been first generated to the time when the

last activity generated has been regenerated and redistributed. In short,
this model involves a backwards progression of redistribution in the
interval t-T<r<t and a forwards progression in t+l<r<t+T+1, with the
added point that the forwards progression is thoroughly dependent for its

form on the backwards progression.

Because equation (4.20) has the structure of an a=0 model, the results
pertaining to the earlier section on these models apply. The only
significant simplification for these models results when A(z)B(z) is
constant. If it is assumed that A(z)B(z) becomes constant after the
last increment of new change is generated, that is A(t)B(t) = A(t)B(t),

t>t, then equation (4.20) simplifies to
t

e(t+T+1) = b {1+ & CA(t)B(t)I"HTH, (4.21)
- w=t-T
which in turn can be approximated by
e(t+T+1) = BLI-A(t)B(t)1 ™", (4.22)

Note that equation (4.22) can also be derived from slightly different
considerations as demonstrated in Appendix 1. This completes the
discussion of o=I models although these will be introduced again in later

chapters in relation to the development of the procedures to handle
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locational constraints outlined below.

o CONSTANT MODELS: PARTIAL REDISTRIBUTION OF EXISTING ACTIVITY.

The class of models generated when o is assumed to be constant over time

and space, that is, O<a<I, is the most complicated of the three special

cases generated by adopting a constant form for o- InChapter 3, this

type of model was used to demonstrate the various rates at which the

existing stock turned over and there it was shown that some simplification

of the original pseudo-dynamic model form is possible. It is worthwhile
developing the simplification explicitly for the time intervals t-T+l<r<t

and t+l<r<t+T+1, and from these equations, further simplification is then
possible in terms of the six cases relating to distribution and redistribution.
For t-T+l<r<t+l, e(r) is derived by substituting equations (4.4), (4.5)

and (4.6) into (4.2) and simplifying. Then

e(r) = b
- - r
+b 1 A(t)B(T)
T o=t-TT
r r . .
+bo I n A(t)B(r)
v=t-T+1 T=v
r-1 r-1 por T
+b oz e 2 (I-) " 1 A(2)B(2)]
w=t-T T=w+1 z=1-U
pew
+ [(I-0) n A(z)B(z)1 }. (4.23)
z=t-T

Note that equation (4.23) is organised to show the input on the first
line, the new change on the second, movers on the third and stayers on

the fourth and subsequent Tines.
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This form is also adopted for e(r) in the period t+1<r<t+T+1

e(r) = b
- - t41 r . .
+ba I m A(t)B(T)
T 7 y=r-T 1=V
t r-1 r-t T . -
+b z {la z (I-a) n A(z)B(z)l +
w=r-T-1 =W+l T T z=7-U

g
=
+
—
+
—
]
A

" A(z)B(z) 13, (4.24)
t

where the first line is the input, the second the activity which is still
moving, the third and fourth the stayers associated with those still

moving and fifth and sixth the stayers who form part of the stable equilibrium,
From equations (4.23) and (4.24), further simplifications can now be

developed for the six cases relating to distribution and redistribution.

For the case where the distribution and redistribution matrices are
distinct and time dependent, no simplification is possible although
equations (4.23) and (4.24) provide forms through which the proportion
of existing activity remaining can be computed. It is in the second
case in which the redistribution matrices are assumed constant that
most simplification results, that is, when éﬁr) = é.andlg(T) =_E.

In this case, it is worthwhile 100king at the appropriate forms of
equations (4.23) and (4.24), and also at the situation where r=t+T+1.

Then for t—T+1§rit,
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A(2)B(2)1H(I-0) - (4.25)

Note the simplification in the movers.in which the series can be summarised
by the appropriate part of a geometrically convergent series, and the
simplification in the mover components of the stayers where the regener-

ation (mover) ratio can be simplified in a similar manner.

For the time interval t+l<r<t+T+], greater simplification is possible

+ b sl '(liﬁ)r_w_ 1 (A E)w—t+T+1

r-t-193 B [1-A 817! +

T+1]

+ b {[I-(I-a) ' ICI-(A B)

T+-I Y‘-T"z W
()™ oz M A(2)B(2)D} . (4.26)
w=t-T z=t-T

Perhaps the most interesting equation characterising this model type relates

to the situation at r=t+T+1 or r=t+T+2 which is the stable situation. Then

from equation (4.26) with r=t+T+2
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e(t+T+2) = b + b{I-(I-a) "'7 A B [I-A B

T+1 t "
+ bl(I-a) z m A(z)B(z)I. (4.27)
w=t-T z=t-T

In fact, the real structure of equation (4.27) can be displayed by
rearranging

1

108 PROE R, toow |
- (I-«) "ABU-ABI - = T A(z)B(z)}. (4.28)
w=t-T z=t-T

Clearly the equilibrium situation can be interpreted as a structure of
activity which is composed of a proportion of the existing pattern and

the rest the new pattern due to constant redistribution. Equation (4.28)
is suitable if (l;g)T+] is near to 0 because it indicates that the structure
can be seen as Targely due to the redistribution less a proportion (lfg)T+]

of the difference between the new and original distributions.

Equations (4.23) to (4.28) present a model which is probably of Tlimited
operational interest, for the structure does not give much opportunity for
positive feedback from distribution to redistribution and vice versa.
Nevertheless, it might be of some importance where information is known
about variable distribution and constant redistribution processes. Further-
more, these equations are useful for generating other types of 0O<a<I

model, and also as another means of deriving the appropriate o=0 and o=1
types. For the case where the distribution matrices are constant and
the redistribution variable, equations (4.23) and (4.24) hold with the
product term characterising the original distribution replaced by (A.E)r%t+T+1

and similar power functions in the rest of the two equations. This model

may be of some use because feedback from distribution to redistribution
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is possible and thus the model can potentially handle constraints on its

dynamic process.

Where both the distribution and redistribution matrices are constant,

the model is similar to that outlined in equations (4.25) to (4.28)

with power terms replacing the distribution matrix products. In fact,
although the model is of marginal interest for it would only pertain to
the case where the distribution and redistribution, generation and re-
generation were constant and independent of time, the final configuration
of activities is interesting. From equation (4.28) with A(z) = A and

B(t) =B, the structure at t+T+2 is

e(t+T+2) = b + b A B [I-A 817

1 ABCI-ABIT ). (4.29)

Equation (4.29) indicates the intuitively obvious result that the final
configuration is completely independent of historical time, apart from the
length of the 1ife of the distribution-redistribution process T. The
Fifth case in which distribution is equivalent to redistribution and
constant, that is, A;A and §;§, generates a model which is the same as

the o=0 type model. Using this assumption in equation (4.29), it is
clear that the final configuration is the same as that produced by a Lowry

model [see equations (4.12), (4.17) and (4.22)1].

One final case remains to be dealt with and that involves the O<a<I
equivalent of the Baxter-Williams type models. These models are worth
detailing because they are particularly relevant to the treatment of
constraints on the locational process developéd in the next section.

Assuming A(t)=A(r1) and_E(T)=E(T), the model can be written out for each

time interval as in previous cases. Then for t-T+l<r<t
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v=t-T+1 t=v =t-T
r-1 r-1 pop T
+b . {la z (I-a) m A(z)B(z)1 +
w=t-T T=w+] z=1-U
W
r-w
[(I-a) n A(z)B(z)1}. (4.30)
z=t-T

The main characteristic of equation (4.30) relates to the fact that the
model is based on the usual backwards process for the redistribution of
movers from the existing activity and a more complicated expression of

the usual form modelling the stayers. For t+l<r<t+T+1, the equation is
t+1  r-1

t r-1 e T
tbh oz Al 1z (I-o) I A(z)B(z)1 +
w=r-T-1 ~t=w+] z=T1-U -
r-w W
[(I-a)"™ 1 A(2)B(2)1)
z=t-T
r-T-2 w+T+1 T
tboz fle oz (1™ 1 oA()B(2)1 4
w=t-T =w+l z=t-U
T+ W
(1™ A@)B(2)1. (4.31)
z=t-T

The process is only of additional interest if it is assumed that A(r)B(r)

become constant as in the a=I version of this model.

Then at the time r=t, assume that A(t)=A(t), B(t)=B(t),t>t , and the

final configuration of activity t+T+2 is then given by
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(2)B(z). (4.32)

Equation (4.32) is in three parts: the first line gives the input and the
stayers associated with all the time dependent movement up to time t,

the second Tine the stayers associated with the time independent movement
after t, and the third line the stayers associated with the original
distribution of new change. As the three major types of model generated
from assumptions of constancy in the generation-regeneration, distribution-
redistribution elements of the model have now been presented, it is worth-
while exploring the way in which the mover processes can be used to
incorporate constraints and controls on the various states predicted

by the model. Such a discussion is a necessary preliminary to an
application of one of these types of pseudo-dynamic model which is to

be presented in the next chapter,

CONTROLS AND CONSTRAINTS ON THE PSEUDO-DYNAMIC PROCESS.

In the original dynamic framework from which the idea of a pseudo-dynamic
model was derived in Chapter 3, the concept of redistribution by movement
of existing activities was regarded as a central process characterising

the behaviour of urban systems. The argument was based on the notion that
as conditions in the system change, activity which already exists and has
originally been generated from changes in the system's environment, must

be redistributed to meet the changed conditions. There are many examples
of this type of process: the invasion and succession of different land uses

in the city, shifts in land use due to changes in the pattern of
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accessibility due in turn to changes in transport technology and
infrastructure, changes in land use due to obsolescence, redevelopment

and so on.

Indeed, there are many studies which show that a large proportion of all

the change in a city (greater than 75 percent, say) is due to redistribution,
rather than new growth or decline which depends on changes in the system's
environment. It is possible to interpret these processes of redistribution
as mechanisms by which the system keeps itself on course by adapting to

its own changed circumstances, and thus the idea of the mover processes
'controlling' or 'constraining' the form of the system seems attractive.

At least in this context, the idea of control if not explicitly related

to the powerful results available in control theory, is a suggestive

means of demonstrating how these types of models might be constrained in

various ways.

The processes which characterise the distribution and redistribution of
activity in the pseudo-dynamic model, are based on the ratio o which
regenerates a proportion of the activity already generated, and the inter-
action matrices A(t), E(r),_é(r) and E(r) which determine the allocation
and reallocation of activity. The implication is that these elements
depend upon the state of the system at any time r; that is, that these
elements are determined in some way by the state of the system in relation
to some set of prior conditions or targets which the system must meet.

In short, there is feedback from the state of the system at time r to

the means by which activity is distributed and/or redistributed at time

r+l.

Taking the employment equation e(r) which 1is given in aggregate form as
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equation (4.2), the following scheme illustrates the notion of feedback
through the mover process in the quest to get the system to reach some

target. Equation (4.2) is first repeated

r-1 r-1
e(r) =b +a*s(r) + T s'(row)+ I s>(r,w), [(4.2)]
w=t-T w=t-T '
and an analogous equation for population also exists.  Then from the

population p(r) and employment e(r) at time r, the system is evaluated

in terms of the targets and constraints on p(r) and e(r) to be met, called
.gp(r) and_ge(r) respectively. Furthermore the existing means of re-
distributing activity through_é(r) and é(r) are to be modified on the basis
of the state of the system in relation to its constraints, as is the mover

ratio matrix a(r,w).  Then some typical feedback control functions might

be of the form

Arel) = flip(r)s €Pir)s e(r)s cB(r), AT S
.E(r+1) = fztgﬁr), gP(r),_g(r), gé(r), E(r)] , and
a(r+lw) = £p(r), cPr), e(r), c5(r), &(r.w)3

From equation (4.5) of the model, it is clear that movers §W(r+1,w)
during the period [r+l:r] are a function of A(r+1)é(r+1) and o(r+l,w)
and thus it follows that employment e(r+1) is a function of the state

of the system at time r as well as other elements specified exogenously.

This discussion shows that although the idea of feedback control 1is
suggestive, it is mathematically quite tricky: in this example, it is
certainly nonlinear and probably discontinuous as will be demonstrated

in later chapters, and thus the absence of any simple linear feedback
control is 1ikely to make the mathematics cumbersome and somewhat inelegant.

Moreover, the model will probably have to be solved using some form of
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iteration. Indeed in the «=0 versions of this model in which there are
no movers, constraints can still be incorporated by modifying the
distribution matrices A(t) and B(t) in a similar fashion to that

sketched above, although in such a case, some iteration on these matrices

is Tikely (Batty, 1976; Berechman, 1976).

The emphasis adopted in this and the previous chapter has been on
interpreting the model as a mainly spatial device to successively
allocate and reallocate activity through time. 1In fact, the scale
component which controls the amount which can be generated or regenerated,
has been regarded as exogenous and independent of time, although it

is possible to regard this as time dependent. Therefore, the treatment
of constraints will be solely related to the spatial dimensions of this
model despite the fact that the amount of activity could be controlled
or constrained in an endogenous fashion. Two distinct types of
constraint on spatial allocation can be recognised: first, constraints
on the amount of activity locating in any zone, and second, constraints
on the pattern of distribution or interaction between activities over

zones.

The first type of constraint dealing with Tocation can be specified in

the manner described above in which the targets are set by the prespecified
constraint vectors.ge(r) and.gp(r). In several applications of the

=0 models, constraints have been set up in this fashion and met by

solving the process from t-T to t several times in the quest to find a
solution which satisfied the constraints, or by iteration within each time
period [r+l:r] to satisfy the constraints in a pseudo-dynamic sense. The
first type of constraint method has been used in various models by the

author (Batty, 1976), the second type by Echenique, Crowther and Lindsay
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(1969) in their Reading model and in a more extensive way, by Feo, Herrera,

Riquezes and Echenique (1975) in their Caracas model.

In the next chapter the use of constraints will be restricted to Tocational
constraints whereas in Chapters 6 to 9, the idea of constraints on the
interaction process will be explored. Constraints on interaction which
involve finding a solution to the model which generates a pattern of
interaction consistent with some prior information about the form of the
interaction pattern, relate to the process of estimating parameters of
interaction. In essence, such constraints .reflect the process of_ca]ibrating
the model's distribution and redistribution matrices (which in themselves
are based on submodels of interaction) to meet certain interaction criteria
relating to trip frequency, average trip lengths and so on. In existing
a=0 (Lowry) models, such calibration has been static in that the interaction
parameters have thus been estimated in a static sense for the whole process.
As will be demonstrated in Chapter 6, new perspectives on the structure of
these kinds of model are opened up by treating the calibration of a pseudo-

dynamic model as a dynamic process in its own right.

The great advantage to using the mover processes as mechanisms for enabling
the model to meet certain targets or constraints, is that it is always

assured that such constraints will be met. In the pseudo-dynamic model,

there are T+1 time periods associated with the generation of new change,

and in each of these time periods after the first, a process of redistributing
the whole sequence is possible. This leads to T+1 sequences of moves, in
fact, the whole of the activity generated and distributed by the model can

be regenerated and redistributed T+1 times. Therefore whenever a constraint

is violated at time r, t-T<r<t, a mover sequence reallocating all the

activity begins at the next time period [r+l:rl. Moreover, because the
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reallocation continues for T+1 time periods, the constraints can still

be checked at every period up to t+T+1.

It is intuitively obvious that if the process of constraint is well
specified in terms of the interaction matrices, the constraints will
always be met. However it is worth pointing out that the original
pseudo-dynamic form involves considerably more computation than any of
the simpler existing versions of this model such as the o=0 models where
constraint processes are dealt with in a fairly arbitrary manner.
Moreover, there are certain special forms of pseudo-dynamic model in
which constraints can be handled in'a much more satisfactory way than

at present, and some of these will be presented in the next chapter.
CONCLUSIONS.

In terms of the previous classification of models according to the form
of the mover matrix a(r,w), it is clear that two general types of mover
process can be adopted in dealing with constraints: complete re-

distribution, a(r,w)=I, or partial redistribution, O<a(r,w)<I Within

this division, it is possible to consider mover processes which involve
the whole sequence of activity as in the models presented so far, or
processes where only part of the activity is redistributed; that is,
where only certain increments of activity within the total process are
moved. Furthermore, it seems logical that further distribution and
redistribution would both be affected by the violation of locational
constraints. Thus in the next chapter, it is assumed that constraints
are handled using Baxter-Williams type models in which A(T)=A(T) and.E(T??E(T).

Many other varieties of schema are possible for handling Tocational

constraints and one of the great advantages of the pseudo-dynamic form
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is its flexibility in this regard. In the next chapter these constraint
procedures will be discussed first in terms of the complete redistribution

of activity and second in terms of partial redistribution.
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CHAPTER 5,

LOCATIONALLY-CCNSTRAINED URBAN MODELS,

In the last chapter, the typology of models based on pseudo-dynamic

forms gave rise to particular types of model in which the mover sequences
associated with redistributing existing activity could be clearly used

to enable locational constraints to be satisfied. From that discussion
it emerged that the model type most suitable for this problem of constraint
appeared to be that in whichall activity could be reallocated. In this
chapter, the way in which this type of model, referred to in Chapter 4 as
an a=I type model, or more generally as a Baxter-Williams type model
(Baxter and Williams, 1975), might be elaborated to handle Tocational
constraints, will be described. An ad hoe constraints mechanism based on
identifying appropriate values for a will also be presented and finally

applications will be made using data from the Reading subregion.

This chapter will pick up directly from the formal presentation of the
last chapter and no new notation will be introduced. In fact, it is
not possible to read this chapter in isolation from the Tast as the
initial discussion in this chapter will concern the elaboration of a=1

type models in terms of mechanisms used to redistribute the complete
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pattern of activity or part of the sequence of activity generated in

such multiplier models. Accordingly, the notation used and the equation
systems referred to are those of Chapter 4. To begin the treatment then,
methods for elaborating a=I type models will now be introduced as control

type problems.
CONTROL THROUGH COMPLETE REDISTRIBUTION: COMPLETE SEQUENCES.

Consider the situation in which the first Tocational constraint

violation occurs in the time period [R:R-11.  Such an occurrence might be
based on some element or elements of e(R) or p(R) or both exceeding their
respective constraints, EF(R) and EP(R). Up to the particular time

period in which the first violation occurs, the model is effectivé1y an
=0 type model, and after this period it becomes an o=I model. In the
following exposition, it is assumed that after the first violation, the
constraints are violated in every succeeding time period until the
simulation ends at r=t+T+1. This enables general forms for the model

to be derived: 1in practice, constraints may not be violated in every

time period and thus the resulting model and its mover processes would

be a mix of =0 and a=I type models. Such models are too specific to
present although they would pose no difficulties in terms of computation.
Given this context, there are two possible forms for complete redistribution:
complete redistribution of the whole sequence from initial input to the
final amount of new change, and complete redistribution of only part of the
sequence from the point at which new changes jnvolve constraint violation

to the final new change. These will now be examined in turn.

Up to the time r=R, the activity generation and distribution is given by

equation (4.8) or (4.10) for employment and analogous equations exist
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for population. After the constraint is violated, from r=R+1 to r=t+l,
new complete mover sequences work themselves out r+T+1 time periods after
the first constraint violation, therefore it is necessary to divide the
overall simulation into five significant time intervals: r=t-T and
t-T+1<r<R which have already been considered and do not need to be made
explicit again here, and R+1<R+n<t, t+1<r<R+T+1 and R+T+2<r<t+T+1.  An
immediate intuitive grasp of this division is illustrated in Figure 5.1
where it is clear that the way in which mover sequences are begun leads

to a slightly more complex form of model than the original Baxter-Williams

type.

For R+1<R+n<t, the employment e(R+n), 1<n<t-R, is given by

R+n w R+n R+n
.g(R+n) = b{I+ b I A(t)B(t)+ = H_A(T)g(r)}. (5.1)
w=t-T+n t=t-T v=R+1 T=v

Note here that the terms in original distribution which still affect the
structure of employment are constant in number but change in form as the
ones generated earlier are redistributed by the second term. Then from
t+1<r<R+T+1, the equation is made up of three major elements relating to
the original distribution not yet moving, the activity stillbeing re-

distributed and the stayers associated with the original movement which has

now ceased
t w t+1 r
e(r) = b {I+ z m  A(t)B(t)+ £ n A(t) B(r) +
w=t-T+r-R 1=t-T v=r+l 1=v
r-T-2 w+T+]
I n  A(z)B(z)}. (5.2)
w=t-T z=t+]

In Figure 5.1, the stippled boxes are associated with these elements and
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it is clear that they reflect different processes. In the final period,
the employment is predicted from an appropriate modification of equation

(4.14).

In this model, it is clear from Figure 5.1 and from equations (5.1)

and (5.2) that only t+1-R mover processes are set in train due to the
fact that the constraints only begin to be accounted for from r=R+1.

If it is required to initiate T+1 mover sequences as in the original
Baxter-Williams model, then the whole process would be pushed forward

in time and a further equation would be required to show the activity
predicted from t<r<R+T+1.,  This is easy to accomplish but adds nothing
to the argument and thus it is excluded. There are many such variations
which might be suitable, and every situation may demand its own variant.
The framework developed here is sufficiently general to enable such

variations to be made.

To meet the constraints assumed to be violated at every time r>R, it is
necessary to find new distribution-redistribution matrices A(r) and B(r)
which Tead to_g(r)f_ge(r) and_g(r)fzgp(r). Traditionally, this problem
has been solved in such models by applying row and column factors to the
matrices based on the degree to which the constraints have not been met,
and iterating until convergence. For the completely constrained matrix
problem, convergence is assured and this has been demonstrated in a
variety of fields: for example, in input-output analysis by Bacharach (1970)
and in spatial interaction modelling by Evans (1970). For partially
constrained problems, such as these presented here, such convergence to
meet constraints cannot be proved but experience suggests that most
problems studied so far are well behaved in that such procedures usually

'work'.
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The problem here is more complicated in that the process of

modifying A(r) and B(r) must operate through time, that is, no
iteration is assumed to take place to find A(r) and B(r) at any time r.
Then constraint violations are affected by the presence of new

change up to r=t as well as by the process of trial and error
adjustment of the matrices which will inevitably involve further
constraint violations. However after time r=t, the process will
continue without new change, and from this point, the emphasis in

the model will be on redistributing the existing activity in an

effort to meet the constraints. Two characteristics of the process

are worthy of note: because of the process required to modify

the matrices, convergence can never be assured, but it may be necessary
to continue the simulation of whole sequences of activity after

r=t+1, thus extending the simulation beyond t+T+1 so that the constraints
can be satisfied. This would be a matter for experiment, for the life
of the mover process T does not necessarily match the time required

for this process to meet all the constraints.

To illustrate the process, assume that new matrices A(R+T) and B(R+1)
are required so that the constraints on employment and population

are met. It is possible to operate directly on the previous matrices
A(R) and B(R) by applying factors based on the mismatch between the
constraints and predicted activities. Such factors may be expressed
generally by matrices F(R+1) and G(R+1) which refiect the positive

feedback effects necessary to keep the system on course.

Then

A(R+1)

B(R+1)

A(R)F(R+1), and

B(R)G(R+1).
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If F(R+1) and G(R+1) are required to give A(R+1) and B(R+1) which
ensure that e(R+1) and p(R+1) do not infringe any of their respective
constraints, then itis Tikely that these factor matrices will have

to be chosen by direct iteration within the time period [R+1:R].
However as suggested above, this is not assumed here but note that
this does not imply that the constraints might never be reached.

In this particular version, the nature of the choice for A(R+1) and
B(R+1) does not assure that the constraints need be met by the re-
distribution processes, although if required, such constraints can
always be met. The process outlined here will probably converge and

is computationally more efficient than those that are known to converge.

In many applications of the pseudo-dynamic model, it might be assumed
that the scale effects of generation are independent of time in contrast
to the distribution effects which are time dependent. As in previous
chapters, we will assume a separability condition such that A(r) = A T(r)
and B(r) =T S(r) where A and T are the respective scale effects based

on diagonal scalar matrices and T(r) and S(r) are the distribution
effects based on singly-stochastic (Markov) matrices. Using these

assumptions, it is clear that

T(R+1) = T(R)E(R+1) and
S(R+1) = S(R)G(R+T)
and in general
T(r) = T(R) E F(t) and
- - t=R+1
r
S(r) = S(R) 1 G(t)
o - t=R+]
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In these terms, the problem of satisfying constraints is one of
finding stable matrices T(r)=T and S(r)=S.
At time r when these matrices have been found, it might then be
necessary to continue the simulation to find a stable distribution
of activity based on these forms. Then if r<R+T+1 where R indicates
the time period when the first constraint is violated, then it can
be deduced from equations (5.1) and (5.2) above that the final

configuration of activity will be given by

e(t+T+) = b1 -TATSI.

This method is of particular importance in making operational
Berechman's (1976) model, and in extending Baxter and Williams' (1975)
model to deal with locational constraints. The method itself has

only been sketched here and it will be presented in Chapters 8 and 9.

CONTROL THROUGH COMPLETE REDISTRIBUTION: PART SEQUENCES.

The second major process based on complete redistribution of activity
in order to satisfy constraints, involves regenerating only part of

the sequence of new change. In essence, the method involves

beginning the process of regeneration at the point when a particular
increment of new change leads to a constraint violation and only
regenerating and redistributing that and succeeding increments of

new change. The pattern of activities up to the time of the constraint
violation is assumed to be stable and unchanging and only the pattern
afterwards is subject to redistribution. In fact, the form of the

model is much simpler than the one presented in equations (5.1)
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and (5.2) for activity existing prior to the constraint violation

does not need to be handled whereas it does in the above model.

Figure 5.2 illustrates this process diagrammatically and comparison
with Figure 5.1 is sufficient to establish its relatively simple
structure. In devising the appropriate equation for e(R), where R
indicates the time period [R:R-17]in which constraints are first

violated, it is necessary to develop the model from r=R-2.  Then

R-2 W
e(R-2) =b{I + b m  A(t) B(T) > (5.3)
w=t-T t=t-T _
R-1
A*s(R-1) =b 1m A(r) B(t), and (5.4)
o=t-T
p*s(R) = s*s(R-1)A(R)B(R). (5.5)

The model in equations (5.3) to (5.5) is clearly an a=0 type and

using these forms, the appropriate expression for e(R) can be stated
e(R) = e(R-2) + a*s(R-1)[L+A(R)B(R)1. (5.6)

As previously, assume that the constraints are violated at R due to the
new change A*s(R). Clearly, this new change A*s(R) and every successive
element of A*s(r), r>R must be regenerated and redistributed with new
matrices A(r) and B(r) based on positive feedback from the level of

constraint violation. Then at R+l

e(R+1) = e(R-2)+ a*s(R-1){I+[I+A(R)B(R)IA(R+1)B(R+1)} ,  (5.7)

and in general
r+n R+n
e(R+n) = e(R-2) + a*s(R-1)[I+ & O A(t)B(T)1. (5.8)
v=r 1=V

Equation (5.8) illustrates the essential structure characterising
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the complete redistribution of part of the sequence of generation.

It is clear that e(R-1) = e(R-2)+a*s(R-1) remains stable as
generated by the a=0 model, and that the sequence starting with
A*s(R) is regenerated according to the Baxter-Williams version of
the a=1 type model. It is as if a*s(R-1) is treated as the initial
input b and the Baxter-Williams model applied thereafter. With
regard to the form of the matrices A(r) and B(r), r>R, the above
discussion in the previous section concerning the constrained matrix
problem applies completely: the same caveats with regard to
convergence are necessary, and the process of simulation may need

to be longer than t+T+1 to attain a convergence which meets the

constraints.

One final point remains to be made: if the constraints are only
violated at irregular intervals, the reallocation may only occur with
the same irregularity. That is, the partial mover sequences may

only be initiated irregularly and thus the composite pattern would

be somewhat different from that in equation (5.8). Specific forms
could easily be worked out but as they lack the generality of this
presentation, they have been omitted. In fact, it would be more
appropriate to develop such forms for the second major type of
constraint mechanism based on partial redistribution which is to be

outlined below.

CONTROL THROUGH PARTIAL REDISTRIBUTION.

The basic idea characterising partial redistribution of existing
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activity involves evaluating by how much any particular constraint

or set of constraints is violated in any period [R:R-11, and

initiating a mover sequence which regenerates and redistributes

only the proportion of activity which violates the constraint.

The proportion to be redistributed is set equal to the amount of
activity moving which is controlled by the mover matrix w.  Therefore,
such a process of meeting constraints involves not only determining

the matrices A(r) and B(r) but also determining the mover ratio

matrix a(t,z) where a(t,z) is related to the time when the constraint

violation occurs in the sense suggested below.

In the previous development of constraint procedures, general equations
for the process were derived such as those in equations (5.1) and (5.2):
here this is not really worthwhile as the original equations for the
pseudo-dynamic model given previously as equations (4.1) to (4.7)

are quite similar to those characterising the methods of this section.
Indeed in the computable form for the model developed in the following
section, a method of constraint based on the framework outlined here is
used and specific equations are presented there. Note however that

the following assumptions characterise the process: the constraints
are first violated in time period [R:R-11 and are violated in every
time period thereafter; the mover ratio matrix a(t,z) is made time
dependent in terms of z, not T, thus implying that each constraint
violation initiates a mover sequence whose amount depends on the time
of initiation z or constraint violation time z-1; and A(r)=A(T) and
E(r);E(T) which is the assumption of the Baxter-Williams model. Because

o is variable in the time dependent sense,none of the three previous
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constant o type models can be used to present a general form for

the equation system.

The first model to be developed involves redistribution of the
total sequence of new changes, the second redistribution of only
part of the sequence, both in the manner suggested in the previous
two sections. The procedure for fixing the value of a(r), A(r)
and B(r) is presented first for the method involving redistribution
of the total sequence. Then in the time period [R:R-11, the
following algorithm is used if constraints are violated: for the
total employment in zone k at time R, a series of tests are made.
If

E(R) 2 CL(R), (5.9)

zone k is assigned to the set of constrained employment zones Ze and

the surplus employment AE(R) is calculated from
e
Ak(R) = Ek(R) - Ck(R), keZe. (5.10)

As a proportion of the total employment to be generated, zkEk, the

surplus is expressed as the ratio o(R) computed as

o(R) = =_ 8;(R)/ZE, . (5.11)
keZy k

If the constraint on employment has been violated, it is then
necessary to normalise the previous distribution matrix B(R) so that
no further activity is allocated to the constrained zones. Then

Bjk(R+1) = 0, keZe, Vj i (5.12)
and the B(R+1) matrix is structured to ensure that the matrix

S(R+1) 1is row stochastic.
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The same process is used to check the population constraints. If

p
P5(R) > CL(R), (5.13)

zone j is assigned to set Zp, and the surplus A?(R) is calculated

A?(R) = Pi(R) - cg(R), iz, (5.14)

The ratio p(R) is now computed from

o(R)y = 1 aR(R)/zP. , (5.15)
jez g 0§ Y
P
and the A(R) matrix is normalised to account for constraint violations.

Then

As(RHT) = 0, JeZ ¥y (5.16)

where A(R+1) is structured to ensure that T(R+1) is row stochastic.

Because of the interdependence of employment and population, it is

necessary to define aii(R+]) as

aii(R+1) = maxLo(R),p(R) 1, Vi R (5.17)

which will make the model redistribute all activity so that the most
severe constraint violation dominates the process. The pseudo-
dynamic model is then operated in the normal fashion noting that
aii(R+1) pertains to the appropriate stream of activity resulting from
constraint violation at R. Therefore at any one point in time r>R,

there are several streams being reallocated, each according to gﬂT),

R+1_§r§r‘.

In redistributing the total sequence of activity, it is argued that

any constraint violation depends not upon a specific problem in any
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particular zone, but on a systematic distortion of the whole process
of distribution. Therefore to correct such system-wide failures in
the original distribution, it is assumed that the proportion to be
redistributed applies to the total of existing activity which can

be easily calculated from the jnitial input b and the known matrices
Aand T. That is the total employment ZkEk can be calculated from
blI- ‘£]_1which is equal to zkbk/(1-xY) when A and T are scalar
diagonal, and the population can be calculated from Az, E, in the

k~k
same case.

The second major case which involves a partial sequence of movers,
depends upon the redistribution of the new change which Teads to
violation of the constraint, and further changes generated in the
same sequence. A system of equations similar to (5.9) to (5.17)

is used for dealing with the constraints except that ZkEk and P

in equations (5.11) and (5.15) respectively, are replaced with the
sums appropriate to the reallocation of the rest of the sequence, not
the whole sequence. In these particular instances, these methods of
constraint based on partial redistribution are really only suitable
if A and T are scalar diagonal. However it is possible to consider

a variety of other methods of partial redistribution in which the
ratios o(R) and p(R) refer to various parts of the sequence of change
generated so far; and in such cases, there is no necessity for

calculating ZkEk and Z P from other formulas, for these relate to

what has been already generated.

As in the method of constraint developed in the previous section,
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considerable variation exists within this general framework, as will
be illustrated in the example next described, and the ones presented
in Chapters 6 to 9 of this thesis. It is also possible to make
ok(R) and pj(R) zone specific, thus embracing the kind of constraint
processes developed by Echenique, Crowther and Lindsay (1969). As
this would make the form of pseudo-dynamic model slightly different
in terms of equation system from the one presented above, it is not
pursued further here. It will, however, be taken up again in the
next chapter where a zone specific set of ratios is developed for

the treatment of constraints.
A COMPUTABLE FORM FOR A PSEUDO-DYNAMIC ACTIVITY ALLOCATION MODEL.

A central argument in support of the pseudo-dynamic models introduced
here rests on the notion that by making the implied dynamic processes
within static models more explicit, major advantages concerning
substantive interpretation and operational tractability will result.
To demonstrate this point, it is now proposed to apply the theoretical
developments of this and the previous chapters to conventional forms
of activity allocation model. By way of conclusion, a model which
incorporates one of the methods of constraint previously developed and
utilises the information-minimising framework presented in Chapter 3
will be outlined, thus showing how constraints on the artificial
growth of an urban area can be handled using very simple inputs and
assumptions. The information-minimising method will be used to build
up the distribution and redistribution matrices A(t) and B(t) from
acceptable prior information about the system and this will also show

how much prior information is required for such model structures. In
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the next chapter this logic will be taken further when a calibration

method is developed using the model's dynamic processes.

The model will be presented here in a more conventional form which
illustrates the structure used for computation. In this sense, the
iterative-recursive form on which the original dynamic model was
developed in Chapter 3 is relevant, and the form used here mirrors
conventional activity allocation models in current usage (Batty, 1976).
Two assumptions must be clarified: the constraint process used is
based on the method of partial redistribut%on outlined in the previous
section, and the regeneration and redistribution of activity which is
involved in constraint violations is based on the complete sequence

of new change. Both population and employment equations will be stated,
thus showing their explicit interdependence. It is also assumed that
A(r) = A(r) and B(t) =.E(r) as in Baxter-Williams type models.

The computable form of the model is built up in stages: first new
change, then movers, finally stayers for population and employment
respectively. New population change A*p(r) and employment change

A*s(r) are given as

a*p(r) = a*s(r-T)A(r), (5.18)
a*s(r) = a*p(r)B(r) = a*s(r-T)A(r)B(r). (5.19)

For population movers Bw(r,w) and employment movers §T(r,w), the

relevant recurrence relations are

Bm(r,w) §T(r—1,w-1)§(r), w>t-T, (5.20)

P (r,t-T) = a*s(0)a(r)A(r)
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For population stayerslgs(r,w) and employment stayerslis(r,w), the
equations are a little simpler in that no distribution matrices are
involved directly

S

p(r,w) e

[p™(r-T,w) + p>(r-1,w)1I-a(r-w+1)1, (5.22)

§S(r,w) EEW(r-1,w)+_§s(r—1,w)]Elﬁg(r—w+1)]. (5.23)

Equations (5.18) to (5.23) indicate that the process is dependent on
certain initial conditions for the initial input employment A*s(0),

and the movers and stayers. These conditions can be listed as follows:

A*s(0) = b, (5.24)
M(r-1,r-1) = 0; p"(r-1,r-1) = 0, and (5.25)
s5(r-1,r-1) = a*s(r-1); p>(r-1,r-1) = a*p(r-1) . (5.26)

Because the time scale for such a model is clearly not historical time,
although it might be regarded as some approximation to this, it will

be assumed that the time index r relates to computer iteration time;
thus when r = 0, this indicates the start of the process symbolising
existence of the input, so that As*(0) = b as in equation (5.24) above,
and if A(r) and B(r) are functions of previous values of the same
matrices, then A(0) and B(0) represent prior distributions known before
the simulation begins. Thus the process which runs from t-T<r<t+T+1,
now specifically runs from 1<r<2T+2, which is a neat indication that
the 1ife of the simulation is twice the 1ife of a single generation-

regeneration sequence.
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It is only necessary to develop the model for the employment equations

as the population equations follow directly. Then for l<r<T+2,
r-1 r-1

e(r) = A*s(0)+a*s(r)+ = §m(r,w) + X .§S(r,w),
w=1 w=1
r-1 m
= A*s(0)+[a*s(r-1) + I s (r-T,w-1)+a*s(0)a(r)IA(r)B(r) +

w=2

r-1 m s

z [s(r-T,w)+s”(r-T,w)I0I-a(r-w+l)1. (5.27)
w=1

Note that when r=T+2, A*s(T+2)=0

Although equation (5.27) is
specific to the interval 1<r<T+2, it could easily be used for any time
period in the whole simulation, simply noting the initial conditions and

the fact that a(r)=0, >T+2.

In fact, in computing the model, storage space is reserved in the
program for variables for each period of time from 1 to 2T+2; although
this is certainly not the most economical organisation, it makes the
programming much easier, and it is essential when a flexible program

in which T may vary from application to application, is required.

For the time period T+3<r<2T+2, e(r) is computed as

T+1 m T+1 s
e(r) = a*s(0) + z S (r.w) + ) S7(rsw)
- w=r-T-1 w=r-T-1
r-T-2 g
+ I ST (wtT+l,w) ,
w=1
T+1 m
= A*s(0) + r s (r=T,w=-T)A(r)B(r)
B w=r-T-1
T+1 5 m
+ r [s7(r=-1,w)+s (r-1,w)ICI-a(r-w+l)]
w=r-T-1
N r';_zlis(w+T+1,w). (5.28)
w=l
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Equations (5.27) to (5.28) are both functions of the previous state
of the system which derives from the initial conditions, as well as
the distribution matrices A(r) and B(r), and the mover ratio matrix
a(r).  The distribution and mover matrices may be exogenous but in
this instance, they are based on two subprocesses: the process
involving constraint violation, and the process involving lagged

relationships between distribution from one time period to the next.

The method of fixing a(r) and normalising A(r) and B(r) to ensure no
further violations occur, has already been described in the previous
section. At the end of each time period, the constraints are checked

and equations (5.9) to (5.17) are solved if necessary. If no constraints
are violated, then a(r)=0 and A(r) and B(r) do not need to be renormalised.
To complete the presentation of this model, it is now necessary to
derive explicit forms for the distribution matrices which relate to
the notion of lags in distribution and initial prior information about

the pattern of location, before applications of the model are described.

DYNAMIC FORMS FOR SPATIAL INTERACTION-DISTRIBUTION.

It is assumed that the scale effect within the distribution matrices
A(r) and B(r) of the pseudo-dynamic model is independent of time, and
constant across space. Then formally

A(r) = I(r)A,  and (5.29)
B(r) = T S(r), (5.30)
as was assumed in the previous discussion concerning locational

constraints. The scalar diagonal matrices A and T must be known before
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the simulation begins and this is usual if total employment and
population can be observed or predicted independently. Therefore,

it is the matrices T(r) and S(r) which need to be explored here.

An obvious constraint on their form requires that they be row
stochastic, so that they act as true distribution matrices, allocating
employment and population respectively.  Then if tij(r) and sjk(r)
indicate the respective elements of these matrices, it is necessary
that

gt..(r) =1, and (r) = 1.

Note that the subscript j refers to residential (population) zones,
and i and k to workplace (employment) zones. It is possible to model

t..(r) and sjk(r) using data which is completely exogenous to the

iJ
general model, but it is 1ikely that these distribution models will
depend to a certain extent upon previous distributions, that is,
contain certain autoregressive terms. Furthermore, it is possible that
distribution patterns in two sectors, say the population-service

sectors, will influence distribution patterns in another two sectors,

say employment-population.

These two types of interrelationship - through time and between sectors -
have in fact been adopted in the specification of the T(r) and S(r)
matrices for the model applied here. Many other hypotheses are possible,
but it was felt that these notions would illustrate the potential of

the idea, and moreover, if such dependence does not exist, the calibration
would account for this. It was hypothesised that the pattern of

distribution from employment to population - the journey-to-work -

166.



could be derived from the previous distribution Tinking population
to services by the application of new information concerning the

difference between them, encoded in the matrix F(r).  Then

T(r) = S(r-1)E(r), (5.31)
and the same type of relationship in which S(r) could be derived
from T(r) by the application of information matrix G(r) was postulated

S(r) = T(r)6(r)s

S(r=1)F(r)G(r). (5.32)

Equation (5.32) establishes the basic recurrence relation. In a
process which starts with r=1, it is necessary to have a prior

distribution (r=0) which begins the process of successive distribution.

Looking at the structure implied by equations (5.31) and (5.32) it is

clear that the first equation is

T(1) = S(0)&(1),

and therefore the prior distribution matrix S(0) must be known before
the simulation starts. In essence, the process depends upon an initial
distribution which is successively modified by the information matrices
F(r) and G(r); these incorporate new exogenous information, or indeed
endogenous information which is being generated from the state of the
system and used in a positive feedback sense.  This clearly indicates
a connection to the ways in which locational constraints are met which
was presented above, although here, the constraint procedure acts

over these lagged equations. The initial distribution matrix S(0)
reflects prior knowledge which affects location, and might be based

on a specification of the physical effects of space, in the sense

suggested previously by the author (Batty and March, 1976).
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Using the recurrence relations established in equations (5.31) and (5.32),
it is possible to show how any pattern of distribution between two sectors
is formed from the initial prior distribution matrix S(0) by the successive
application of new information encoded in the matrices F(r) and G(t).

Assuming the iterative sequence 1<t<R, forms for A(R) and B(R) are derived

as follows:
A(R) =T(R)A = S(R-T)E(R)A
R-1
= 3(0) € 1 E(n)B()IERA (5.33)
B(R) =TI S(R) =T S(R-1)F(R)G(R)
R
= 1S(0) { H] F(t)G(T)} (5.34)

At each iteration R, the matrices A(R) and B(R) must be estimated from

new information which is supplied to the system exogenously, for example,

in terms of some constraint, or endogenously from the current state of

the system. A consistent means of generating information matrices A(t)

and B(t) is through an information-minimising scheme similar to that

outlined in Chapter 3. Such a scheme appropriate to the hypotheses suggested
in the above discussion, is fairly easy to present and leads to conventional

forms for the various submodels.

DISTRIBUTION MATRICES BASED ON INFORMATION-MINIMISING.

To estimate forms for T(r) and S(r), two associated probability distributions
must be defined. First define the distribution pij(r), Ziszij(r)=1

which relates to the probability tij(r)’ and then define qjk(r), zjqujk(r)=1,
relating to sjk(r). Following the discussion of information-minimising

in Chapter 3, a first order minimisation is suggested in which the two
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sectors are related by a pattern of distribution reflecting the interaction
probabilities associated with both. Examining the employment-population
(journey-to-work) distribution first, it is necessary to minimise an

information function I](r,r-1) subject to certain endogenous constraints

on location and exogenous constraints on interaction.  Then
i 1 i | Pig{r) =k 5.35
min I,(r,r-1) = min §§p1j(r) on aEE(Fy ,  i=k, (5.35)
subject to
tp,.(r) = zq, (r-1), i=k, and (5.36)
j ij F Jk
??pij(r)cij(r-]) = C(r) . (5.37)

Note that equation (5.36) relates the location of employment used to
allocate population at time r to the previous location of employment at
r-1, and equation (5.37) reflects an exogenous constraint on the cost of
travel: cij(r-1) is the cost of travel from origin i to destination j

lagged one time period to r-1 and E(r) is the mean cost of such travel.

Using the usual method of minimisation of a constrained function (see

Webber, 1979) Jeads to a first order interaction model of the form

(r) = (305, (r-1)] Q53 (r=1) explopq (r)cy5(r-1)3

; T FTT ST T T 1T

p , i=k (5.38)

iJ

u](r) is a parameter of the exponential function which must be calibrated
at r so that constraint equation (5.37) is satisfied. The normalised

probability tij(r) is derived from equation (5.38) by

ti;(" =Gy (5.39)
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and it is clear that the explicit form for equation (5.38) is the form

for a conventional origin-constrained spatial interaction model.

The probability sjk(r) depends upon tij(r) according to equation (5.32),
and the appropriate information-minimising scheme involves minimisation

of the first order function I(r, r-1)

. . 931 (r) .
min I,(r,r-1) = min ?Eqij(r) £n Bf}T?T , k=i, (5.40)
subject to
quk(r) = gpij(r), k=i,  and (5.41)
?quk(r)cjk(r_]) = S(r). (5.42)

Equation (5.41) is the endogenous origin constraint calculated from
equation (5.38) and equation (5.42) is the constraint on average travel

cost S(r). Minimisation leads to the form

pss(r) expl-u,(r)c,, (r-1)}
(r)] === 2. ik . k=i, (5.43)
ifkpij(r) exp{-uz(r)cjk(r-1)}

ij(r) = [?P-

where uz(r) is the parameter controlling the average travel cost constraint
S(r). The normalised probability sjk(r) is calculated as
) ij(r)

SJk(Y‘) —W s (544)
k

and it is clear that the model has the same origin-constrained structure
as the one above. The prior probability distribution {qjk(O)} will be
specified in the next section where the application and calibration of the

complete model is described.
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A word of explanation concerning the subscripts used in equations (5.35)

to (5.44) is necessary: both matrices, T(r) and S(r), are origin-
constrained in the sense implied by equations (5.39) and (5.44). However,
origins in the workplace-residential model are in terms of workplaces,

in the residential-service centre model in terms of residences.
Consequently the subscript j refers .to residences, i and k to workplaces,
thus the logical sequence i+j+k reflects the multiplication of the
distribution matrices A(r)B(r). The different subscripting of pij(r)

and qjk(r) leads to difficulties when they come to be related until it is

realised that the subscripts i and k refer to the same set of locations

and are thus equivalent.

When the model is operated, the elements of the matrices T(r) and S(r)
are computed using the non-matrix equations (5.38) and (5.39), (5.43) and
(5.44) respectively. In fact, the matrices F(r) and G(r) have no simple
form and are not computed as such, but they have been included here to
illustrate the long term effect of the information-minimising process.

It would be a simple matter to calculate them at each time r from

-1

]
—~
-
~——
1}

[S(r-1)]
-1

[epl
—
=
~—
it
—

—
—
=
~—
()

s(r)

S(r) = [S(r-T)F(r)1 'S
and this might yield useful information concerning the change in
distribution through time. From both the matrix and non-matrix equations
describing the effect of information change on the previous distributions,
it is clear that when no new information is available, that is, when the
previous distribution already meets the constraints, the information
matrices F(r)=G(r)=I, and the parameters of the submodels in equations
(5.38) and (5.43) would equal zero. This would be most unlikely unless

the constraint on travel cost were constant from iteration to iteration,

and unless the process had converged to some kind of locational equilibrium.
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One final point needs to be mentioned: the matrices A(r) and B(t) are
controlled by the lagged process specified in equations (5.33) and (5.34)
made explicit in this section, and by the constraint mechanism. 1In the
computation of the model, the matrices are first calculated according to
interaction submodels in equations (5.38) and (5.43), and after this,

they are renormalised according to any violation of the constraints. Thus
the constraint violation procedure takes precedence but note that once
constraints have been violated and the matrices appropriately adjusted,
their form is preserved by the equations used to compute the spatial

interaction submodels,

CALIBRATION OF THE MODEL TO THE READING SUBREGION.

A further simplification was necessary in the application of the model
whose form has been outlined in equations (5.18) to (5.44), and this
relates to the variation in travel costs over time, in this case through
the iterations. As it is impossible to assemble a meaningful time series
of data in this regard, it is assumed that the travel costs and the
associated parameters are independent of time r.  Thus C(r)=C and

§(r) = 5, and these values are observable for the whole process. In fact,
this means that p](r)=p] and uz(r)=u2 and these parameters are chosen to

satisfy the overall constraints

??pijcij =C , and (5.45)
1]

£2G..Cs. = O . (5.46)
5k jk~jk

Within this problem, the individual submodels which predict pij(r) and

q.k(r) now become

J

172.



qjk(r—]) exp{-p]cij}

pij(r) = [;qjk(r-1)3 , 1 =Kk, (5.47)
j §qjk(r—1) exp{-p]cij}
and
p..(r) exp{-u,c. }
Qg (r) = [zpy (1)1 — 23k, k=il (5.48)
i 1kaij(r) exp{—uzcjk}

Note that in this case, the global probability distributions {pij} and
{qjk} which are derived from the final composite patterns of distribution
are consistent with an information-minimisation relating to these
composite patterns, and equations (5.47) and (5.48) although consistent

with this structure, are only derivable in an ad hoe manner.

In essence, these simplifications mean that the calibration problem is

no longer dynamic but static in that parameters By andu2 must be estimated
for constraints which describe the average travel cost for the whole
simulation period. Thus,it is possible to use a static method of
estimation in which the parameters By and u, are found by solving
equations (5.45) and (5.46). Although the static calibration procedure
does account for dynamic change in the pattern of distribution, it is the
overall pattern of distribution which is the subject of the calibration
due to the fact that only C and S are observable. Equations (5.45) and
(5.46) involve the complete solution of the model in predicting {pij} and
{qjk} for given My and Mo clearly the equations are simultaneous and
nonlinear, and their solution requires some numerical algorithm. In the
example here, solutions were obtained using the Newton-Raphson method

(Batty, 1976).

In the next chapter, the calibration problem will also be made dynamic in

the sense implied by the information-minimisation of the previous section.
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Because the static calibration problem itself can only be solved
iteratively, the key to more efficient calibration involves matching
the iterative solution procedure to the iterative structure of the
pseudo-dynamic model. This is achieved in the next chapter in the

same kind of way in which the iterative structure of the constraint
procedures were dealt with here. The dynamic structure of the
distribution process still remains without an interpretation of the
process at a micro level in information-minimising terms. Thus a prior

form for S(0) is still required.

In interaction models of this kind, it has been argued by the author

(Batty and March, 1976) that an appropriate prior which should be explicitly
accepted, is the Coleman-Zipf model based on the physics of the space.

This model is in effect a two-dimensional gravity model which is based

upon the peripheral and centralising influences contained in any bounded
region. Its use in this model implies that the new information which
modulates the prior concerns the behavioural characteristics of travel
whereas the prior itself is based on strictly physical constraints on

travel,

A1l the elements have now been presented which form the basis of the

mode1 applied to the Reading subregion. The model is designed to simulate
the static configuration of activities in 18 zones using data taken from
various surveys and censuses at 1966. In every sense, this example is a
demonstration that the model is a useful way of building up an artificial
growth process from rather simple input data. The small number of zones
used is a characteristic of the hypothetical nature of this exercise,
which is included here as much by way of a statement that the pseudo-

dynamic model is an operational one, as for any substantive interpretations
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which might be drawn about modelling the Reading subregion.

The zoning system used by the model is shown in Figure 5.3. Nevertheless,
there are certain more substantive points to be made concerning the results
of the model, largely because the model has been run using three different
forms of prior distribution. The first two models use a prior relating

to the dynamic scheme shown in equations (5.33) and (5.34) whereas the

third model is based on two priors. Then in this model

|4

—
]

~—
1]

T(r-1)E(r), and (5.49)

|en

———
=

S
i

S(r-1)8(r). (5.50)

Thus to start the process, priors based on T(0) and 5(0) are required
and this third model does not hypothesise any relationship between the

sectors.

These three forms are presented in Table 5.1 and it is immediately clear
that the first and third models use an extremely simple prior based on
land and distance in the system. In effect, this means that the prior
probability of interaction between any two zones is based solely on the
dimensional qualities of the system. In the second model, the prior

is based upon the known distribution of population at the base date as
well as distance. Thus in the first and third models, there is no
possibility of a tautology in which the model is predicting an activity
on the basis of knowledge about that same activity, whereas in the second
model, this is the case. Another less important difference between
these three model forms relates to their autoregressive structure. In

the third model T(r) and S(r) are functions of new information F(r) and
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Figure 5.3: Zoning System for the Reading Model.
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G(r) and their previous values T(r-1) and S(r-1) whereas the first two

models use prior probability distributions consistent with the information-

minimising strategy in equations (5.35) to (5.44).

The calibration of these three models was accomplished by solving
equations (5.45) and (5.46) for My and Mo using the Newton-Raphson method.
These models were particularly difficult to calibrate from an arbitrary
starting point for H anduz. For example, in the case of the second
model, a unique solution to equations (5.45) and (5.46) was obtained by
starting with H oMy = 0.01, but with starting values of Hpolp = 0.2, no
solution was reached. This problem seems to be general to spatial inter-
action models with exponential or other functions such as Tanner's function
(March, 1971) which involve more than one parameter. By successive
substitution into equations (5.47) and (5.48) each interaction model can
be expressed as a function of the initial prior and successive values of

the parameters i and Mo

This implies that as in Tanner-type interaction models, the response
surfaces of equations (5.45) and (5.46) are such that the optimum points
are difficult to locate using iterative procedures, although global optima
do exist. Thus, it is necessary to pick good starting values for any
gradient method suchas the Newton-Raphson, and this may be achieved using
another method such as the Nelder-Mead simplex method (see Batty, 1976

for a detailed discussion). In fact, other versions of the model in which
explicit attraction factors were used in equations (5.47) and (5.48) could
not be calibrated using the Newton-Raphson method, and thus these attempts

are not reported here.

The performance of these models depends very much upon the choice of
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initial prior. The first and third models show an extremely poor
performance in terms of the correlation between predicted and observed
population, service employment, zonal activity rates and zonal population-
serving ratios. In contrast, the second model which adopts an initial
prior based on some knowledge of the activity distribution in the system
performs quite reasonably although there is a tendency towards 'bogus'
calibration which in this case involves the parameters cancelling one

another out, and cancelling out the prior influence of distance.

Table 5.2 demonstrates the performance of these three models and it is of
some interest to note that in terms of the zonal ratios, all three models
perform badly. The third model is not worth illustrating in terms of
explicit spatial predictions, but in Figure 5.4 the performance of the
first model is illustrated using isometric smoothed surfaces of the
observed and predicted population and service employment and their
percentage deviation. This figure illustrates the difficulty of building
a model which is just based on the dimensional properties of the space -
land and distance, and on a priort grounds, it is not 1ikely to give a
good performance. Moreover, in this model, there is a tendency for the
model to allocate too much activity to the periphery of the region and

too little to the centre, as is illustrated by the percentage deviations.

In Figure 5.5. these results are reversed. These surfaces show how good
the performance of the second model is, and how this model tends to over-
allocate activity at the centre of the region. As a final comment on
these models, it does seem that the logic of updating an initial prior
through the iterations of the model, is eminently reasonable, and is
preferable on theoretical grounds to previous practice. The performance
of a model of this kind too, is comparable to more traditional versions,

and thus this Tine of research seems promising.
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0BSERVED SERVICE EMPLOYMENT 0BSERVED POPULATION

PERCENTAGE DEVIATION IN PERCENTAGE DEVIATION IN
SERVICE EMPLOYMENT POPULATION

Figure 5.4: Spatial Predictions from the Model using a Prior based
on Land and Distance.
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Figure 5.5: Spatial Predictions from the Model using a Prior based
on Population and Distance.
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CONCLUSIONS.

This chapter and the last have shown how the pseudo-dynamic model derived
in Chapter 3 can be elaborated into a typology of different models, some
of which are already known, some of which are quite new. In particular,
the various elaborations of the Lowry model which integrate a dynamic
economic base process with spatial interaction submodels, can be derived
as special cases; the model due to Garin (1966) and Harris (1966), that
due to Berechman (1976) and that made operational by Baxter and Williams
(1975) are all models which can be reinterpreted in pseudo-dynamic terms.
Yet the real power of the methodology comes in suggesting new model forms
which are more relevant than existing practice from both a theoretical
and practical standpoint. The notion of constraint processes being
determined according to well-defined processes of redistribution, show
how arbitrary existing constraint and calibration methods are, and the
appeal of the pseudo-dynamic framework rests on the fact that new and

more efficient procedures are immediately possible.

The central idea involving the use of the redistribution procedures for
enabling constraints on location and interaction to be met, is based

on the observation that all existing constraint procedures 1nvo1§e some
element of trial-and-error (iteration). Thus the notion that the iterative
solution of the model equations to satisfy the constraints be matched in
some way to the iterative (dynamic) structure of the model itself, is
inviting. Indeed, Chapter 4 which deals with the application of
locational constraints in pseudo-dynamic models was concerned with
establishing a correspondence between these processes, and there it was
shown that constraints could always be met if solved according to the

mover processes. Calibration of the interaction submodels, is also
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effected iteratively in conventional models, and the suggestion that the
calibration process be matched to the mover processes will be explored in
the next two chapters. In a sense, both constraint and calibration can
be interpreted as problems of optimal control and the analogy introduced

here, is followed up in a more direct way in the next chapter.

Another aspect of the work reported here relates to the development of
information-minimising in dynamic terms, and it appears that the constraint
and calibration procedures might both be interpreted using this methodology.
In this paper, the overall submodels aﬁp]ied to the Reading subregion, can
be interpreted according to an information-minimising scheme, while the
variation in these submodels through time reflects dynamic processes
consistent with the overall structure, but not necessarily derivable using
the formal methodology. The solution of the constraint equations

relevant to any minimisation are usually iterative and a future task will

be to find out whether this iterative solution can in turn be interpreted

as an information-minimising process.

Finally, the models of this and the previous two chapters have a remarkable
richness which can be exploited in many ways. The similarity to the
educational models proposed by Stone (1970), for example, is striking,and
suggests further interpretations which will be pursued elsewhere. As a
way of closing the arguments of Chapters 3 to 5, Chapters 6 and 7 will
examine the calibration problem in more detail, thus suggesting a new
algorithm suitable for existing static models which can be interpreted

in pseudo-dynamic terms. But by no means will this imply any degree of
finality to these arguments for there are many directions which emerge

from these ideas which will be taken up in later chapters.
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CHAPTER 0.

COMPUTABLE MODEL FORMS BASED ON PSEUDO-DYNAMICS,

Urban systems are by necessity only observable at cross-sections in time,
but any explanatory theory which seeks to unravel their structure must
relate implicitly or explicitly to the processes which give rise to that
structure. The degree to which these processes can be identified however,
varies enormously and depends upon the existence of a suitable data base,
upon the existence of intuitively acceptable hypotheses and upon the
intrinsic nature of the observation itself. In fact, it appears easier
to build static models which summarise the effects of such processes,
rather than model the processes per se, but although static models tend

to be the order of the day, it is still necessary to seek a greater
understanding in terms of the dynamic processes at work. Rather than
ignore such processes, it is possible to design urban models which contain
both static and dynamic elements, or contain dynamic processes within

more macro-static frameworks. In previous chapters, this idea was ration-
alised in the form of a pseudo-dynamic urban model: in Chapter 3, such

a model was derived by aggregating a fully dynamic structure and in
Chapters 4 and 5, the richness of the idea was demonstrated by a typology

of such models, and their application.
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Although pseudo-dynamic models represent approximations to dynamic
processes viewed within a static framework, it is possible to exploit the
idea in other ways. The fact that such dynamic processes exist within
static models means that it is possible to use such processes to continually
change, adapt or evolve the model to meet certain constraints. In short,
pseudo-dynamic models can be controlled through their dynamic process in
an analogous way to the engineer's use of feedback in the classical
control theory of physical systems (Kendrick, 1976). Indeed, in the
last chapter, such an idea was tentatively suggested for effecting a
solution to the model which met prior locational constraints: as the
model built up the system artificially through an economic-base type of
process, constraints were checked at every stage, and a policy was
initiated at each stage for resolving any constraint violation or for

reaching a constraint in the subsequent stages.

In this chapter, this idea will be developed once again, but in relation
to the problem of controlling or calibrating a small set of model para-
meters to meet some constraint on the patterns of spatial interaction
predicted by the model.  This problem is a fairly classical one in
spatial model-building but in the past, indeed in the last chapter, it
was treated in a static manner. This chapter attempts to demonstrate
the idea that urban models with a pseudo-dynamic structure, can be more

efficiently and sensibly calibrated if this structure is exploited.

The way in which this type of control can be accomplished depends upon
the precise form of the pseudo-dynamic model, and as a starting point,
it is necessary to briefly summarise the results of previous chapters.
A pseudo-dynamic model was derived in Chapter 3 from a fully dynamic

model characterised by two or more distinct time streams. By aggregating
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at least one of these streams, and by leaving at least one in its fully
dynamic form, the pseudo-dynamic model is derived. Associated with the
model are different types of activity, namely new changes arising

from exogenous inputs, movers who are relocating in response to changed

locational structures, and stayers.

The new changes are generated from a constant and fixed input and the
sequence generated from this input is geometrically convergent in the
Leontief sense. However at each period of time in the sequence of
generation, a new sequence involving movement in the original sequence
can begin, and the Tast of these mover sequences starts in the period
after the last new change has been generated. Thus the pseudo-dynamic
model is mainly characterised by mover streams which initially depend
upon the sequence of new change. In the last chapter, locational
constraints were built into the process through the mover streams,
whereas in this, the calibration of the system will be effected through

both the new change and mover sequences.

This chapter does not however dwell entirely upon a process of evolution-
ary or adaptive calibration, for in the first sections, it is necessary
to extend the results of the previous chapters by looking once again at
the question of locational constraints. The pseudo-dynamic model of
Chapters 3 and 4 is introduced first, slightly modified to deal with a
variety of procedures of locational constraint, and then some typical
procedures are outlined. Thus this chapter is fairly self-contained but
readers should note the same caveat stated in the previous chapters:

that the logic of the model depends upon ideas developed already, and
thus previous chapters should be consulted. The problem of treating

Tocational constraints is one of developing an efficient but consistent
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computational form, and although the complete pseudo-dynamic model is
consistent, it is computationally excessive. Therefore, a simpler form
of model is developed here in which the mover and new change activity
streams are collapsed, and the recursive form for this model provides

the structure developed here.

The argument then changes in pitch, and the focus in the rest of this
chapter and the next is on calibration. A non-matrix presentation of
the model and its interaction submodels is given and the calibration
problem is explored in conceptual terms. An algorithm in which the
system parameters are adjusted to meet the trip lengths required is
sketched in the next chapter and certain aspects are elaborated: the
evaluation of required trip lengths, the establishment of feasible
bounds on the process, and the directions of search needed are described.
Finally, the algorithm is tested on a model of the Peterborough urban
region, and certain conclusions as to its efficiency are drawn. In
developing these ideas, several themes for future research have been
evolved, and by way of conclusion, a programme for future work is

suggested.

AN OUTLINE OF THE PSEUDO-DYNAMIC MODEL.

The starting point in this paper is a statement of the pseudo-dynamic
model given previously in equations (4.1) to (4.7). The notation is

the same as in previous chapters but it will be reintroduced here so that
readers focussing just on the calibration of this model will find this
chapter together with the next self-contained. Three major time periods
characterise the model: the input of activity in period [t-T:t-T-1]

is associated with new change only, the generation of further activity

from the input and the movement of activity already generated occurs in
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the period [t:t-T] and only the movement of existing activity occurs

in the period [t+T+1:t]. In fact, each sequence of new change and
movers has a 1ife of T time units, that is, if the input is associated
with the first unit of new change in [t-T:t-T-1], the last unit of new
change generaged is T+1 time periods later in [t:t-1]. Note that the
period indexed by the time script t refers to the unit of time in the
interval t-(t-1)=1. The first major period relates to only new change,
the second to a build up of the system through movers and new change, and
the third to a period of decline in momentum as mover streams terminate

to a stable sjtuation at t+T+1.

The model will be developed for population and employment first at a
macro-level, and then at a more micro-Tevel in terms of its submodels
governing the sequence of generation and distribution. Population and
employment are described by 1 X N row vectors p(t) and e(t) respectively
and the convention that bold lower case letters indicate 1 x N vectors
and bold upper case letters N x N matrices is adhered to. The initial
input of employment which drives the model is defined as A*s(0) which

is the first of a series of increments of new employment change, A*s(t),

and new population change, A*p(rt).

Then in the first major time period [t-T:t-T-11,

A*p(t-T), and (6.1)

p(t-T)

e(t-T) = a*s(0) + a*s(t-T). (6.2)

In the second major period [t:t-TJ], the state equations of the model are

composed of movers and stayers as well as new change. The appropriate
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variable is superscripted by m or s according to whether it reflects
movers or stayers and the variable is postscripted according to historical
time r, and the time when the new change activity from which the

movers originate, was first generated, time w. Then

-1 -1
‘ Mrw)¥(r,r-u) + " D> (r,w), (6.3)

w=t-T w=t-T

where the index r-u denotes the time when the mover sequence originated,

and u=w-(t-T) = w-t+T.  For employment

r-1 w r-1

e(r) = a%s(0) + a¥s(r) + = s
w=t-T

The matrix ¥(r,r-u) is a switch function which has been introduced here

to indicate whether the appropriate term in the mover sequence is relevant
or not. In essence, it determines which part of the mover sequence is
operative and it relates to the various constraint procedures outlined
below. When the switch is on, ¥(r,r-u) = I and when it is off, ¥(r,r-u)=0.
Figure 6.1 shows the typical streams associated with this model, and
whether or not any part of any mover stream is being used, is controlled

by the switch.

The third major period from t+1 to t+T+1 does not contain any new change
for this sequence which starts at t-T, ends at t, and thus only movers
and stayers feature in the state equations. Also as the mover streams
are beginning to terminate in this period, the stayers can be divided
into two groups: those who are still associated with activity still
moving, and those whose activity base is stable. Then the population

equation is
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it - t s r-T-2
p(r) = Ioop (row)¥(r,r-u) + Iop(r.w) + oz TR (W+T+1,w),
- w=r-T-1 w=r-T-1" w=t-
(6.5)
and the employment equation
t m t S r-T-2 s
e(r) = a*s(0)+ & sT(r.w)¥(r,r-u)+ T s(r,w)+ I s (wtT+l,w).
w=r-T-1 w=r-T-1" w=t-T~

(6.6)

Note that the last terms in equations (6.5) and (6.6) are out of range
when r=t+1 and are thus undefined. This is clear when the column
associated with t+1 in Figure 6.1 is compared to the t+2 column where

the unit of change associated with the first unit of new change generated
is now stable. This is because the last sequence of movers begins at
t+l and the first unit of this sequence moving at t+1, is stable there-

after,

A RECURSIVE FORM FOR THE MODEL.

It is now necessary to develop models of the various components in
equations (6.1) to (6.6) which relate the state equations in recursive
fashion. The relationship between the two equations through time is
sequential, starting with an employment input generating population,
generating more employment, more population and so on. The sequence of
generation involves both the derivation of one activity from another

in a geometrically convergent manner, and their allocation in space
using spatial interaction models. New change is the easiest to handle:

first for new population,

5*p(r) = a*s(r-1)A(r), (6.7)
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where A(r) is an N x N distribution matrix which maps the set of
employment locations into population locations as well as scaling
employment to population. As in previouschapters,it is assumed that

A(r) is separable in the following sense

A(r) = T(r)a ,

where T(r) is an N x N row stochastic probability matrix linking work

to home and A is a scalar diagonal matrix of inverse activity rates A.

In a similar way,

A*s(r) = a*p(r)B(r), (6.8)

where B(r) is separable into

B(r) = 1 5(r).

T is a scalar diagonal matrix of population-service demand ratios y and
S(r) is a row stochastic probability matrix associated with the spatial

pattern of demand for services. Substituting for A*p(r) in equation (6.8)

from (6.7) and expressing in separable form Teads to

A*s(r) = A*s(r-1)T(r)A T S(r), (6.9)

which is the central recurrence relation of new change in the model.
Then from the initial input a*s(0)

r-1

r-t+TA

5*p(r) = A*s(0)[A T] A nm T
=t-T

(t)S()I(r), (6.10)

r-t+T+1

A*s(r)

8*s(0)[A T (1)S(z). (6.11)

r
I T(t)S
t-T

T

From equations (6.10) and (6.11), it is clear that the convergence
depends upon the scalar diagonal matrix A T where it is necessary for

0<A 1<I for non-trivial urban systems.
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The sequence of generation for any mover stream is similar to that for
new change apart from the fact that a proportion a(r,r-u) of the new
change is moved, 0 < a(r,r-u)< I, and the matrix a(r,r-u) is now assumed
to be scalar diagonal. Then in a manner similar to above, population

and employment (service) movers are generated by

1

p"™( s"(r-1,w-1)a" ' (r=T,r-u)a(r,r-u)A(r), and (6.12)

r,w)

s"(row) = p"(row)B(r) (6.13)

~

The matrices A(r) and_@(r) reflect changed patterns of distribution which
is one reason for initiating the mover sequence in the first place, and
these matrices are separable in the same sense as those pertaining to

the new change. That is

A, and

The basic recurrence relation for movers can now be derived as

sm(r,w) = Em(r-1,w—1)gf](r—1,r-u)g(r,r-u)i(r)g_g_§(r), (6.14)

and note that the boundary conditions for each mover stream are stated
as Em(r-l,r-1) =0, Bm(r-l,r-l) = 0. Then in terms of the original
input A*s(0), recursion on equations (6.12) and (6.13) Teads to

N U r-1 . . .
P (rsw) = a*s(0)a(r,r-u)[A TT'A T T(t)S(T)T(r), (6.15)

T=r-u

u+l

T(1)S(1) . (6.16)

r
sm( I
T=r-u

rsw) = a*s(0)a(r,r-u)lA rl

It is also clear that each mover sequence converges for non-trivial

is as fast, if not faster than the original sequence of new change.
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The final sequence relates to the stayers and as these are basically
a function of the movers, it is only necessary to state the usual

recurrence relations developed in Chapter 3. Then

[p"(r-1,w)¥(r-1,r-u-1)4p° (r-1,w) I I-a(r,r-u)1, (6.17)

O
w
—
-3
=
~—
1]

[s™(r=T,w)¥(r-1,r-u-1)+s°(r-1,w) 1L 1-a(r,r-u)1, (6.18)

w
w
—
-
=
~—
1]

where_gs(r—1,r-1) = a*s(r-1) and Em(r-1,r—1) = A*p(r-1) are the boundary
conditions. It is now possible to substitute the specific submodel
forms developed in equations (6.7) to (6.18) into equations (6.3) to
(6.6) to derive the specific state of the system as a function of its
previous state. The equations are fairly lengthy and as the population
state equation is a subset of the employment equation, only the
employment equation need be stated, This was a convention adopted in

previous chapters and it will be used here when there is no ambiguity.

For the period [t+1:t-T]

e(r) = s*s(0)+{a*s(r-1)T(r)S(r)+La*s(0)a(r,r)¥(r,r)

r-1 .
+ I Sm(r-1,w-])gf](r-1,r-u)a(r,r-u)g(r,r-u)]I(r)S(r)}A T
w=t-T+1" - - T
r-1 i g
+  [s (r-1,w)¥(r-1,r-u-1)+s>(r-1,w) J(I-a(r,r-u)l. (6.19)
w=t-T

Equation (6.19) refers to the period up to t+1 which is one time period
longer than equation (6.4). This is due to the fact that only after
t+1 does the term involving the initiation of movers from the initial

input cease to exist. Furthermore, the recurrence relation on movers
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used in the equation after t+1 does not hold for t+1, thus equation
(6.19) must be used instead. Note that when r=t+1 in equation (6.19),
A*s(t+1) = 0. In fact, the time period [t+1:t] is somewhat anomalous
in that either the second major period or third major period equation

will usually hold as noted in the previous paper.

Then for the period [t+T+1:t+1]

t N = N
+ z ET(r-],w-])g_](r-1,r-u)g(r,r-u)g(r,r-u)T(r)A r S(r)
w=t-T+1 e
t m S
+ z Is (r=-T,w)¥(r-T,r-u-1)+s (r-1,w)1I-a(r,r-u)]
w=r-T-1
r-T-2
+ s (wAT+],w). (6.20)
w=t-T
This completes the statement of the pseudo-dynamic model. Before a form
suitable for adaptive calibration is derived, it is worthwhile exploring
further ways in which locational constraints might be incorporated in

this form, for this is of crucial importance in deriving a structure

suitable for efficient calibration.
PROCEDURES FOR INCORPORATING LOCATIONAL CONSTRAINTS.

By combining the switch function ¥(r,r-u) and the mover ratio matrix
a(r,r-u) in various ways, many different types of constraint procedure
can be developed for the pseudo-dynamic model. The easiest set of
models to generate are those within the typology developed in Chapter 4:

in the case of a(r,r-u) = 0 models, the switchis redundant but it might
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be set equal to 0 for completeness; in the case of a(r,r-u) = a

or a(r,r-u) =I models, the switch is always on at ¥(r,r-u) = I.  In
terms of constraint procedures, the a(r,r-u) matrix controls the amount
of activity which is moved in an effort to overcome a constraint
violation or to meet a constraint whereas the switch function ¥(r,r-u)
controls the elements of the mover sequences which are relevant to the
relocation of existing activity. Although mover sequences are
activated in the event of some constraint violation, the form of which
must be determined in advance, the type of constraint procedure must

also be specified a prior:.

In the previous two chapters, rather strict procedures were specified
in terms of the switch function. Complete sequence redistribution
specified by ¥(r,r-u) = I, r>r-u and partial sequence redistribution
where ¥(r,r-u) = 0 for some part of the generation sequence given by
w'<r and ¥(r,r-u) = I, w'>r, were both described; but an ad hoe
possibility exists which has complete flexibility where the particular
element of the sequence is switched on when necessary to solve a
constraint violation. Yet even in this case, some idea of the form of

the procedure must be specified before the simulation begins.

To operate the complete and partial sequence procedures of the previous
chapter,assume that the first constraint violations occur at time R,

and thus initiate a mover sequence beginning in every period r>R+1.

Then prior to R+1, the switch is off: for complete sequences ¥(r,r-u)=0,
r<R, t-T<w<t, and for partial sequences g(r,r—u)fg, r<R, w<w'. After
the constraint violation, the opposite conditions hold, but note that

to operate the model as stated in the previous section, it is necessary

to assume a(r,r-u) = I, r<R, w<w' for the partial sequence so that the
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mover recurrence relations can be applied. In the ad hoec situation
however, it is necessary to assume that the switch function dominates
the process: that is, the mover ratio is always set as a(ryr-u) =1
and ¥(r,r-u) = 0 whenever the element in the sequence is inoperative but
that a(r,r-u) is set to its appropriate value and gﬁr,r—u) = I when

the element is operative. This requirement to set a(r,r-u) =1 1s

necessitated by the form of the mover recurrence relations given in

equations (6.12) to (6.14).

The actual procedure in which constraint violations are resolved through
mover sequences is also flexible. The problem can be treated as a
constrained matrix problem in the manner developed for transport models
(Macgill, 1975) or it can be treated as one of redistribution of the
surplus in a manner akin to that originally used by Lowry (1964) and
developed by Echenique, Crowther and Lindsay (1969). In Chapters 8
and 9, the role of constrained matrix methods will be examined in the
context of pseudo-dynamic models but here the more arbitrary surplus
redistributing procedure will be developed. The idea behind this latter
procedure was outlined in Chapter 5 and it will be introduced again here
in a rather different way, first for complete sequence mover streams,

and then for the more ad koc procedure presented in the next section.

The central core of the constraint algorithm is based on the concept

of assessing the greatest constraint violation based on population and
employment, and using this to determine the mover ratio. Then given
constraint vectors gP(r) on population and Eé(r) on employment, defining
the set of constrained population zones as-Zp and employment zones as Ze’
the procedure is operated as follows. Assume a constraint is violated

at time R: then if
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PL(R) > C?(R) , s assigned to Z,, (6.21)

and the surplus A?(R) is computed as

P = - ¢cP jeZ .
Aj(R) = Pj(R) Cj(R), 3 Zp (6.22)

The ratio to be redistributed, p(R+1,R+1-u), is taken as a proportion

$(R+1-u) of the surplus

o(R+1,R+1-u) = o(R+1-u) £ aP(R), (6.23)
jEZp J

and this proportion depends upon the type of procedure used which is

outlined below.

At this point, the trip probability %ij(R+1) is renormalised

-~

t.. . j 6.
1J(R+]) Os Jezps ( 24)

and the algorithm turns to deal with employment violations. If

E (R) > CZ(R), k is assigned to Z,, (6.25)

and the surplus AE(R) is computed as
B(R) = E (R) - CE(R), keZ, . (6.26)

Another ratio o(R+1,R+1-u) is formed as a proportion o(R+1-u) of the

surplus, and this is given by

o(R¥1,R+1-u) = o(R+l-u) = A (R), (6.27)
keZ
e

and the trip probability ;jk(R+1) is renormalised as
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S5 (R+1) = 0, keZ . (6.28)

At this point, the mover ratio matrix o(R+1,r+1-u) and the switch

function Y(R+1,R+1-u) must be set for R+1.  Then

maxLo(R+1,R+1-u) ,p(R+1,R+1-u)1, i=J,

@y (R+1,RH1-u) (6.29)
J =0, i#4i,
and
=1, i=j,
¥ 5 (R¥T,R+1-0) (6.30)
=0, i#].

Note that the mover ratio matrix is scalar diagonal and that the
parameters ¢(R+1-u) and p(R+1-u) are determined by the particular type

of constraint procedure.

The method of Chapter 5 in which a complete mover sequence was initiated
due to a constraint violation can be treated in these terms. In that
method, the various ratios were independent of generation time w and
associated with a mover stream was a constant ratio fixed at time R.

Then

6(R+1)

(1-yA)/§A*Si(O), and
i

$(R+1) = A-]G(R+1).

The mover ratios and switch functions are set at R as
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= max [o(R+1), p(R+1)1, i=3,
a..(F,R+]) 1
H =0, 14,
= ]a -i’_‘j’
Y. . (r,R+1)
1 =0, i#,
and the range of r 1is R+1<r<R+T+1.  The mover stream thus depends on

a value of a(r,R+1) fixed at R and the surplus is redistributed
according to the whole of the activity associated with such a sequence.
Diagramatically, this implies that the stream which is represented by

the Tight stipple in Figure 6.1 is utilised to redistribute this surplus.

Another method is based on fixing the proportions in terms of the
activity generated so far, or in terms of the activity still being
moved. In essence, this method involves redistributing the surplus in
terms of all the activity generated so far, and this is achieved
immediately at R+1, rather than from R+1 to R+T+1 as in the previous

method. Then

R
8(R+1,R+1-u) = ZA*Sk(w)/[ b3 ZA*Sk(T)]Z, and
k T =t-T k
R 2
¢(R+T,R+T-u) = ZA*P.(wW)/L = zA*P.(r)]".
i 3 st Y

These equations refer to the period [t+1:t-17 and after t+1, the range

of summation for t in these equations is R-T-1<t<t, due to the fact that
the Tast sequence of movers begins at t+1. In Figure 6.1, the activity
allocation of this surplus is over all the mover streams associated with
time R+1, and this is shown by the dark stihp1e in contrast to the above

procedure.
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One immediate and obvious problem of both these and other constraint
procedures outlined in this section is computational feasibility. The
model of the Reading region outlined in Chapter 5 was feasible in that
storage requirements were kept down by assuming A(r) = A(r),_g(r) =_§(T)
and a(r,r-u) dependent only on r. But here there is another dimension
of complexity to be added and this pertains to calibration. Additional
storage will be necessary for the algorithm developed below, and thus

a more efficient, more parsimonious form of constraint procedure is

required. This is developed in the following section.
A SIMPLIFIED FORM FOR THE URBAN MODEL.

The simplest form of pseudo-dynamic model in which movers are represented,
is the model in which there is only one mover stream. In this case,

it might be assumed that r-u = t-T+1 which implies that r and w are
equivalent. Each component in the mover stream is associated with a

ratio a(r,t-T+1) and the switch ¥(r,t-T+1) is always on. That is

=1, r-u = t-T+1,

¥(r,r-u)

]

9 r-u # t-T+1.

The model is worth developing explicitly if only to show how even this
form has disadvantages which must be resolved by the model to be

developed here. Then for the employment equations, in the period [t:t-T]
e(r) = a*s(0) + a*s(r) + s"(ryr-1) + 1z sS(r,w), (6.31)
which is derived from equation (6.4) given information about the switch

function. A*s(r) is as given in equation (6.11) but the movers and

stayers have a particularly simple form. Then
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"(r,r-1) = a*s(r-2)a(r,t-T+1)A(r)B(r), (6.32)

S

sS(rr-1) = %s(r-1)[I-a(r,t-T+1)1 , (6.33)

and from the recurrence relation on movers and stayers in equations (6.14)

and (6.18) respectively,

SS(rw) = a%s(w-1)a(wHl,t-T+1)A(wHT)B(w+1)  +

A*s (wW)LI-0(w+1,t-T+1)1, w<r-1. (6.34)

Using equations (6.31) to (6.34), the employment equation in (6.31)

can be written

e(r) = a*s(0) + a*s(r)
r-2

£ n a*s(t)a(TH2,t-T+1)A(t+2)B(1+2)
=t-T — - o

~ -~

+ 0*s(0)o(t-T+1,t-T+T)A(t-T+1)B(t-T+1)

+ L A*s(T)lI-a(t+1,t-T+1)]1 . (6.35)

An equation for the third major period is not necessary. As there is

only a first order lag between new change and movers, the model terminates
at t+1, and equation (6.35) applies for t+1 with A*s(t+1) = 0. Figure
6.2(a) shows this sequence and the direct relationships between movers

and new change. From equation (6.35), it is clear that the model is

based directly on new change and although this is clearly the case with
models based on many mover streams, the one mover stream model is
sufficiently simple to represent in terms of only new change. The
implication of equation (6.35) is that after each constraint violation,
the appropriate portion of the single mover stream is utilised to

resolve this violation. This is the essence of Figure 6.2(a).
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Figure 6.2: Limited Mover Stream Models Designed to Resolve the
Locational Constraint Problem.
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The problem with the model as stated relates to whether or not the
constraint violation can be resolved by moving only one element of
the mover sequence at a time. Noting that R=w and that R+l-u = t-T+1,

the proportions 6(R+1-u) and ¢(R+1-u) are given by

6(R+1-u) = 1/EA*Sk(R), $(R+1-u) = 1/§A*Pj(R).
Thus the amount moved is taken as a proportion of the previous new
activity generated and thus it is clear from equation (6.32) that all
the surplus is redistributed in the next time period. Clearly there
is no guarantee that this redistribution will meet all the constraints:
it will certainly meet those which have already been violated but it

may not meet those which have not yet been infringed.

In other words, it is possible for any time period after the time when

the first constraints were violated at R for

ZAP(P)>ZA*P.(P), and/or, ZAe(r)>ZA*S (r), r>R+l
3V e T

Such a situation would involve the mover ratio a(r+l,t-T+1) exceeding
the identity matrix, and although this would be perfectly permissible,
it would demonstrate an inconsistency in the single mover stream method.
This inconsistency relates to the fact that the constraint violation

is not being resolved immediately in the following time period but is
being perpetuated through time. Of course, by the last iteration of

the simulation, all the constraints would be satisfied.

If for consistency, it is required to keep the mover ratio matrix less

than I, then the single mover stream idea must be abandoned. In fact,
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it may be necessary to expand the mover streams in a somewhat ad hoc
way, so that enough activity is included in the proportions 6(R+1-u)

and ¢(R+1-u) for o(R+1,t-T+1)< I.  Figure 6.2(b) illustrates the

way in which the mover streams begin to spread as the need to keep
a(r,t-T+1) less than I is met, and it also indicates the relative
difficulty with any schemes for resolving constraints which are based

on ad hoc elements from the mover sequences. Moreover, Figure 6.2(b)
shows the importance of 'packing' the mover sequences as close together
as possible so that computational storage and effort is conserved.
Indeed, it is interesting to think of the problem of designing efficient
constraint procedures in models of this type as 'packing problems'.

The advantage of this discussion is based on the insights into the
problem of constraints in single mover stream models: if it is necessary
to retain the single mover stream idea, if iterationwithin each time
period is not to be allowed and if a(r,t-T+1)< I, then it is necessary

to design a different model from the one described in equations (6.31)

to (6.35), and this is presented below.

There is a more general difficulty with many of the procedures developed
so far in this chapter and in Chapters 4 and 5, and this relates to the
fact that a(r,r-u) is scalar diagonal: in short, the mover ratio matrix
is independent of Tocation. For complete sequence processes, this might
be tenable as was argued in the second paper, but for ad koc processes,

a locationally independent mover matrix is too arbitrary. Of course,

it is possible to extend the pseudo-dynamic model to deal with non-scalar
diagonal mover matrices but the recurrence relations describing the
movers and stayers no Tonger hold. To be consistent, each mover ratio
must be applied to the original input A*s(0), and the sequence recomputed

from there to the point where a(r,r-u) is fixed. The storage problem
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for these recomputed streams is horrific, and it illustrates that the
need to be consistent in terms of the imput-output sequences characterising

the model, Teads to computational and logical difficulties which limit

the model.

This point can best be made pertinent in connection with the single
mover stream model of this section. To ensure that equation (6.35) is

correct for a non-scalar diagonal mover ratio matrix, the last term must

be replaced by

I A*s(t) - I A*s(t)a(T+2,t-T+1)A(7+2)B(t+2)

- 4%s(0)a(t-T+1,t-T+1)A(t-T+1)B(t-T+1)

which clearly involves another stream of computation. In the model
developed in Chapter 5 for the Reading region, there was no need to
make o(r,r-u) lTocationally dependent due to the fact that the activity
was being relocated through a complete sequence. But here, a single
mover stream model is to be developed and thus it would be desirable
if such a model incorporated mover ratio matrices which depend upon

location.

The basic idea on which a pseudo-dynamic model can be designed which
meets the conditions mentioned above, involves the aggregation of the
mover and new change sequences into one. As movers for the next time
period are evaluated as a proportion of the movers and new change
characterising the present period, it is clear that the mover ratio
can never exceed unity. Moreover, this 1ogic enables stayers to be

computed directly and in fact, after the first time period, the new
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change sequence is no longer distinguishable from the movers and stayers.
Figure 6.2(c) makes this idea visually explicit and it is clear that
although movers and the previous stayers together generate new change,
the two sequences are aggregated in a manner which makes the computation

of new change in the previous sense, laborious and unnecessary.

No Tonger is it possible to specify the period of simulation with this
model, and although the life of the sequence is still T units, fhe
simulation starting at t-T would end no earlier than t+1 and no later
than t+T+1. In other words, because the mover and new change sequences
are not strictly separated, the life of the combined sequence can only
be found by simulation. In the development of this model, it is assumed
that A(r) =.A(r) and B(r) =.é(r) which is the assumption used by Baxter
and Williams (1975) in their model, and note that as the mover ratio
matrix o(r,t-T+1) is always dependent on t-T+1, this time script is

omitted.

The new model can now be presented. The state equations for population
and employment are quite simple for they are composed mainly of stayers
due to the fact that movers and new change input to any one time period
generate stayers at the end of the period, and more movers and new change

for the next period. Then

r s
p(r) = z Ap~(t), (6.36)
t=t-T+]
r
e(r) = a%s(0) + 1 as’(x), (6.37)
- - t=t=-T+]

where Agé(r) and Ais(r) are vectors of population and employment stayers

generated at time r. In recursive form, the model can be written as
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follows. Define Aé(r) and Aé(r) as vectors of population and

employment change before movers have been evaluated by reference to

constraints
ap(r) = Tas®(r=1) + as™(r=1)3A(r) (6.38)
as(r) = ap(r)B(r). (6.39)

AEW(r-I) are the employment movers calculated in the previous time

period.

At this point, Aé(r) and Aéﬂr) are used to test against the constraints

cp(r) and E?(r), and some scheme adapted from equations (6.21) to (6.30)

is used to calculate a(r). Movers Aﬁm(r) can now be calculated as

r) = [as®(r=1) + as"(r-1)Ja(r), (6.40)

and the stayers can be found by allocating a proportion of the input

as follows

[as®(r-1) + as™(r-1)1CI-a(r)IA(r), (6.41)

>
o

—
3

~—
1l

Ap® (r)B(r). (6.42)

>
w
[72]
—~
s
~—
n

The algorithm in equations (6.38) to (6.42) is operated until some

1imit defining the combined new change and mover sequences' life is
reached. Note that the range for r begins at r=t-T and that AE?(t-T-l) =
a*s(0) and As"(t-T-1) = 0.

It is possible to derive detailed forms of state equation by successive
substitution from equations (6.40) and (6.41) into themselves, and then
substitution into equations (6.36) and (6.37). But the resulting forms

are extremely complicated although quite regular, and nothing is gained
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by this apart from a demonstration that the ultimate state of the

system depends on a successive modulation of the mover and stayer ratios.
The model however is not entirely complete for it has only been
presented here in aggregative terms. It is necessary to present the
model in the form in which it is computed, that is, in a non-matrix form
for only then does the method for handling locational constraints become
clear. Furthermore, as the emphasis now shifts to the calibration
problem, this type of matrix notation becomes unwieldy for the focus is
on a small number of system parameters and constraints rather than a
large set of zones. Although it would be possible to present the rest
of thechapterin matrix notation, it is preferable to present it in

more usual terms so that relationships to other work concerning spatial

interaction models is apparent.

COMPUTING THE SIMPLIFIED MODEL: THE DISTRIBUTION SUBMODELS.

It is necessary to assemble the general algorithm for the model in two
main stages. First, the submodels which form the elements of the
distribution matrices A(r) and B(r) will be outlined and these models
which are based on interaction models of the gravity type are identified
with the parameters of the general model to be determined through
calibration. Then these submodels are embedded into the model's main
equations which are based on equations (6.36) to (6.42), and this makes
possible a detailed presentation of the algorithm used to effect locational
constraints. Once this has been achieved, the general model can be
considered ready for calibration and this involves setting this algorithm
within a wider algorithm for calibration which is developed in the

next chapter.

210.



Associated with the distribution matrices T(r) and S(r) are probability
distributions which show the probability of an interaction originating

in the set of zones whose activity distribution is known, and terminating
in the set whose activity distribution it is required to predict. In
tracing the sequence from origin to destination which becomes a new origin
and so on, the interaction associated with T(r) is indexed by origin 1,
destination j, and that associated S(r) by origin j (which is the same

as the set of destinations {j}),destination k. However, because only
two distributions of activity are involved, the j index refers to
population in zones and the i, and k to employment. Note that it is
assumed that the set of zones subscripted by i is identical to that

subscripted by k.

Then the probability of working in i and Tiving in j is defined as pij(r)

and the distribution is normalised so that

ZZp.(r) = -l_
ij Y

The marginal probability ti(r-l) is known from the previous time period

and pij(r) is also defined so that

Zp

(r) = t;(r-1).
J

13

The other set of marginal probabilities on destination locations sj(r)

is to be predicted from
?pij(r) B SJ-(Y‘),

and it is also clear that
ot (r-1) = s (r) = 1.

il i
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However the elements of the matrix T(r) are conditional probabilities
defined with respect to the known marginal probabilities of the origins,

that is

T (6.43)
1

from which it is clear that the probability pij(r) is calculated as
pij(r) = ti(r-1)t1j(r). (6.44)

Note that ti.(r) sums to unity over j and this is sufficient to ensure

J
that T(r) is row stochastic.

Exactly the same logic can be used to develop the probability qjk(r)

associated with S(r). This probability is normalised so that

2Iq. (r) =1,
3k 3

and the associated marginal (origin and destination) probabilities

are defined as

quk(r) =s.(r), and

The conditional probability sjk(r) is calculated as
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s (r) = -3 , (6.45)

from which the probability a; (r) is easily determined using the

k
probability rule for independent events

qjk(r) = sj(r)sjk(r). (6.46)

Note that sjk(r) sums to unity over k and this makes S(r) row stochastic,
and that the distribution sj(r) must be known before sjk(r) can be

calculated.

In fact, gravity type interaction models are postulated using the
information-minimising framework outlined in Chapters 3 and 5 and these
models determine the conditional probabilities tij(r) and sjk(r). The
marginal distributions depend upon the dynamic processes of the model
itself and this can easily be seen from the recurrence which is implied
in the following equations. Using equation (6.44) and the appropriate
(r), p.

form for ti .(r) is defined as

J 1J
q. (r-1)exp{-uy(rjc, .}
Pi5(r) = t;(r-1) Ik L, ke, (6.47)
quk(r-1)exp{fu](r)cij}

and the marginal probability is calculated as

sj(r) = §p1j(r). (6.48)

In equation (6.47), u](r) is a parameter controlling the amount of inter-
action generated by the model and Cij is the generalised cost of travel

between i and j, typically time-distance.

This submodel is derived using first order information-minimising, and
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a similar form is postulated for qjk(r). Then

p.(r)exp{-u,(r)c, }
qjk(r) = s.(r) 1 : 3k » k=i, (6.49)
ik 1j(r)eXp{'U2(r)cjk}

and the probability of locating in k is thus calculated as

tk(r) = §qjk(r). (6.50)
The way in which the submodels are operated is fairly obvious from the
sequence given in equations (6.47) to (6.50). As the sets of zones
{i} and {k} are identical, the procedure requires an initial set of
probabilities {ti(O)} and by substitution of tk(r) from equation (6.50)
for ti(r-1), k=i, in equation (6.47), a recurrence procedure through
time is defined. This is a first order Markovian scheme with non-
stationary transition probability matrices T(r) and S(r), and the absolute
distributions of activity in employment and population zones are calculated
when this locational scheme is incorporated into the multiplier sequences

presented in previous sections.

The submodel forms in equations (6.47) and (6.49) can be derived in a
manner similar to that used in Chapter 5 to derive equations (5.38) and
(5.43). In fact, the whole set of equations from (5.37) to (5.44)

is relevant in deriving (6.47) to (6.49) with equations (5.37) and
(5.42) replaced by

zip..(r)c,. = C, and (6.51)
ij 1 ij

£1q. =S, 6.52
jquk(r)CJk S . ( )

respectively. Here it is explicitly assumed that the mean amount of
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interaction generated by the workplace-home interaction called C and

that generated by the home-service demand function called §, are constant
over time. This is a reasonable assumption given the nature of the pseudo-
dynamic model, and as such, C and S represent fixed targets which the
system must meet by the end of the simulation. The parameters u1(r) and
uz(r) control the mean amount of interaction predicted in each time period,
and it is through manipulation of these parameters that the targets are

reached.

Equations (6.51) and (6.52) must therefore be solved for u](r) and uz(r)
at each time period r and thus the calibration problem becomes dynamic.
Indeed, the strategy for determining trajectories for u1(r) and uz(r) is
the central task of the next chapter and will be discussed at length

in the sequel. Before the submodels are embedded into the main model,
it is worth rewriting the trip length equations (6.51) and (6.52) in
terms of marginal and conditional probabilities. Then substituting for

p..(r) and qjk(r) from equations (6.44) and (6.46) into (6.51) and (6.52)

iJ
respectively gives

C = §ti(r-1)§t1j(r)cij = iti(r-1)51(r), and (6.53)
S = §sj(r)isjk(r)cjk = gsj(r)gj(r). (6.54)

Ei(r) and Ej(r) are the mean zonal trip lengths which are weighted
according to the zonal distribution of activity in the calculation of

the mean system trip lengths E and S. This is a useful interpretation
which will be developed later when the effect of the multiplier sequences

on the mean trip lengths is examined.
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AN ALGORITHM FOR THE SIMPLIFIED MODEL.

The main algorithm which follows equations (6.36) to (6.42) can now be
developed, thus demonstrating the way in which the locational submodels
are embedded into the multiplier process, and the way in which constraints
are handled. First, the population model is developed and the mover

ratio a(r) determined according to constraint violations in residential
zones. The population stayers are then computed and used as an input to
the employment submodels. This output is then evaluated against constraints
and the mover ratio is further adjusted on this basis. The structure of
the model requires that the population stayers be readjusted if employment
constraints have been violated. The procedure presented below for one
time period or model iteration involves the computation of a series of
intermediate values for certain variables: such a variable is as defined
previously but distinguished by the use of the circumflex ~ for a first

value and the double circumflex for a second value <.

From the previously predicted distributions of employment stayers

{AS?(r-l)} and movers {AST(r-l)}, the first estimate of work trips

-~

ATij(r) is calculated from

N

aT;5(r) = [AS3(r-1) + AST(r-])]tij(r), (6.55)

and a first estimate of the population Aﬁj(r) is derived by applying

the activity rate A to the sum of trips terminating in j

aP(r) = A§AT1

J.(r‘). (6.56)

At this point, the constraints on population are checked: if

[Aﬁj(r) + P;(r—1)] 3_C?(r), j is assigned to Zp, (6.57)
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and the surplus is computed from

A?(r) = Aﬁj(r) + P;(r-1) - C?(r), jez. (6.58)

The proportion of the input employment used to generate change in this
time period which is associated with this surplus is calculated for each
zone i by finding the proportion of trips a Tij(r) forming A?(P) and

reallocating back to each employment origin. Then

&P(r) R
oi(r) = e.(r) 3z L — AT, <(r), (6.59)
jez, aP5(r) J

where the coefficient ei(r) is defined as

0;(r) = 1/0883(r-1) + aS(r-1)1. (6.60)

It is now necessary to adjust the trips and the population to account

~

for these constraint violations, and new intermediate variables Afij(r)

~

and Aﬁj(r) are computed

A ” Ap(r
AT, .(r) = AT, .(r)01 - =2 1, jeZ_ , and (6.61)
W HJ AP, (1) P
j
n . P .
AP = . - Al . .
PJ(r) APJ(r) AJ(r), JeZp (6.62)

Note here that oi(r) is a first estimate for ai(r) based only on the
population sector and this must be further modified to account for any

constraint violations due to the allocation of surplus employment.

An analogous procedure is used to allocate employment. First the demands

-~

for services by the population Aﬁj(r) are calculated as Agjk(r). Then
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-~
-

Aéjk(r) = 8P (r)s (1), (6.63)

and employment in k, Aék(r) is calculated by summing equation (6.63) over

J and scaling by the population-serving ratio vy

~

85, (r) = y§A§jk(r). (6.64)

Constraints on employment are now checked: if

[Agk(r) + Sﬁ(r-])] 3_Ci(r), k is assigned to Ze’ (6.65)

and the surplus is computed from

AE(r) = Agk(r) + Si(r-1) o

e(r),  kez, . (6.66)

The proportion of population associated with this surplus o.(r) is

J
calculated as
Ai(r) n
p.(r) =¢.(r) = —— AS.k(r), (6.67)
J J keZ aS (r) Y
e k

where ¢j(r) is defined as

05(r) = 1/A§j(r). (6.68)

At this point, it is necessary to adjust the trips Agjk(r) and the

employment Agk(r) to account for constraint violations. Then

2S., (r) = a3, (r)C1 AR d (6.69)
) = o r - —_— 1, € , an 5
Jk jk ASk(r) e

aSp(r) = 8S, (r) - ap(r), keZ, . (6.70)

However as the model is structured in terms of a single input-empioyment,

it is necessary to transform the surplus population associated with Aﬁ(r)
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into surplus employment based on the input to time period r. Thus the

final stayer population AP?(P) is calculated as

~
-~

AP§(r) = 8P (r)1 - py(r), (6.71)

and work trips as

AT..(r) = AT, .(r) [1 - pj(r)]. (6.72)

The final mover ratio ui(r) 1s updated according to the new surplus

associated with pj(r) and thus

-~

24(r) = 05(r) + 5()5o; (r)aTy(r), (6.73)

and the movers AST(r) to be allocated in the next time period are computed

from

as3(r) = [aS3(r-1) + 883 (r-1)Jas (r). (6.74)

Note that the stayers are computed as the process of evaluating the
movers is accomplished within the time period, and that the ratio ai(r)
is separable into a component associated with population surplus and one

associated with employment surplus.

The structure of the general model is presented as a flow diagram in
Figure 6.3 and this diagram will be used later as part of the more
general flow chart developed to illustrate the calibration procedure.
At this point, a number of quantities relating to the state of the
system at time r must be calculated. Cumulative totals of trips and

activities are calculated as follows:
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Ar-1) + ATij(r)’

ij ij
Pi(r) = Py(r-1) AP?(r) ,
(6.75)
Sjk(r) = Sjk(r-1) + ASjk(r), and
S (r) =S (r-1) 4 ASE(F).

Of particular importance however are the mean trip lengths which indicate
the dimensional fit of the model to reality, and these are of use in

guiding the calibration procedure developed below.

The mean work trip length associated with the change in time period r

is called AE(r) and is defined as

AC(r) ZZAT..(r)cij/ZZAT..(r),

iy 1 i3 1

2ty (r-1)3t; 5(r); (6.76)

i J 1
where ti(r-l) is the distribution of input employment used to generate
{APj(r)} and calculated as

[AS?(r-]) + AST(F-])][1-ai(r)]
t.(r-1) = . (6.77)

1 S m
Z0AS3 (r-1) + 457 (r=1)101-04(r)]
1

The service demand mean trip length AS(r) is calculated in an analogous

way

AS(r) ZZASjk(r)Cjk/ZZASjk(r),

jk Jk

= . 5 . ' 6.78
?sJ(r)isJk(r)ch’ (6.78)
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where sj(r) is defined as

Apjr(r)
s.(r) = (6.79)
J ZAPS (1)

I

The cumulative trip lengths C(r) and S(r) can be calculated by substituting

T..(r) and Sjk(r) from equations (6.75) into the first term of equations

J
(6.76) and (6.78) respectively, although there is a more fundamental
relationship between the previous trip lengths and the change. This will
be detailed later as it is central to the idea of guiding the system

towards the fixed targets C and S.

The final stages of computation in time period r consist of setting up
the matrices {tij(r+])} and {sjk(r+1)} for the next time period. As
the submodels which structure these matrices are based on first order

lags in the probability distributions, p..(r) and qjk(r) must be

iJ
calculated
ATij(r)
pij(r) S s, and
ZZATi.(r)
ij
AS. (r)
a5 (r) = ik
ZZAS.k(r)
jk

The parameters u](r+1) and uz(r+1) are fixed exogenously or according

to the calibration algorithm and tij(r+1) and sjk(r+1) are then computed
using equations (6.47) and (6.49). However, if constraints have been
violated in time period r, the matrices T(r) and S(r) must be renormalised

so that

tij(r+]) =0, JsZp, and sjk(r+1) =0, keZ,.
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AS?(r) and AST(r) are now substituted into equation (6.55) and equations
(6.55) to (6.79) are reiterated until the life of the process is complete.
The 1ife of the process may be set arbitrarily at T+1 time periods, or

as in this case, it is determined during the simulation according to the
cut-off 1imit ¢.  Then if

(1-yk)ZAS?(r)
i

£A*S. (0)
.i

the simulation is terminated. In this model, ¢ was set equal to 0.0]
although there are several ways of approximating convergence to such a
1imit which reduce computation time (Batty, 1976). At this point, all
the elements have been presented which enable a comprehensive discussion
of the calibration problem to take place, and this will be begun in the

next chapter.

CONCLUSIONS.

At this point, we are about halfway through this thesis and it is worth
reflecting on progress so far. In effect, the internal structure of the
conventional urban model due to Lowry (1964) has been elaborated through
its multiplier relations. These relations embody a type of pseudo-time,
and in their elaborated form, such models have been called pseudo-dynamic.
This form of model was developed in Chapter 3, and since then many
variants of this model have been presented. In Chapter 4, these models
were treated as mechanisms for enabling Tocational constraints to be
handled and in Chapter 5, some examples were given. In this chapter
another variant of the pseudo-dynamic model has been outlined suitable

not only for embodying locational constraints but also for enabling
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spatial interaction submodels to be calibrated. The algorithm outlined
here will be embedded in wider process of calibration in Chapter 7

which in turn will Tead in Chapters 8 and 9 to more efficient algorithms
combining model solution with locational constraints and spatial inter-

action calibration.
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CHAPTER 7.

AN ALGORITHM FOR ADAPTIVE CALIBRATION,

The conventional procedure in estimating the parameters of general urban
models of the Lowry type involves embedding the model into some wider
iterative process in which parameter values are optimised. For example,
many ad hoc schemes based on simple iteration exist (see Batty, 1976)
while more recently, similar sorts of models have been formulated as
constrained optimisation problems and solved accordingly (Wilson, Coelho,
Macgill and Williams, 1981). However in these cases either the model
solution is embedded into a calibration process or solution and calibration
are achieved simultaneously. The ideas developed in previous chapters
suggest that both constraint and calibration procedures can be embedded
into model solution mechanisms, if such mechanisms have a tractable and
sequential form. In this case, this form is essentially that of the
pseudo-dynamic process and in the last chapter, an algorithm which
involved exploiting this process was developed in the context of locational
constraints. In this chapter the algorithm will be extended by embedding

within it the mechanisms required to calibrate the model.

THE DYNAMIC CALIBRATION PROBLEM.

The calibration problem has already been defined and posed informally in
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Chapter 6 as one in which it is required to find a sequence of parameter
values p](r), uz(r) which ensure that equations (6.51) and (6.52) are

solved for every time period r. In short, this implies that al(r) = C,

and AS(r) = S, ¥r, and as such, the problem can be seen as one of optimal
control in which it is required to optimise some function of the difference
between the predicted and intended mean trip lengths through the simulation
period. In this sense, the parameters u](r) and uz(r) act as the instruments
of the process; p](r) and uz(r) are independent of their previous values,
that is , no autocorrelation is implied by this process. Classical methods
of control, however, are concerned with deriving recursive procedures

which successively update the parameters and thus establish a sequence which
is efficient in some sense. Such procedures tend to be appropriate to
well-defined and mathematically tractable linear state equations in which
the optimisation can be accomplished using some linear feedback control
rules which determine future values of the parameters of policy-control
variables. For instance, the use of the Riccati equation for simple linear
systems is a well-known means for optimising such a system in terms of a

quadratic welfare function (Chow, 1975).

The objective function adopted here is based on the squared deviations
between predicted and intended trip lengths. It is required to find u](r)

2 e

and u,(r) so that [aC(r)-C1° = 0 and [aS(r)-51° = 0, and the composite

sum of squares function to be minimised is defined as
+ [AS(r)-S1°, (7.1)

which is clearly equal to zero for a solution to equations (6.51) and (6.52)
to exist. In fact, it is possible to set up a Lagrangean based on the

function in equation (7.1) using the state equations as constraints
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and summing these objective functions and their constraints over r. The
usual conditions for a minimum hold, and in this case, the solution would

imply that equation (7.1) be solved exactly in each time period.

Such an exercise would merely show that the model would need to be solved
recursively from the initial time period to the end of the simulation, and
that equations (6.51) and (6.52) would need to be solved using a procedure
such as the Newton-Raphson method in each time period. This is the obvious
method implied in the outline of the model so far. Suffice it to say

that the model is sufficiently nonlinear to hinder any more elegant solution
procedure which improves on the recursive structure presented above.
Nevertheless, one point does emerge from this argument and that is that the
sequential nature of the general model makes possible a somewhat faster
method of solution which avoids the simultaneous structure of the fully

static model. This will be elaborated below.

Although it has been suggested that AZ(r) be minimised in each time period,
the central interest in this process of optimisation relates to the notion
that the sum of the objectives over the whole simulation must be minimised.

That 1is

TAZ(r) = 0, (7.2)
r .

and this implies that by the end of the simulation, the cumulative trip
length C(r) and §(r) are equal to their intended values, C and S. In
other words, as long as the whole model reproduces the intended values,
the process through which these values are reached within the model is

of no significance. This is a fairly reasonable supposition because the
intended trip lengths are specified for the whole process anyway due to

the way in which they are observed. A time series for these trip lengths
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is simply not relevant because the dynamic process is an approximation

used to generate a static situation.

If equation (7.2) were the objective, then each AZ(r) would not necessarily
be a minimum although the sum of these values may be.  The advantage

of relaxing the optimisation in this way would enable an approach to be
pursued in which suboptimisation of the objective in any particular time
period could be allowed in order to optimise the overall objective, and
this could be used to speed up the process. For example, the parameters
ul(r) and uz(r) would be chosen so that the model evgntua]]y moved towards
the global optima through its pseudo-dynamic process, and in each time
period, u](r) and uz(r) would be adjusted in the effort to get nearer

to the target.

There is another reason why the mean trip length statistics do not have
any real significance in each time period. It can easily be demonstrated
that for constant w; and u,, the values of aC(r) and aS(r) predicted by
the model vary. Thus in the case of the Reading model developed in
Chapter 5, although the model was calibrated statically in that parameters
uy and u, were found so that C(r) and S(r) predicted on the final (r'th)
iteration of the model, met their intended values, the trip lengths
predicted by the model changed in each time period. Indeed, it is quite

easy to show this ih both theoretical and practical ways.

For example, assume that the pseudo-dynamic model has no movers, that is,
a(r) = 0, Vr, that the trip distribution matrices T(r) = T and S(r) = S,
and that the parameters u](r) = U1 uz(r) = My and are fixed exogenously.
Such a model is equivalent to the Garin-Harris version of Lowry's (1964)

Pittsburgh model (Batty, 1976) but despite the constancy in input, the
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trip lengths change through its pseudo-dynamic process due to the
successive compounding of the matrices T and S.  In short, the change in
trip lengths can be seen as a consequence of the fact that the allocation
procedure in the model is a regular Markov process with a stationary
transition probability matrix T S and a unique steady state solution.

An analysis of this version of the model is presented in Appendix 2 where
it is clear that the recursive structure of the model is responsible for

variation in trip lengths.

A practical demonstration of this arbitrary change in mean trip lengths

is presented in Figures 7.1 (a) to (d) for the model of this and the previous
chapter with and without constraints. The model presented in equations
(6.55) to (6.79) has been run for a fixed set of parameters u](r) = Uy and
uz(r) = Uy and although it cannot be analysed as a simple Markovian
process as is the a=0 model in Appendix 2, the regular change in mean trip
length is apparent. Figures 7.1 (a) and (b) show the change in predicted
trip lengths aC(r), aS(r), C(r) and S(r) for this model, and Figures 7.1
(c) and (d) the contribution of each time specific trip length to the
total. The point of these theoretical and practical demonstrations of
changes in the mean trip lengths without changes in the parameter values,
is to show the arbitrariness of the assumption that there is a constant

trip length for each time period.

This immediately raises the central issue on which the notion of adaptive
calibration is based: because there is inevitable variation in the trip
length due to the structure of the mode],it is possible to accept and
utilise this variation in homing in towards the ultimate targets as the

simulation proceeds. Thus the trip length can be consciously varied in an

229.



MEAN TRIP (ENGTHS

MEAN WORK TRIP LN~

A. CHANGE IN MEAN WORK

8. CHANGE N MEAN SERICE

TRIP LEN&TH TRIP LENGTH
4100 :
_ / '
o f |
i S C(r)
10.) e a——il
| Aa(r)
4o
20
O | [ | | | T T 1 | | I | I | | |
6 4 2 3 4 5§ 6 F+ ¢ 01 2 3 ¢ 5 3 ¢
NO OF ITERATONS r NO OF (TEKATINS v
C. MEAN WORK TRIP _&Ner’HS D. PROPORTION OF ACTVITY AtLLOC—
CONTRIBUTION T© C{F) pTED
100 7 7 e
iy 4 \
i ‘ \/\auuumms”%( )
] Clr) 1 \f\ freea
- — . CUMULATIVE PRoPom‘-
N 1N OF ACIVITY (1)
wl r g PROPORTION. An(r)
i 1 PROPORTION OF E(?-)
20 o GENERATED B
7 AB()inCE)
0 I T | 1 I | [ 1 T T | T |
6 1 2 3 456 3¢ 01 2 34 56 z3¢
N6 OF MERATIONS r NO OF [ERATIONS -
Figure 7.1: Changes in Trip Lengths through the Simulation Period.

230.



effort to reach the global optima, and this represents support for the

idea that u](r) and uz(r) be varied in order that the optimisation take
place. For example, in Figure 7.1(a) after the first iteration (time
period) of the model in which al(1) has been predicted, the arrow points
the direction to the value of AC(2) which needs to be predicted thereafter
if the system is to meet its intended value C. Thus the algorithm to

be suggested is based on the idea that the final targets are achieved by
continually re-evaluating the time period targets to be met, and

adjusting the values of the parameters to meet them.

A SKETCH OF THE ADAPTIVE SOLUTION PROCEDURE.

If the objective function were to be minimised in each time period, it
would be necessary to solve the appropriate equations iteratively due to
their intrinsic nonlinearity. The idea here is that the iterative
structure of solving these equations is matched to the pseudo-dynamic
structure of the model. Thus the objective function is never met in any
one time period, but the overall objective is continually kept in mind,
and the movement towards this overall objective is gradually attained

by a sequence of partial solutions to the objective of each time period.
Convergence would be guaranteed if the solution spaces for each time period
objective were identical to one another but this is not the case. Because
of the way in which activity is generated and allocated in the model, each
trip distribution submodel is different from the same sub-model in a
previous time period; thus a partial or full solution to a previous
submodel in terms of its parameters, need not be useful in finding the

parameters for the next time period.

However, it is hypothesised here that the solution spaces for each time
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period are sufficiently similar to the previous time period for previous
values of the parameters to be useful starting points for a partial
solution to the set of parameters. The algorithm is thus designed on
the notion of adapting, evolving or updating previous values of the
parameters to meet the target trip length required for the next time
period, in such a way that the trajectory of parameters ensures that

the model meets its overall objectives: that is, that the intended

mean trip lengths are met.

Several complications to this scheme are immediately apparent. Each trip
Tength AC(r) and aS(r) makes less and Tess contribution to the cumulative
trip lengths C(r) and S(r) due to the fact that less activity is allocated
as the dynamic process works itself out. For example, in Figure 7.1 (d),
57% of activity is allocated in the first time period, 24% in the second
and so on, and it is clear from Figure 7.1 (c) that the cumulative trip
lengths get harder and harder to change. A1l things being equal, greater
and greater changes in the target trip lengths are required to make
further impacts on the cumulative trip length. If progress towards the
intended target is too slow, then there may come a point in the simulation
when the target trip lengths needed are impossible to meet for physical
reasons. If the trip target became ridiculously excessive, for example,

or fell towards zero, then this problem would emerge.

In short, there are bounds on what can be achieved in any time period
and whether or not the simulation continues will depend on whether or
not the trip targets are within these bounds. Moreover, the fact that
the sequential process of the model affects.the predicted trip lengths
might also affect movement towards the targets. For example, in the
model of this chaptenthe trip lengths fall naturally through the time

periods, and this exacerbates the fact that as time goes on, the intended
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trip lengths get harder to meet.

Two elements of the algorithm are suggested by this discussion. First,
there is the need to assess the trip targets required to ensure that the
system meets its intended objectives by the end of the simulation. Because
the model is based on an additive sequence of activity generation and
allocation, all quantities associated with this sequence are additive.

Thus as the cumulative trip length is known in any time period, and as

the proportion of activity yet to be generated and allocated is known,

it is a simple matter to calculate a target trip length needed to meet

the intended (exogenous) target.

The second element of the algorithm involves the assessment of upper and
lower bounds on the trip lengths feasible for the system. To calculate
these bounds, it is possible to use Evans' (1973) results on the limiting
forms of the gravity model, in which she showed that a maximum trip

length was obtained when the parameter of the model tended to -« and a
minimum when the parameter tended to +~. The non-negativity properties

of the model ensure that both these bounds are positive and Evans
demonstrated that they were equivalent to the maximisation and minimisation
of a linear objective function incorporating the generalised cost of travel
subject to the normal origin and destination constraints on the model.

In fact, the bounds can be obtained by solving the maximum and minimum
problems associated with the transportation (linear programming) version
of the gravity model. In the algorithm developed here, an approximation
to these bounds is made to minimise computer time. This is elaborated in

the sequel.

A third element of the algorithm is necessary if the trip targets are then
found to be out of bounds. In such a case, the model associated with the
time period in which the violation of the bounds occurred, must be rerun,
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and an attempt made to calculate a target within bounds. This requires

a means for readjusting the parameters for that time period and if after

a certain number of trials, the bounds are still exceeded, it is assumed that
there is no solution. The experimental work presented Tater is designed

to explore and counter the circumstances surrounding such a possibility.

Having found a target within bounds, the fourth and final element of the
algorithm involves finding a set of parameter values which will ensure

that the model reaches or at least approaches the target in the following
time period. This requires that the trip length equations associated

with the targets be solved for u](r)-and uz(r), or that the sum of squares
function based on the targets be minimised. In essence, the response
surface associated with the solution space is approximated by a linear or
quadratic surface and this enables the direction of the optimum to be
established. For example, the Newton-Raphson procedure works on this idea.
Clearly, for an exact solution, the surface must be continually approximated
until the optimum is reached, but here it is necessary to explore the
degree to which previous parameter values can be used as starting points

in the approximation, and the degree to which an exact or approximate

solution is necessary in the context of the overall simulation.

Finally, the solutions to the associated trip length least-squares
normal equations is not simultaneous but sequential due to the dependence
of activities in any one time period. These elements together with the
original model given in the flow chart in Figure 6.3 are woven together
in the a]gor%thm presented in Figure 7.2.  The general structure of

the algorithm is clear from the above description and Figure 7.2 but

it is now necessary to outline the elements in more detail before the

experimental results are described.
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TRIP LENGTH TARGETS.

Assume that the model has just been run up to time period r and it is
required to find the trip length targets for time period r+1 such that
the intended target is met in all subsequent time periods. Then AC(r),
C(r), a5(r) and 3(r) can be computed directly, C and S are known a priori,
and the proportion of activity generated so far is also known. Thus the
amount of activity yet to be generated can be calculated and the amount
to be allocated in the next time period can be approximated. The first
stage in calculating the new trip length targets consists of finding a
form for the proportion of activity generated, and re-expressing the

trip lengths using this proportion. This enables an additive expression
for the contribution of each trip length associated with each time period

to be developed so that the precise relationship between each time period

trip length and the cumulative statistic is determined.

As the employment and population state equations are related by simple
scaling factors in an absolute sense, it is only necessary to develop a
form for one set of trip lengths, say aC(r) and C(r), for the other forms
for a5(r) and 5(r) immediately follow by analogy. These analogies will
be adopted here. Then the proportion of empioyment activity an(r)
associated with time period r, and taken as a proportion of the total

employment E to be generated is given by

an(r) = {z0AS3(r-1) + 28T (r-1)3 [1-a4(r)IV/E, (7.3)
1

where E is calculated from the economic base equation

il

E = £a%5,(0) (1-12) (7.4)

i
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Clearly the cumulative proportion of employment activity generated

so far is

,
n(r) = I an(x), (7.5)

and this proportion holds for population due to the fact that the scalar

A connects total employment with population.

It is now possible to write the change in trips, ATij(r) and ASjk(r), in
terms of the proportion of activity generated an(r). Using equations

(6.77) and (7.3), the change in work trips ATij(r) can be written as

(r)t

ATij(r) = EAn(r)t1

‘ij(r)’ (7.6)

and for service demands ASjk(r), equations (6.79) and (7.3) yield

ASjk(r) = AEAn(r)sj(r)sjk(r). (7.7)

The cumulative work trip length C(r) is given by the standard equation

r

o Ty
Cr) == ’ (7.8)
z IZAT,.(7)

=143 "

and substituting for ATij(T) from equation (7.6) gives the required form
r
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Exactly the the same procedure can be used to give the appropriate

equation for S(r) which is stated as

§(r) = ; An(r)asS(r)/ ; An(T) (7.10)

where it is clear that the cumulative trip length can be seen as a

weighted average of the trip lengths associated with each time period.

From equations (7.9) and (7.10), it is immediately apparent that the trip
lengths associated with later time periods have a lesser effect on the
cumulative total than earlier trip lengths due to the fact that an(r)
converges as r increases. That is

Tim
>0

Tim
oo

An(r)-0, and n(r)=1,

and thus the mean work trip length in the Timit, defined as C is given as

[+2]

C = 1 an(t)al(x) . (7.11)

=]

From equation (7.11), it is obvious that C can be separated into a
component associated with the activity generated so far, and a component

based on activity yet to be generated. Then

E = ; An(T)AE(T) + ; an(t)aC(t)
=1 =r+1
= n(r)C(r) + [1-n(r)]E(r), (7.12)

where E(r) is the cumulative trip length associated with the simulation
after time period r from r+1 to ». A similar equation can be developed
for S in terms of 3(r) and s(r). Note that equation (7.12) is also a

weighted average at a higher level of temporal aggregation.

Equation (7.12) 1is the central equation in the derivation of trip length
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targets for it implies that the final trip length is a function of the
cumulative trip length so far and the cumulative trip length over the

period yet to be simulated. Thus if the intended trip length C is known,
and the simulation so far has yielded C(r), the trip length E(r) to be
attained during the rest of the simulation can be calculated by substituting

C for C in equation (7.12) and rearranging

(7.13)

However, the trip length E(r) is the cumulative value required for the
rest of the iterations whereas another possibility might be a trip length

AE(r+1) to be attained in the following iteration or time period.

To find a value of AE(r+1) which would give a cumulative trip length of

C at the end of the following time period, it is necessary to separate the

cumulative trip length in equation (7.9) into two components. Then

C = Crel) = n(r)C(r) + An(r+1)AC(r+1) (7.14)
n

where an(r+1) is the amount of activity to be allocated in time period
r+1.  An(r+1) depends upon future movers which have not yet been determined
and thus it is necessary to approximate this value. A best approximation

is given by

an(re1) = zOASY(r) + AS3 (r) V/E,
1

and clearly the goodness of the approximation depends upon the set of

ai(r+1) values (compare equation (7.3)).

It is now possible to compute the target AE(r+1) required for r+l1 from
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si(r+1) = Lnlr) + an(r+1)3C - n(r)E(r)

g (7.15)
An(r+1)

It is clear from equation (7.15) that if aC(r+1) is actually met in r+1

then AC(t) = C, wr+l. By analogy to equation (7.15), the equation for

the required service demand trip length is

2S(r+1) = Ln(r) Z_?EE:;1)J§ -n(r)S(r)
ni{r

(7.16)

If a constant value for AE(T) = C, wr+l is required, then it is clear
that this would be the same as the cumulative trip length E(r) in equation
(7.13) and that for time period r+1, E(r)<AE(r+1) if E(r)<6 and E(r)>AE(r+1)

if C(r)>C.

There are a number of issues which affect the choice of equation (7.15)
rather than (7.13) as the estimate for the next time period trip target.
Previous experience with numerical methods of searching for parameters of
spatial interaction models consistent with some trip length statistic
suggests that there is a tendency to find parameters which underestmiate

the change towards the intended trip length (Batty, 1976). Moreover,
because An(r+1) is an approximation which is based on the maximum proportion
of activity which can occur, equations (7.15) and (7.16) will be in error

in the best way: that is, because an(r+1)<an(r+1), there is a potential
opportunity for greater correction to the cumulative trip length than in

the case where equation (7.13) is used. In fact, equation (7.15) is
generally preferable in that it is based on the assumption that the trip
length E(r+1) will not be met whereas equation (7.13) assumes that AE(r) = E(r)

will be met.

Finally, the trip lengths in this particular application tend to decrease

in later time periods for constant parameter values (see Figure 7.1).

240.



Thus a method based on the assumption that the trip length targets be
recalculated in each time period is preferable. In the empirical work
to be described below, a procedure for further overshooting the target
has been incorporated on the assumption that the algorithm as applied
will systematically underestimate the difference between the cumulative
trip length calculated for r and the target required for r+l1. The

coefficient g8 is designed to achieve this overshoot. Then

8 = {[an(r+1)2%1/¢01-n(r) 1%,

where § is a parameter which varies from 0 to «. When § is large, g~1,
and the effect is to reduce the overshoot. The final target trip Tengths

can now be written as

A*C(r+1) 1

aC(r) + g~ '[aC(r+1) - aC(r)1,  and

(7.17)

a3(r) + 87 a3 (r+1) - A3(r)1.

A*S (r+1)

A suitable value for § and thus for g is identified later in the empirical
work, but it is now necessary to examine the way in which the bounds on
these trip targets are fixed before the procedures used to move towards

these trip targets are outlined.
THE COMPUTATION OF UPPER AND LOWER BOUNDS ON THE TARGETS.

The upper and Tower bounds on the trip lengths to be achieved in subsequent
time periods of the simulation are based on allocating the activity yet to
be generated by the main model so that the trip length be maximised for the
upper bound and minimised for the lower bounds. As Evans (1973) has so
cogently demonstrated, this can be achieved by kunning the model given

previously in equations (6.55) to (6.79) with u1(r), uz(r) set at +» or -

247,



or by formulating the model in its linear programming equivalent (Wilson and
Senior, 1974). In this application, a special algorithm was devised based
on the structure given in equation (6.55) to (6.79) but including linear
programming type logic for the allocation instead of spatial interaction
models. In each time period of the main model after the trip length targets
have been established, the model of this section is run twice to allocate

the remaining [1-n(r)] activity so that the predicted cumulative trip lengths

E(r) and E(r) are maximised and minimised.

However, formal linear programming models are not actually developed for such
predictions as this would be extremely time-consuming. For example, in the
application developed here for the Peterborough urban region, there are

65 origin and destination zones, thus there are 652

= 4223 variables to be
actively considered in the solution. The model is subject to 129 constraints
and this transportation problem might have to be solved several times for

both the work trip and service demand sectors for the time periods required

to allocate the remaining [1-n(r)] activity. Frankly, this is computationally
quite impossible: 1in a typical 7 time period process, assuming that the

bounds have to be evaluated at the end of the first and subsequent time

periods excluding the last, there would be a total of (6 + 5+ 4 + 3 + 2) x 2
submodels x 2 types of bound = 80 linear programs to solve with the above
dimensionality or less (if the dimensionality is reduced through the time
periods as the constraints are met). Thus if the algorithm is to depend

on such linear programming solutions, it looks like blowing up the very problem

it was designed originally to solve.

However, the linear programming models would give true upper and lower bounds
whereas what is required to make the method work is really only approximations

to these. In fact, if the bounds are a bit tighter which any approximate
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method would yield, this may be preferable as it would restrict the
parameters to more reasonable values. Several possible approximations to
the bounds could be developed. For example, Vogel's approximation

(Hadley, 1962) could be used to give a conservative solution but more
appropriate to this context is to use the same constraint procedure as

used to solve the original model in association with the linear programming

submodels.

In the original model, the gravity models used to allocate activity were
treated as singly-constrained, thus solved directly and constraints were
dealt with by assuming that constraint violations were turned into movers
to be reallocated in the next time period. In effect, the same procedure
can be used to approximate the Tinear programming solution: the linear
program is assumed to be only subject to a set of origin constraints, and
can thus be solved by inspection (note that ties are broken arbitrarily).
Then the results of the allocation are assessed for destination constraint
violations. If such violations occur, these are converted into movers to
be reallocated in the next time period, and these zones which have met
their constraints are removed from further consideration. Thus the
dimensionality of the problem is successively reduced. In essence, the
method requires that only enough origin activity be allocated in any one
time period to meet but not exceed the destination constraints, and thus
the problem can be solved by inspection. Moreover, the method of re-
allocating surplus activity back to its origin is based on a ranking

algorithm elaborated below and consistent with the idea of optimisation.

Rather than develop a completely new equation system based on egquations (6.55)
to (6.79), changes appropriate to the linear programming approximation to

this systemwill be indicated. Assuming the bounds for r-1 are to be
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established and given the usual input to time period r, the change in
work trips A%ij(r) is first calculated from
[AS?(F-]) + AST(F-])] for OPT{c;;}

ATij(r) = 2
0, otherwise.

(7.18)

The optimisation over the travel costs to the destination zones from the
origin zone i can be for a maximum or minimum in the quest for upper or
lTower bounds respectively. Then the amount of population, the constraint
violation tests and the surplus activity is calculated as previously using

equations (6.56) to (6.58).

However the surplus redistributing procedures in equations (6.59) to (6.61)
are no longer suitable as a proportionate reallocation of movers back to
their source is inconsistent with the notions of optimisation by linear
programming. In order that the reallocation be consistent, it is necessary
to establish the order of optimality for the surplus A?(r). Thus it is
necessary to rank the values of Cij from worst to best for any zone j
according to the type of optimisation being pursued (maximisation or
minimisation). The idea of the algorithm for rea11ocatihg the surplus
back is to reallocate back from the worst towards the best degree of
optimality until all the surplus is dealt with. A positive reallocation
back to the origin only occurs of course if the forward allocation, that

is ATij(r)’ is positive.

These ideas are embodied in the following algorithm. First define i?(r)
as the amount of activity allocated back to the origin i and 3?(r) as

the cumulative amount of the reallocation. 8?(r)= 0 before the algorithm
begins. Equation (6.62) is solved first and then in the order from J

worst to best, each origin i is considered
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z - -1,p
:p &Tij(r) if ﬁTij(r)i% Aj(r),
ai(r) =

=1.p v o -1.p
A Aj(r) if ATij(r)>x Aj(r). (7.19)

The population surplus, the cumulative origin surplus and the trips are

now adjusted as follows

A?(r) = A?(r) - ii?(r)’ (7.20)
2B(r) = aB(r) + aP(r),  and (7.21)
: 0 if aR(r)>0,
ATij(r) = R J 2
ATij(r) - Ai(r). (7.22)

Equations (7.19) to (7.22) are iterated until all the population surplus has
been reallocated back to its source, and then the ratio Gi(r) is calculated
as

o (r) = 0. (r)ab(r), (7.23)

where ei(r) is as defined in equation (6.60).

A similar procedure is used to compute employment. First the change in

service demands &Sjk(r) is calculated from

A APj(r) for OPT{cjk},
AS.k(r) - (7.24)
J 0, otherwise,

and then equations (6.64) to (6.66) are computed to determine the surplus
Ak(r). Equation (6.70) is now solved. A worst to best ranking is made
for positive flows from all origin zones j to a destination zone k, new
surplus variables A ?(r) and &P(r) are defined and X?(r) is initialised

J
to zero, Then in accord with the worst to best ranking, and in the order
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of the origin zones j, the surplus is reallocated back using

. . 2 -1
ip(r) ] ASJ.k(r) if Afjk(r)f-Y AE(Y‘),

J Yy al(r) if ASjk(r)>y—]AE(r), (7.25)
ag(r) = ap(r) - Y&g(r), (7.26)
Ag(r) = &?(r) ¥ Z?(r), and (7.27)

) 0 if AE(P)>O,

AS. (r) = . N
Ik 855, (r) - a%(r). (7.28)

At this point, the surplus E?(r) has to be converted back once again into
origin employment movers and this is done using equations (7.19) to (7.22)
which determine another set of movers &?(r). The mover ratio ai(r) is

finally computed from

a;(r) = o;(r) + o.(r) &B(r), (7.29)

and the rest of the sequence of original model equations is solved (from
equation (6.74)). The whole system is iterated in this fashion until the
convergence limit is met and at this point the cumulative trip lengths

become the appropriate bounds.

From the maximisation problem, the upper bounds Cu(r) and §u(r) are defined
and from the minimisation problem, the lower bounds C (r) and S (r) are set.
These bounds define the range of physically feasible mean trip lengths,

all of which could be attained if necessary during the rest of the simulation.

They are conservative bounds due to the nature of the approximation and due
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to the fact that they are equal to the cumulative trip lengths rather than
the trip lengths associated with the subsequent time period. Then the

general simulation can continue if

cér) < aC(r+1) < C¥r),  and if

S40r) < 88(r+1) < SU(r).

| A

| A

If either of these conditions is violated, it is necessary to rework the
allocation in the previous time period so that the mode] produces targets
which are physically feasible, that is, within bounds. This necessitates

a new set of parameters with values more appropriate to the previous targets
than the previous set of values, and as such, it involves resolving the
least-squares equations. If the targets are within bounds, the simulation
continues but new parameters need to be assessed by solving the set of
least-squares equations consistent with the new targets. It is to the
solution of these equations that this discussion now turns, this being the

final element in the algorithm before the experimental work is outlined.
MOVEMENT TOWARDS THE TARGETS: DIRECTIONS OF SEARCH.

Once the targets have been established, the least-squares criterion given

in equation (7.1) can be set up, noting that AE(r) and Ag(r) are substituted
for C and S respectively. To minimise the sum of squares function with
respect to the parameters, first define the generalised sum of squares
function Z(u,r) where u is a 1 x L row vector of parameters, u,, £=1,2,...,L.
The sum of squares function is composed of a set of K elements, fi, where

fk is the difference between the target and the value sought on iteration r.

Then
K o
Z(wr) = = f, (7.30)
k=1

and it is required to minimise Z(usr) with respect to M.
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For a minimum to exist, the first order conditions are

BZ(_}:I_,Y')

3 =0, £=1,2,..,L, and
Me

the second order are

The second order conditions can be arranged in an L x L Hessian matrix
which must be positive definite. From equation (7.30), the first order

conditions give the normal equations which are stated as follows:

k - %
K 3 ° 0, 4£=1,2,...,L, (7.31)

and although it is clear that the L equations in (7.31) are nonlinear, it
it possible to approximate the function by Tinearising the set using a
Taylor expansion. Expanding equation (7.31) to terms of the first order

gives

27 (uor) of o, of, 2°f,
—_— L s 3 + fk —3 3 ]} ) (7'32)

He Yoo Mm He P

where ey are the errors associated with the L parameters Mo m=1,2,...,L.

It is possible to disregard the third term on the right-hand-side of

2
)

equation (7.32) for it is clearly of the order O(em and for small g is

n
insignificant. Thus equation (7.32) can be set equal to zero and rearranged

using this further approximation.

First, define the Jacobian matrix J which is of order K x L with element
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Jkﬂ given as

Noting that f is a 1 x K row vector of function values, € is a 1 x L
row vector of error terms, equation (7.32) can be rewritten and set equal

to zero using the above approximation

8=Jd% +JJ¢e (7.33)
It is a simple matter to solve for .  Then
et = -(20)7!

€ J'f! (7.34)

and the vector ¢ is added to the vector u which forms the basis of an
iterative scheme used to find the minimum of equation (7.30). That is,
p(n) = u(n-1) + ¢(n-1), and on each iteration, the matrix J is updated
with respect to the new parameter u(n) and a new error vector e(n) is
computed until convergence. Note that the inverse (g}g)_] will only exist

if the number of criterion functions fkis greater than the number of

parameters w,, that is, K>L, for obvious reasons.

In the case where K=L, it is assumed that each parameter is associated
with a single function, and thus the set of equations is completely

consistent. Then equation (7.34) simplifies to

e, (7.35)

g =-J

and it is clear that this equation gives the error as a function of a
Tinear approximation to the response surface. In fact, equation (7.35)
has a similar structure to the Newton-Raphson equation, and if f were

a vector of first derivatives, J would be a matrix of second derivatives -
the Hessian matrix - and equation (7.35) would give the Newton-Raphson

iteration. In previous applications, equation (7.35) has been termed
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Newton-Raphson iteration but more strictly it is a version of Gauss'

algorithm.

There are several advantages in using this least-squares approach to
calibration. Clearly only a matrix of first order partial derivatives

of the criterion function is required and this involves considerably Tess
computation whether analytic or numerical approximation to the derivatives
is used. Second, and perhaps more important is the fact that the method
allows for the use of more functions than parameters: 1in short, it lets
the system of equations be overdetermined and as such, it enables the
introduction of weights on the significance or importance of each function
fk‘
Finally, it can be shown that the Hessian matrix of partial derivatives
associated with the function Z(u,r) is positive definite, that this
function is strictly convex and that the direction of search is 'downhill'
(Kowalik and Osborne, 1968); this ensures that the method of solution
will converge. There is, however, a further advantage which relates to
the fact that the dependence between activities in the model is sequential
rather than simultaneous in any one time period, and this considerably
simplifies the computation and inversion of J. To show this, it is now

necessary to apply the method of solution to the two parameter model.

With K=2, L=2, the function AZ(r) in equation (7.1) is composed of two

“and f5 = [aS(r) - a3(r)2%.

elements f% = [AC(r) - AE(r)]

parameters associated with these functions are respectively u1(r) and uz(r).

The two

The matrix J is as defined above for the two parameter, two function case,
and thus equation (7.35) is used as a basis for solution. In the argument

so far, it has been assumed that the functions f1 and f2 are interdependent
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and that minimisation of the least-squares criterion would involve

the simultaneous solution of two linearised normal equations. However,
in any time period r, the function f] is computed first and although
dependent on p](r), is independent of uz(r). The function f2 is

dependent on both parameters as it is computed second.

The following diagram makes the structure of the model involving the

computation of fk quite explicit:

AR} piATybmt (AP} PotASi Bt SAE ()}

i ist
api(r) exists Y }_(") exists
3 AC(r) d AS() exists
g (r) exist g ()

It is clear from this structure of dependence that although AS(r) depends

on Aé(r), AC(r) is independent of Ag(r) and thus the partial derivative

3f1

SEE(FT = 0.
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Therefore, the Jacobian matrix J is lower diagonal and its inversion

is simply a matter of solution by the method of forward substitution,
rather than by any more involved algorithm such as Cramer's rule. For

a 2 x 2 matrix, the actual decrease in computer time is small when
compared to the total involved in the complete algorithm, but this idea
points the way to the efficient calibration of several sector models
which are linked in the kind of uni-directional sequence suggested by the
above diagram. Indeed, this property is extensively exploited in the
continuing elaboration of this algorithm and this is reported later in

Chapters 8 and 9.

The final step in making the algorithm operational is to derive the 2 x 2
Jacobian matrix by taking partial derivatives of the trip length functions.
Because the equation system is sequential and not simultaneous, it 1is
possible to compute these derivatives analytically, rather than numerically
and this is another advantage to the algorithm over its static equivalents
(see Scheurwater, 1976). To evaluate these derivatives, it is worthwhile
redefining the work trip and service demand interaction models associated
with any time period r. From equation (7.6) the change in work trips is

given as

AT . (r) = EAn(r)t.(r)ai(r)qjk(r—l)exp{—u](r)cij}, i=k, (7.36)

iJ i
where ai(r) is the balancing factor which ensures that the model is origin-
constrained. Then

ai(r) = 1/§qjk(r-1)exp{—u](r)cij}, i=k. (7.37)

J
The service demand interaction is derived from equation (7.7) as

855 (r) = ALZAT, 5 (r)Iby(r)p

1 (r)exp{—pz(r)cjk}, i=k , (7.38)

J
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where bj(r) is given as

b.(r) = 1/.2 p..(r) exp{—uz(r)cjk}, i=k. (7.39)

In evaluating the derivatives of f] and fz with respect to u](r) and
pz(r), the targets AE(r) and Ag(r) are fixed and therefore independent

of u](r), uz(r). Thus noting the various independencies within the

equation structure, the Jacobian matrix becomes

34C(r) "
By ()
d = : (7.40)
345 (r) 383 (r)
au](r) auzirj

Each of these partials can now be evaluated using equations (7.36) to

(7.39) in the previously given trip Tength equations for Aé(r) and A§(r)

For the mean work trip length AE(P), it is clear that the derivative is

o Tazalr)
aaC(r) G
B Tt /T (0

which is made explicit by differentiating equation (7.36) with respect

to u](r) and substituting the result into equation (7.41). Then

aATij(r) ATij(r)
S (7 = 'ATij(r)cij + EAn(r)ti(r) ?ATij(r)cij’ and (7.42)
_ ZAT, . (r)c. <\ 2
EAE%ﬁ% = (- 23AT, . (r)c2, + pd WD (r) (7.43)
By (7 etigney * Heamg e :

For the mean service demand trip length partially differentiated with
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respect to the same parameter u](r), equation (7.43) can be used again

in equation (7.38). Then

3aS(r) _ 388 51 (r)
Bt - T O B IS TURE

and the appropriate differentials can be stated as

aASjk(r) BATij(P) _
au] - = A[f W ]bj(Y‘)p_lj(r)exp{'llz(r)ch}s i=k, (7'44)
and,
& AT, . (r)
aaS(r _ 1] N
31-1-1 = = {K?i [f 3_11]—(?)_ ]bJ(r)pU(Y‘) exp { UZ( r)c k}C k}/ZZASJk( r)s
i=k. (7.45)

Finally, using the same procedure as in equations (7.41)to (7.43) the
partial differential of the service demand trip length with respect to its

own parameter uz(r) is stated as

_ )
8AS§Y‘§ 2 k .

{- zzaS. (r)cs, + I }ZIAS, (r). (7.46)
Bu, (r ik Jk Jk ; APj(P) ik Jk

For higher order derivatives which might be required if the Newton-Raphson
method were to be used, the recurrence formula for the derivatives of

trip distribution models developed by Evans (1971) is appropriate.

At this point, all the elements of the algorithm for adaptive calibration
have been outlined and it is now essential to demonstrate the use of the
algorithm in relation to a practical application. There are several
aspects of the use of the algorithm concerning the number of various types
of iterations, the values of certainparameters and points for starting

and finishing yet to be defined, and in the following section, the
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experimental work involved in the fine-tuning of the method will be

described.

APPLICATIONS, EXPERIMENTS AND REFINEMENTS TO THE ALGORITHM.

The model and calibration algorithm have been tested using data for the
Peterborough urban region. This region has been divided into 65 zones

and the application is fairly typical in scale to many of the urban

models developed during the last decade. In this sense, the algorithm
would be appropriate to similar applications. A detailed description

of one version of the Peterborough model and its data base is given in

a related paper by the author (Batty, 1978) and is thus not described any
further here. The various elements which characterise the algorithm

and which must be set before the method is applied can be divided into

two types: structural elements dealing with the presence or absence of
some feature, and numerical elements dealing with the best values of
certain coefficients affecting the adaptive nature of the calibration.
Early on in the experimental work, it was decided to explore the structural
elements first and having reached conclusions as to the efficacy of these,

to then examine the effect of different coefficient values on the calibration.

Four different structural elements were identified: the presence or absence
of any formal target overshoot as defined in equations (7.17), the use

of equation (7.13) or (7.15) in assessing the target, the number of
iterations of Gauss' algorithm in moving towards the targets (that is, in
approaching the optimal value of the least-squares criterion), and the

use of previous or new parameter values in starting to find the optimum
value of the least-squares criterion. These four elements control the

detailed form of the adaptive algorithm whereas the numerical elements
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control the fine-tuning, that is, the conditions under which the
algorithm best operates for this particular application. Two elements
of the numerical structure of the algorithm have been defined: first,
the value of a parameter controlling the acceleration or deceleration
of the direction of search, and second, the value of the parameters

used in starting the operation of the complete algorithm.

Before the tests of these elements are presented, one feature of the
algorithm still remains to be described. If the trip length targets

are found to be out of bounds, the model must be rerun for the appropriate
time period using a different set of parameters in order that a set of
targets be found which are within bounds. In fact, when the mode] is

rerun, the previous trip length targets are reused and thus the parameters
must be approximated in a different and better way for the model to yield
different output. Here it is assumed that if an out-of-bounds situation
occurs, the parameters are assessed by decelerating the direction of

search by 50%; that is, by setting the new parameters as u](r)= u](r)+e](r)/2,
p(r) + ey(r)/2.  The total number of reiterations of the same time period
is 5 and if the parameters diverge outside the range set by -179 i.“1(r):
uz(r) < +179, their values are reset to T/AE(r) and 1/A§(r) respectively

(if this has not already occurred).

The structural elements were explored first. The overshoot parameter &
was set equal to 1 and 5, thus implying a situation of overshoot (8=1)
in terms of the equation preceding equation (7.17) and a situation of no
overshoot (8=5). The two different equations for assessing the trip
length targets were used and four different iterative solutions to
equation (7.35) were tried based on 1, 2, 3, and 4 iterations of the

equation. The fourth element involved starting each time-period solution
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with the new or old (previous) values of the parameters; 1in the case
of new values, u](r) = 1/AE(r) and uz(r) = 1/A§(r). There are 32
different combinations of these elements and thus the model was run
for each combination of these elements from two different sets of
starting values: u](1) = 1/6 and u2(1) = 1/8; and u1(1) = 0.1/C and
uy(1) = 0.1/S.

The results of these runs are presented in Table 7.1 where the relative
efficiency of each run is given by the number of iterations ‘taken to

come within an acceptable 1imit of C and S.  In fact, the differences
between these runs indicates the need to reiterate within the same time
period due to being out of bounds, and the model can be run in a minimum
of 6 time periods if the results are always within bounds. Table 7.1 f§s
also organised so that each row reflects the number of iterations of
Gauss' algorithm . Hence Tower rows in the tables show results from runs
which have much greater computer time. An estimate of the computer time
taken on each run is included in brackets wherever the model has produced

a solution.

From Table 7.1, it is eminently clear that the overshoot facility (s=1)

is redundant in that better results are obtained when there is no overshoot
(6=5).  Furthermore, equation (7.15) is to be preferred to equation (7.13)

in evaluating the trip length targets, and it appears that there is a

slight advantage to starting each time period solution using new rather

than the previous parameter values. The question of the number of iterations
of Gauss' algorithm is more uncertain. On balance, it appears that 2
iterations are necessary to guarantee a solution in this context although

from reasonable starting positions, only 1 iteration is required. However,
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Table 7.1: Number of Iterations and Computer Time Associated with the
Variation in Structural Elements of the Algorithm.

START FROM w, (1) = 1/C, wy(1) = 1/8

Targets based on Targets based on
equation (7.15) equation (7.13)
Number of  New Start 01d Start New Start 01d Start
Iterations
of Gauss'  8=1 §=b §=1 &=b s=1 68=5 &=1 6=b
Algorithm
1 * * * 6 * 7 * 7
(17) (18) (18)
2 hd 6 * 6 * 6 * 6
(20) (20) (20) (20)
3 * 6 * 6 * 6 * 6
(26) (26) (26) (26)
4 * 6 i 6 t 6 % 6
(32) (32) (32) (32)

START FROM y1(1) = 0.1/C, u,(1) = 0.1/8

Targets based on Targets based on
equation (7.15) equation (7.13)
Number of New Start 01d Start New Start 01d Start
Iterations
of Gauss' . E N r N o N _
A]gorithm 5"1 6_5 6—] 6—5 6"‘1 6"5 6—] 6"'5
'| * * * * * * * *
2 10 e 10 * 10 10 i 10
(35) (35) (35) (35) (35)
3 9 8 9 8 14 9 * 9
(40) (35) (40) (35) (57) (40) (40)
4 8 9 8 7 8 8 * 8
(43) (46) (43) (40) (43) (43) (43)

NOTES: Figures in brackets indicate computer time in seconds, others
indicate number of iterations. * indicates that no solution is
reached from these starting positions.
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it appears that 2 iterations are necessary in theory and practice to
establish the direction of the search and thus 2 iterations are preferred

despite the greater computer time.

Having established certain structural characteristics of the algorithm,
the values of the starting positions for the parameters and the speed at
which the algorithm moved towards its targets were explored so that the
Timits of effectiveness of the adaptive structure of the algorithm could
be assessed. The starting values for the parameters of the model were
selected in the range from 0.01/80 to 1.75/80 and 8 values for u](l) and
uz(]) were selected in this range. Note that it is .assumed in these
experiments that C=5=280. The acceleration paramefer g-accelerates
or decelerates the direction of search by changing the effect of the
error terms in the following way: u](r+1) = u](r)+ge](r) and uz(r+1) =
uz(r)+g52(r). Eight values of this coefficient were also selected from
the range 0.1 < g < 1.75 and thus 82 = 64 runs of the model were made in
the quest to find the best combination of starting values and acceleration

parameter.

The results of these runs are plotted on the grids shown in Figure 7.3(a)
to (d) where two major response surfaces are shown: the surface based on
the number of iterations required to reach a solution and that based on

the closeness of the solution to the intended target values. From these
graphs, it is clear that any starting value for the parameter between zero
and the inverse of the intended target value gives meaningful results. But
the values of 0.75/5 and O.75/§ give best results when combined with an
acceleration parameter which tends towards unity. Therefore, smaller
rather than larger values of these parameters seem to give the best results

and it is interesting to note that the best value of g appears to be 1
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which implied that the acceleration parameter is redundant.

Finally, it is worthwhile showing a typical run of the model and the
consequent solution procedure adopted by the algorithm so that readers

may gauge its sensitivity to the target assessment, bounding and parameter
solution procedures. To illustrate the algorithm, a typical starting
point for the parameter values was adopted, and the model took some 10
iterations to reach the intended trip length targets. On the second
iteration, the predicted targets went out-of-bounds three times before

an acceptable within bounds target was found, and on the fourth iteration,
the target went out-of-bounds once again. In fact, the simulation
required 6 time periods before convergence but the out-of-bounds situation
occurred 4 times making 10 iterations in total. Figure 7.4 illustrates
the progress of the solution through its iterations in terms of the
intended targets and the actual targets achieved. This figure also
illustrates the four situations in which the out-of-bounds condition
occurred and it is clear from this illustration that the solution procedure
could be regarded as a kind of branch and bound procedure. A single path
through the tree of potential solution paths is defined according to the
bounding procedure and the degree to which Gauss' algorithm meets the

required trip targets to each time period.

In Figure 7.4 it is difficult to represent the changing bounds on these
graphs, but in Figure 7.5 a three-dimensional view of the solution procedure
is presented in which the bounds are represented by the edges of the area
contained in the solution space associated with each time period or
reiteration of each time period. Here it is clear that on the third
iteration, there is some oscillation in the violation of the bounds: the

trip length targets first violate the upper, then the lower, then the upper
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bounds before an acceptable (within bounds) set of targets is achieved.
Figure 7.5 contains a useful picture of the algorithm's adaptive properties
in facing such a situation which, in this example, is dealt with gquite

successfully.

CONCLUSIONS.

No proposal for a new method of calibrating existing models with a
pseudo-dynamic structure, would be complete without some statement of

the efficiency of the method in comparison to existing alternatives. In
fact, the alternatives are based on calibrating such a model in a static
sense, by embedding the complete model with{n a wider iterative framework
designed to find a set of parameters which yield the intended trip length
targets. Such a method was developed in Chapter 5 and on a intuitive
level, it would appear that any method which utilises the model's pseudo-

dynamic structure would be preferable.

Yet there are complications to be considered: there is a considerable
amount of additional computation required for the new algorithm and a

count of FORTRAN assignment statements weighted to deal with different
statement execution time shows that a typical time period iteration of the
new algorithm takes 1.74 times as long as a typical time period simulation
of the model of the previous chapter. To make the comparison explicit, a
typical static calibration of the model of Chapter 5 dnvolved 4 iterations
of the Newton-Raphson method with an average of 6 iterations of the model's
sequence. Thus 24 time units required for calibration must be compared

to 6 x 1.74 = 10.44 time units for the fastest run reported in Table 7.1
(over twice as fast) and to 14 x 1.74 = 24.36 (just marginally slower)

for the slowest run. These estimates are quite crude as they have not been
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based on a strict experimental comparison but on a comparison of
computer programs developed at different times for different problems.
They do, however, go some way to showing that the algorithm reported

here is preferable to established methods.

A more fundamental question emerges from this discussion for it is necessary
to comment on the possibility of generalising this experience to other
applications. Of course, this is a problem faced in the use of many
methods whose ability to solve any problem cannot be definitively proved.
Yet experience with the algorithm suggests that there can be a high level
of confidence in applying it successfully elsewhere; for the problem to
which it has been applied has many trick& charécteristiés which are not
particularly favourable to the application of the algorithm (for a detailed
discussion, see Batty, 1978). It is easier to generalise the particular
ideas developed here rather than the complete algorithm for the notion of
breaking up what at first sight, may appear to be a simultaneous structure,
helps simplify the solution. Thus any model which has such a sequential
structure at the micro-level and a simultaneous one at the macro can be
simplified in this fashion. In particular, such a change in emphasis opens
up new opportunities for using ana]ytic rather than numerical derivatives

and simplified methods of equation-solving.

There are parts of the algorithm which are quite cumbersome. The need to
evaluate bounds is computationally time-consuming and potentially the
weakest step in the chain of techniques necessary to successful operation
of the method. Although the solution of the linear programs by inspection
can be extremely fast due to successive updating of the optimal ranking

of travel costs, and the use of the inverse ranking for the opposite bound

problem, the method still absorbs some 60% of the additional time required
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for one time period iteration of the model. There do, however, appear to

be other possibilities for dynamic calibration which do not involve the
calculation of bounds and these are being explored at present. For example,
the complete mover model presented in the previous chapter, analogous to

the model of Baxter and Williams (1975), does not involve any convergence

of the model's process until a steady-state solution in which the constraints
on Tocation and calibration are satisfied. Thus the calibration can be
achieved without the need for bounds which in the algorithm of this chapter
are necessary because of the absolute convergence properties of the

activity sequences. These possibilities will be explored in the next two

chapters.

Although this chapter has largely concentrated on algorithms for calibration,
the idea of the pseudo-dynamic model elaborated goes beyond notions of
optimisation, and there are many substantive properties of these types of
model yet to be elaborated. In future research, it will be necessary to
examine the extent to which real dynamic processes can be approximated in
the fashion shown here, for it is certain that the simple hypothesised
sequences in these models can be made much more realistic. Moreover, an
examination of the ways in which locational constraints are actually
reached in dynamic urban systems might help in defining more realistic
processes. Here it has always been assumed that a pseudo-dynamic model

is defined only in the absence of some critical information inhibiting

the specification of a fully dynamic model. Yet there are some instances
where static models might be preferred due to the nature of the problem.
For example, in cases where the focus is on marginal change, or where
change is slow in any case - these may be situations where a pseudo-dynamic
model will suffice, and such cases are also worthy of investigation in

future research.
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Finally, there appears to be great potential for examining the structure
of the pseudo-dynamic process itself in formal terms. The possibility of
systematically varying the Tife of such processes, the need to identify
appropriate chains linking activities in sequential fashion in the manner
implied in Chapter 2, the need to clarify, extend and refine the ideas
behind spatial movers and stayers - these are some of the concepts which
might be taken up in future research. There are many avenues to explore:
existing models have and can be reinterpreted using these ideas but
perhaps more important is the derivation of new forms of static model which
are operationally feasible and simple to calibrate. Such models would be
more coherently conceived and understood than existing static models, and
their elaboration and application to specific situations would engender

more relevant practice.
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CHAPTER 8.

COMPLETE MOVER MODELS.

The interrelated philosophical and technical prob]ems involved in

building models of social systems are seldom more illuminated than in the
study of dynamics. The general scientific method in which hypothesis and
theory are in some way tested by experiment, either directly or indirectly

on the system of interest, always seems to break down: relevant hypotheses
which contain propositions about social behaviour are difficult to test
empirically, and empirical analysis which does exist, is largely inductive
and ambiguous in its support or rejection of specific theories. These
difficulties are of course well-known. Data concerning change in social
systems is often hard to obtain but more important are the intrinsic observ-
ational difficulties which occur when attempting to collect such information.
A great deal of change in social systems will, by its very nature, go un-
recorded forever, and this makes hypotheses concerning changes in social
structures based on ideas about lags, leads, feedbacks and so on, exceedingly
difficult, if not impossible to test. Moreover, what information is
available is rarely sufficient to overcome the problems of ambivalence and
equifinality which plague the interpretation of social phenomena. These
problems make the prospect for dynamic modelling in the social sciences

quite dismal, at least in the traditional sense, and as argued in earlier

chapters, the preponderance of static theory and analysis is not surprising.
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In urban modelling, the majority of models proposed have been static in
conception but notwithstanding the difficulties already alluded to, there
has been an inevitable tendency to speculate on appropriate dynamic forms.
Such speculations have produced a diverse selection of approaches ranging
from the somewhat wild, nontestable systems dynamics models originally
proposed by Forrester (1969) to the much more careful conservative approaches
implied in econometric urban models such as EMPIRIC (Irwin and Brand, 1965).
This field 1ike so many others in the social sciences has been torn apart

by the dilemmas and paradoxes inherent in building dynamic models. On the
one hand, dynamic models are theoretically essential due to their greater
comprehensiveness and are thus intuitively more acceptable; on the other
hand, static models are easjer to build and test in practice. Commonsense
suggests dynamics but feasibility implies statics. Most social scientists
in the modern day appear to favour a realist position in which some form

of empirical testability is necessary in the development of theory through
modelTling, and thus static models although severely limited, have become

the order of the day.

The situation, however, is not as clear cut as these difficulties might
imply. A whole range of urban models exist from fully-static to fully-
dynamic and some progress is occurring in the design of models which are
pseudo- or partially dynamic (Cordey-Hayes, 1972). This middle ground
seems to be a promising areas for further work because it may be possible
to eventually design relevant models which contain enough dynamics to

be theoretically acceptable but are cast in a static framework which

makes their structure testable in some sense. This idea exists in the
work of Wilson (1981) where static spatial interaction models are embedded
into dynamic processes, indeed are considered as the equilibrium outcomes

of dynamics, and it is the central theme behind the ideas of this thesis.
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Here static models within a dynamic framework and dynamic models within

a static framework have been considered and in developing these ideas, a
theory of dynamics sufficiently rich to enable temporal aggregation of
various partially dynamic-static components was sketched. This was
suggested in Chapter 3 in the light of the assumption that a comprehensive
understanding of urban static structure involves a foray into dynamics.
Firm support for this notion exists elsewhere: Samuelson (1948) in his
seminal work Foundations of Economic Analysis also argues that "One

interested only in fruitful statics must study dynamics".

The study of these ideas is clearly a much wider affair than the specific
notions introduced in this or previous chapters. The discussion here

will be orientated towards conventional static urban models but the
essential argument of this chapter is once again to show how certain
processes involved in such static models have a potential dynamic inter-
pretation. This in itself is not new for there are many models for which
such interpretations exist, but this argument will reinforce that of the
last chapters in suggesting that these dynamic processes can be utilised

to design better static models. In particular, static urban models
require procedures for their calibration and for effecting their solution
according to a priori constraints. Previously such procedures have been
largely arbitrary, and have been computationally time-consuming and not
particulariy accurate. By exploiting the dynamic interpretation of static
models, it is possible to design much more acceptable and faster procedures
and this rather round-about logic leads to static models which are generally
more relevant. In this sense then, a foray into dynamics very definitely

leads to more 'fruitful statics' thusendorsing Samuelson's dictum.

This chapter will begin with a review of a conventional static urban
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model with a well-known dynamic interpretation based on multiplier

theory. Two ways of elaborating the dynamic structure are possible,

the first based on a particular solution method for the model, the second
based on aggregation from the pseudo-dynamic theory developed in Chapter

3. In both cases, the version of the static model resulting, enables
concepts of spatial redistribution through the movement of existing
activity (movers) to be quite cogently treated, and this suggests ways

in which the dynamic process of the model can be controlled. The resuiting
model can also be interpreted as a cumulative multiplier model and in

terms of previous chapters is a Baxter-Williams type model (see Baxter and
Williams (1975) and Appendix 1). The notion of controlling the model's
dynamic or rather pseudo-dynamic process (because time is only explicit,
not essential) leads to methods for calibrating the model's spatial inter-
action functions and for effecting solutions which meet locational constraints.
First, the constraints are handled using a biproportional procedure, and
then calibration is treated using unconstrained optimisation: 1in essence,
this involves matching the iterative structure of these methods to the
dynamic (iterative) structure of the model in a manner similar to that

in Chapter 6. An integrated algorithm based in biproportional and
optimisation procedures is then developed. In Chapter 9, all these methods
are tested on a small 10 zone problem taken from the LTS: London Traffic
Survey (LCC, 1964) and then the final algorithm is tested on Central and

West Berkshire data.

CONVENTIONAL STATIC URBAN MODELS.

The highly aggregate model developed here and in previous chapters is charact-
erised by two main variables: population and employment measured in terms

of activities or the associated land uses containing these activities.
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Employment is disaggregated into two main components - an independent
component which is the prime input or driving force to the model, and

a dependent component which Tike population is an output. In practice,
quite detailed disaggregation of these two main variables could occur

if required without altering the essential structural relations on

which such a model is based. These relations are two-fold. First,
there is a set of functional relationships which enable the level of

the output to be generated from the given level of inputs; these are
formalised by means of various multiplier relations. Second, there

are spatial relationships in the form of spatial linkages or interaction
which involve the way in which the output is spatially distr%buted

from the input. The functional and spatial relationships are independent
of one another and this has been a source of criticism in the past as
has been the distinction between input and output employment which has
been based on the traditional basic-non-basic split or some variation

thereof.

Without Toss of generality, it is now assumed that there are I spatial
units or zones in the model and that population and employment are able
to locate in each zone. Located variables are denoted by 1 x I row
vectors and interaction is described in I x I matrices: vectors and
matrices are shown in bold type (underlined here). For example e is

a 1 x I vector of total employment and p a similar vector of population.
Employment e is disaggregated into its independent component b and
dependent component s.  In thischapter,it might be convenient to regard
b as basic employment and s as service employment, although this is not
essential to the theory of the model. This form of model is therefore

of the economic base theoretic type and is thus related to the line of

models originating from the model proposed by Lowry (1964).
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In equilibrium, the two output variables population p and service
employment s are simultaneously related through the model's functional
and spatial relations. Then

p=eh, (8.1)
where A is an I x I matrix which translates employment into population
through the functional relation of population dependence on employment
and through the spatial relation organised about the journey to work.
Service employment depends on population in the following way

s=pB , (8.2)
where the I x I matrix B fulfills the same role as A in that it trans-
lates population into services through a service demand function and
its appropriate spatial dependence. The model is subject to the usual
employment accounting equations

e=s+b, (8.3)

where b is the input employment defined here as basic employment.

The Tlinear simultaneous form of the model is easy to demonstrate
directly. Substituting equation (8.1) into (8.2) and the result into
(8.3) leads to

e=eAB+b, (8.4)

e(L-AB)=b, or (8.5)
e=b(I-AB) . (8.6)

1 is the I x I identity matrix. Equation (8.5) can be solved in a variety

of ways: the weli-known series expansion of the inverse (I - A B)']

has been used quite widely as a solution device in urban modelling (Batty,

1976) whereas direct matrix inversion appears to be more usual in macro-
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economics (Dorfman, Samuelson and Solow,1958). Of interest here

however is the class of methods referred to as matrix iterative techniques
(Varga ,1962) which involve successive approximation to the stable value
e. Such methods are essentially iterative as their name suggests but
they involve a potential dynamic interpretation which can be positively
exploited in the solution of these sorts of model. Before deriving the
appropriate method, it is worth stating how equation (8.5) can be

solved using such techniques and this is presented below. Also note

that in the following exposition, all the analysis is related to the

equation for total employment e for in equilibrium, p and s directly

follow from equations (8.1) and (8.2) once e is known.

It is possible to write equation (8.5) as

eZ=b, (8.7)
where Z is some I x I matrix relating total employment to the input b.
Then consider an appropriately dimensioned matrix split equation for Z
defined as

Z=U-W
Using this split in equation (8.7) and rearranging to equilibrium form
as in equation (8.4) Teads to

1

Tepu!, (8.8)

e=ely
The solution of equation (8.8) proceeds iteratively in that a new value
for e, say e (r+1), is computed from a previous value for e, say e(r),
where the solution procedure is begun with some known or guessed value
e(o). Then

1 1

e(r+l) =e(r)W U +Db U (8.9)

and it is clear that e(r + 1) will only converge to e if W and U are

274.



appropriately specified.

To examine the convergence, define the error on iteration r+l1 as e(r+l)
which is computed as e(r+l)-e. A suitable recurrence equation for the
error is

e(rtl) = (U U, (8.10)

and in terms of the initial error (o) = e(o)-e, equation (8.10) becomes
(r+1) = (o) (W U™, (8.11)

The error will only converge to the null vector if the matrix (W -1)r+1

converges to the null matrix 0. Formaﬂy,r]_lm°° e(r)~01if and only if
r]lmm(ﬂ.!f])r'*g) and the necessary and sufficient condition for this to

occur is that the spectral radius (dominant eigenvalue) of.ﬂ_g—] be Tess

than unity.

If this condition exists, then recursion on equation (8.9) leads to

e(r+1) = e(o)(u UTH™ 4 by : wu Y, (8.12)
V=0

and in the limit as r - «, it is clear that

o = Tim e(r) =b U

— r > o —

p )y (8.13)

The equilibrium solution using this type of analysis is also a series
expansion which is analogous to the series expansion of the multiplier
term (l_—.ﬁ_g)-] in equation (8.6). The essence of this technique is,
however, a matrix split which yields the appropriate condition on the
matrix product y_gf]. Moreover, yf] should have an easily invertible

form such as a diagonal form and a good guess for e(o) will hasten the
convergence. The so-called Jacobi split is based on such considerations:
in this case, the split is already obvious and readers will have guessed
that as Z=1-AB,U-= lTand W = AB. Substitution into equation (8.13)

yields
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(AB)", (8.14)
which is the well-known matrix expansion of the multiplier (I - A 5)_1
due to Leontief (see Koehler, Whinston and Wright, 1975). Indeed if
e(o) is chosen as b or as o, the computational scheme implied by equation
(8.12) is identical to the one used in many conventional applications of
this urban model (Batty, 1976). This exposition of an alternative
solution technique has added Tittle as yet to the substantive inter-
pretation of the model but the real interest in the idea relates to the
way in which e is eventually approximated, and this involves the starting
position e(o) and the solution path. It 1§ these features which give
the method its potential as a dynamic device to control the solution of

models of this type.
DYNAMIC FORMS FOR STATIC MODELS.

Using the Jacobi split introduced above, it is clear that the matrix

iterative equation (8.9) can be written as

e(r+l) = e(r)A

|

+b (8.15)
which is a very different equation from the appropriate series expansion
equation for (I -_5_5)']. In essence, equation (8.15) is regenerating
and redistributing all the employment generated and distributed so far
apart from basic employment which represents a fixed input distribution.
But from what has been said already, it is clear that the matrix iterative
approach will yield an equilibrium which is identical to that produced

by other methods. To make the point, consider starting the solution of

equation (8.15) with either e(o) = 0 or e(o) = b. Then although the

idea of regeneration and redistribution exists in a formal sense, the
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characteristic series produced are no different from the more conventional
iterative solution of equations (8.1) and (8.2) starting with e =b .

For e(o) = 0, equation (8.15) gives

r+1 -l
e(rel) =b 3 (AR,

and for e(o) = b

+
e(r+l) =b =

The first series is lagged one period behind the second but whatever the
starting position, both series will be identical to the conventional
series expansion of'the multiplier term when the Timit is approached.
Imagine, however, a process in which it is required to steer the solution
towards some target which is specified in terms of the equilibrium state.
Then this might be achieved by making the relationship matrices A and B
time-dependent in some sense. For example, assume that A and B are
defined at each iteration r as A(r) and B(r) and are so structured as to
correct the state of the system given by e(r) in terms of the known
target. In this way, feedback from the present state of the system to
its future state is achieved and this is the essential basis of a system

with adaptive behaviour.

In this model, equation (8.15) now becomes time-dependent in a

distributional sense

e(r+l) = e(r)A(r)B(r) + b , (8.16)
and in general, the equilibrium relations in equations (8.1) and (8.2)
no longer hold. Recursion on equation (8.16) leads to a different form

from equation (8.12)
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e(r+1) = e(o) ; A(t)B(t) +b =z ; A(t)B(t) +b , (8.17)

and assuming that e(o) = b which henceforth will be the assumption of

this paper unless otherwise stated, equation (8.17) becomes
r r

e(r+1) = b{I + m A(t)B(t)} . (8.18)
v=0 t=v

This model is not just a series expansion of the multipiier with the
constant matrices being replaced by time-dependent products, for the
matrix products in equation (8.17) and (8.18) are taken backwards not
forwards in time, this being characteristic of the regenerative and re-
distributive nature of the process. - A model in which there is no such
redistribution but time-dependent change in the original relationship
matrices has been suggested by Berechman (1976) and this would be

specified as
r
e(r+l) =b{lI + = m A(t)B(t)r (8.19)

where the product is taken forwards in time, consistent with the way the
series has been generated. In the case of models such as Berechman's,

an equilibrium is Tikely to exist because the increments of activity
generated by the series get smaller and smaller, eventually tending to
zero. In this sense then the process would terminate. In the model of
equations 8.16) to (8.18) however, the series is being progressively re-
generated and redistributed and from Young's (1971) discussion of Tinear
iterative methods, it is clear that the model is based on a non-stationary
iterative method in which convergence of any kind can never be guaranteed

in advance.

This same model has already been derived from rather different consider-

ations which have much more substantive meaning. In Chapter 4, aclass
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of models was presented which were characterised by an initial generation
and distribution of activity according to a series expansion of the

form given in equation (8.14), and a series of regeneration and re-
distributions of this same activity in structurally similar series

which start afresh in each successive time period. The amount of
activity which is regenerated and redistributed is controlled by a mover
ratio. Various types of model are derived by setting the ratio at
different values, and the models are adapted for static situations by
fixing the total number of stages characterising the initial series.
These pseudo-dynamic models contain a particular model type which is
derived when aZl the activity is regeﬁerated and redistributed in

successive time periods or iterations.

Under certain assumptions as to the form of the series expansion and
assuming that the initial series is generated and distributed using the
same time-dependent matrices which effect the regeneration and redistrib-
ution, this pseudo-dynamic model is equivalent to the model presented

in equations (8.16) and (8.18). Furthermore, the model is similar to
the one developed by Baxter and Williams (1975) in which they argue that
the cumulative total of activity generated so far during a series
expansion of the kind alluded to here, should be regenerated and re-
distributed, as the series is built up. In essence, the model of equation
(8.19) can thus be interpreted as a cumulative, rather than incremental,
economic base mechanism, although this only holds for models in which
e(o) = b. In the sequel, this model will be referred to as the complete
mover model; the more extensive and alternate derivation has already
been given in Chapter 4 and Appendix 2 but readers are referred to Baxter

and Williams (1975) and Berechman (1976) for a similar logic.
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It is quite clear that the complete mover model is an example of a
static model with a dynamic interpretation, yet the meaning of the
dynamic process has not been explored in detail. As stated, the
iterative or dynamic process is very largely a solution device in

terms of matrix iterative analysis, and it might be considered that

the temporal index of the process is more suited to computer time than
historical time. Nevertheless, a more substantive interpretation does
exist in terms of regeneration and redistribution and although such
processes when operated in a static framework, might become solution
devices to enable the system to meet some goal, target or constraint,
the potential for a realistic approximation to historical processes
does exist. Moreover, the very idea of dynamics in a static framework
or vice versa is rather difficult to reconcile with pure statics or
pure dynamics but such approximations appear necessary if the difficulties
described in the introduction are to be minimised, and progress is to
be made. At this point, it is necessary to return to an examination of
the conditions under which the nonstationary complete mover model will
become stationary for if this model is to be of more than academic
interest, it must be capable of incorporating the equilibrium relation-

ship which formed the starting point of this argument.

CONVERGENCE PROPERTIES OF THE COMPLETE MOVER MODEL.

A1l that can be said at present about the model given in equations
(8.16) to (8.18) is that the process may continue indefinitely for it
depends upon the sequence of matrices A(t)B(t), t = 0,1,2,..., r, which

in turn depend upon considerations not yet stated. Thus an examination

of convergence rests on an analysis of the matrices A(t) and B(t) which
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contain the functional and spatial relationships on which the model is
based. Earlier it was stated that these two relationships were

separable, that is, that the functional relationship had no spatial
implication and that the spatial relationship had no functional implication.
In short, this assumption means that the functional relationships are
independent of space and thus act as scalars controlling the total

activity generated by the model. A particularly simple but wide]y

used assumption is based on the idea that the functional relationship

is temporally as well as spatially independent in the complete mover

model, and it is the spatial relationship which pertains to time. Then

the matrices A(t) and B(t) can now be partitioned as in earlier chapters

At)

n
|-

(t) A, and
- (8.20)
B(t)

rS(t) .

T(t) is a row stochastic spatial probability matrix containing elements
tij(t) which measure the probability of an employee working in i and
residing in j, A is a scalar diagonal matrix of inverse activity rates »,
T is a scalar diagonal matrix of population-service demand ratios v,

and S(t) is a row stochastic spatial probability matrix containing elements
sjk(t) which measure the probability that a person residing in j will
demand services in location k. Typically the interaction probabilities
are modelled using submodels based on gravity or other model forms, and

a widely used form of model has been the singly-constrained (singly-
stochastic) gravity model popularised by Wilson (1970).  Note however,
that the framework is independent of the particular submodel used. The
ratios A and y are usually calculated directly from exogenous data whereas
the probabilities are calibrated numerically or estimated statistically

as part of the model.
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Using these assumptions in the cumulative economic base complete
mover model given in equation (8.18) leads to a model form in which the
effect of generation through the matrices A and T and distribution

through T(t) and S(t) is much clearer. Then

)r-v+1
o t

e(r+l) = b {I +

E T(t)S(t)r . (8.21)
Y, =

i o =5

(AT

Because the two relationships relating to the functional generation of
activities from the input and their consequent spatial distribution are
SO separate, it is possible to have two types of convergence in such

a model.  The first type of convergence which relates to generation is
always assured by the way the process is defined. To demonstrate this
point, it is necessary to aggregate equation (8.11) spatially and simply
examine the generation characteristics of the process. Using the unit
vector 1' where the prime indicates transposition of the equivalent

1 x I row vector, equation (8.21) can be aggregated to

r
E(r+1) = e(r+1)1' =b(I+ 5 (o)™ |
T v=0
= b 1' [1-0) 2014037,
where E(r+l) is the total employment generated by iteration r+2. For

nontrivial urban systems, Ay < 1 for this is the ratio of service to
total employment, and thus as r + «, E(r+1) - E which is a fixed level

of total employment. Total population is also fixed from the equilibrium
relationship and service employment is the difference between E and the
total input which is fixed. Thus the model must always converge in

terms of the absolute amount of activity generated.

It is of interest to examine the form of the model under specific
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assumptions concerning the number of terms in the series required to
approximate total employment E.  Assume as earlier that this number
is T + 1 units, thus implyingthat the length of time fromthe first
term generated to the last is T units. Furthermore, make the
assumption that each term in the series can only be regenerated T + 1
times, in other words, that there are T + 1 similar series used to
regenerate and redistribute the activity, each of these series
starting one stage after the last, and initially one stage after the
first increment of activity in the original series has been generated.
Clearly the Tast increment of activity will be regenerated and re-
distributed when r = 2T + 1, assuming that the process is begun with
r=0. Uptor=T, the appropriate equation is equation (8.19) or
equation (8.21) if the assumptions on the matrices made above apply.

From r = T + 1, however, the appropriate equation is

T+1 r-T-1 w+T+]
e(r+1) = b{I + =& mA(t)B(t) + = n  A(z)B(z)}, (8.22)
B T vEr#l-Ttav T w=0 2z=T+1 = 7

where the first sum and product term relates to activity which is still
regenerating and redistributing itself and the second term involves the
activity which is stable due to the termination of the appropriate

mover sequence.

The first term is based on a backwards process and the second on a
forward process and at the end of the modelling period (at 2T + 1),

the final configuration of'employment is calculated from

T+l 2T+1 T-1 2T
e(2T+1) = b{I+ = T A(t)B(t) + ¢ n  A(z)B(z)}
- T y=T41 t=T+1 T T w=0 z=T+1
T 2T+1
=b{I + I n A(t)B(t) I . (8.23)
T w=o t=T+1 ~—
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Equation (8.23) has the same form as equation (8.19) which is due to
Berechman (1976); and thus a convergence has been reached which is

the same as that involved in a model of conventional generation-
distribution, with the final state not subject to the equilibrium
relationships in equations (8.1) and (8.2). This form of model will

not be taken any further here but it demonstrates the possibility that
models of this type can easily be designed which converge to nonequilibrium

states.

The second type of convergence which characterises the model is spatial
or distributional. If at some time t > T, the spatial probability
matrices T(t) and S(t) become independent of time and thus stable, that
is, T(t)S(t) =T S, t > R, the model will converge in the following
sense. Note that the process in which T(t) and S(t) actually do become
stable need not be specified at this point but bear in mind the fact
that the design of such a process and its optimal specification is one

of the central tasks of this chapter. Then at time R from equation (8.16)

e(R) = e(R-T)A(R-1)B(R-1) + b
R-1 R-1
=b{I+ = 1 A(t)B(t)}, (8.24)
v=0 t=v

where the process is started with e(o) = b. Then at and onwards from

time R, the spatial probability matrices become stable and thus
A(R)B(R) =AB=TATS.

An equation for n time units after R can be developed which demonstrates

the convergence. Then

e(R+n) = e(R)(AB)"+b 1 (AB)", (8.25)
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and it is quite clear that the nonstationary linear iterative process

implied by equation (8.24) has been converted into the stationary

Tinear iterative process of equation (8.25). In the limit as n - =,
Tim > m
e= .. e(Rtn) =b = (A B)
m=0
~b(I-AB), (8.26)

and it is obvious that the model is consistent with the equilibrium
relationships posed in equations (8.1) and (8.2). The idea of con-
verting a nonstationary into stationary form is appealing: it has

the potential for defining a process of feedback from the state of the
system to its locational structure, which if stationary in itself, will
enable the overall model to obtain an equilibrium. Defining such

methods of feedback is also one of the central tasks of this chapter.

It is attractive to speculate that in theory, certain limits on
generation and distribution are reached at different times. It is
likely, for example, that an acceptable level of activity will be
generated prior to an acceptable distribution of that activity being
produced. However, it is in the nature of the notion of a limit that
the process only approaches but never reaches such a 1imit and thus in
practice, it is not possible to say that certain 1imits on generation
are likely to be reached before distribution or vice versa. Moreover
if the matrices A(r) and B(r) depend on e(r), then it is not possible
to define stable A and B other than for e, and thus the convergence of
the generative and distributive processes cannot be separated. However,
because these relationships are independent in a structural sense,

convergence of one will not influence the other although the final
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equilibrium needs to be specified in terms of their joint convergence.
In models of this sort it is possible to attain exact convergence of
the generation process using scalars which relate to the terms in the
series expansion of the multiplier, and this would be desirable if the
convergence were slow. However it is much more likely to be that the
convergence is dominated by the methods used for reaching a stable
distribution of activity and in this case, an exact solution cannot

be obtained.

THE CONTROL OF PSEUDO-DYNAMIC PROCESSES.

The conventional static model of the type stated inequations (8.1) and
(8.2) usually has to be manipulated so that its solution meets certain
criteria relating to its spatial structure. This process of manipulation
exists in two forms: first, there is the process of calibrating the
model to achieve a certain performance in terms of its locational output
and/or predicted interaction patterns. Calibration can be viewed in
different ways - as a statistical process of achieving a best fit or as
a numerical process of adjusting the model to reflect the characteristic
orders of magnitudes of certain variables observed in the system. In
this interpretation, the latter view is preferred and calibration is
treated as a process of achieving correct dimensionality of the system.
However, the essential point is that calibration usually involves a

relatively small number of-parameters in terms of the total output.

Second, there is the process or set of processes involved in making

the model meet certain constraints on location which are in the nature
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of feasibility constraints or policy constraints on the capacity of

zones to receive activity. Possible methods for enabling the model

vary from quite arbitrary schemes to much more elegant approaches which
are consistent with the submodels. Usually in these cases, a much larger
number of factors or parameters or arbitrary devices relative to the
number of calibration parameters, have to be introduced to solve the
model. For both calibration and constraints, these parameters or
operations relate to the matrices A(t) and B(t), and in the example

here, because A and T are specified exogenously, these parameters

pertain to T(t) and S(t).

The general control problem can now be stated: given constraints on
interaction and.on location, the calibration and constraints procedures
must determine the elements of the matrices T(t) and S(t) so that

these constraints are met and an equilibrium solution attained. The
essence of most methods for achieving this is to vary the elements in
some trial and error fashion making corrections on the basis of the
predicted state of the system. In the past, the usual practice has
been to nest the complete equilibrium model, as given in equation (8.6)
say, inside the constraint and calibration procedures, thus ensuring
that the equilibrium is always met. A typical scheme for calibrating
and constraining the model is worth describing for comparative purposes.
The model as specified in equation (8.16) can always be solved, for

(I - AB) is, by definition nonsingular. It is possible to determine
factors which relate to the matrices T(t) and S(t), and which reflect
the operation of certain locational constraints: a well-known procedure
for achieving this is biproportional factoring of the probability

matrices T(t) and S(t) in which the factors are determined according to
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the level of constraint violation. These biproportional or 'Furness
Methods' are themselves iterative and thus the model must be nested
within them (Bacharach, 1970; Evans, 1970). Finally the calibration
parameters must be determined: methods of unconstrained optimisation
have been used for this type of calibration quite successfully although
these themselves are iterative, and thus the constraints procedure
within which the model is embedded, must itself be embedded into the

calibration scheme.

Computationally, such a nesting of iterative procedures is bound to
cause problems for all but the smallest of applications and it is not
surprising that a great deal of research has been devoted to speeding

up the various iterative procedures. Typically, the matrix in equation
(8.6) is approximated using three terms in the series expansion and

an approximation for the rest (Batty, 1976). The biproportional
constraints procedure is extremely slow, its slowness also being a
function of the size of the problem, and in an urban modelling context,
polynomial approximation to the factors has been suggested by the

author and his colleagues (Batty, Bourke, Cormode and Anderson-Nicholls,
1974).  In trip distribution model1ing, Robillard and Stewart (1974)
have attempted to use Newton's method in approximating the final form
of these factors, but the problems they encountered led them to suggest
that this method only be used to complement the Furness procedure.
Finally, ways of speeding up the calibration based on accelerated Newton,
and quasi-Newton methods have been explored (Batty, 1976). Some of

these methods were developed in the last chapter.

It is worth presenting an example of the number of operations required
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to calibrate this model using these methods. Assume that the basic
operation is the calculation of one vector from another using a
vector-matrix multiplication as in equations (8.1) or (8.2). Then
there are 2 such operations for each term in the series expansion
before the final approximation, making 6 in total. In the Berkshire
model built by the author and his colleagues (Batty, Bourke, Cormode
and Anderson-Nicholls, 1974) for testing some of these routines, 3
major iterations of the Furness procedure were used, supplemented

by 3 applications of a doubly-constrained Furness procedure on each
matrix after each iteration. These doubly—coﬁstrained models were
calibrated in 5 iterations using the polynomial smoothing technique
mentioned above. 2 iterations of the Newton-Raphson method were
required for calibration in which the whole procedure was run 3 times
to calculate numerically the partial derivatives of 2 parameters, and
1 final Newton-Raphson run was required after the procedure had been
accelerated using unidirectional search. In total {[6 model matrix
operations x 3 Furness iterations] + [3 doubly-constrained operations
x 5 Furness-polynomial smoothed iterations]} x 2 Newton Raphson runs

x 3 derivative calculation runs + 1 final Newton Raphson run = 141
matrix operations were required to calibrate the model. With a large
model of 100 zones or more, a large amount of computer time is required
and although this is substantially smaller than in earlier applications,
it is still too high for standard use of a model such as this in a
policy context. Moreover, the level of accuracy of the convergence

is fairly coarse using this algorithm, and thus a better solution

procedure is clearly required.

The way round the problems which arise from the conventional scheme
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is already implicit in this argument. It was demonstrated in the
previous chapter and it consists of utilising the dynamic structure

of the model to achieve constraints on location and the calibration

of parameter values. In essence, the idea is to match the dynamic
(iterative) structure of the model with the iterative structures of

the calibration and biproportional factoring procedures. In short,
because an equilibrium implies that the matrices T(t) and S(t) be
stable, and because the satisfaction of the constraints and inter-
action statistics implies that stable matrices exist, once stable
matrices have been found, the model is in equilibrium and thus solved.
Therefore, the new procedure can be seen as one in which the system

is progressively steered towards its constraint levels and optimal
parameters by altering the matrices T(t) and S(t) at each iteration
of the model. Furthermore, the fact that the system is being built
up at the same time if started with e(o) = b, Teads to minimal constraint

violations during the process.

In the last chapter, this type of logic was operated on the original
series expansion without any regeneration or redistribution. Thus
although the matrices were altered at each iteration of the model, the
amount of activity generated at each iteration got smaller. In that
model, at each iteration feasible upper and lower bounds on what could

be achieved in the rest of the incremental process had to be established,
and if the model went 'out-of-bounds', some backtracking was required.

On average, in terms of the number of matrix operations required or
their unit equivalent, some 125 operations were needed which compares

favourably with 141 in the conventional algorithm. Yet it will be
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shown here that by utilising the dynamic structure of the static

model and by beginning the solution using a nonstationary method which
ultimately becomes stationary, considerable progress over these levels

can be made. Indeed, examples will be shown which demonstrate that

the procedures in this chapter can be over 10 times as fast as conventional

ones, and this could bring these types of model into more standard use.

There is another way in which models of this type can be solved more
quickly using matrix iterative analysis. In such problems, anything

which speeds up the solution is likely to be relevant, and if the
equilibrium solution could be guessed accurately and the matrices fixed
immediately, only one iteration would be required to establish equilibrium.
A useful starting position would be the observed employment vector

so that e(o) = é_, and on the not-so-unreasonable assumption that

fm e

predicted e is likely to be close to é} such a starting position could
be judicious. The closeness of e and é has been seen in conventional
applications (Batty, 1976) and this represents a case of using all the
information available to obtain the solution. Moreover, this idea
could be useful in establishing a measure of closeness or fit between
e and.é in terms the A(t) and B(t) matrices rather than external

statistics.

The use of this idea might pose problems in forecasting but at least
it raises the notion that the present state can be explicitly used to
reach the future state and as such, it opens the door to some interesting
thoughts about complete mover fully-dynamic models and their calibration.

A1l this is speculation, however, for there is a problem in the use of
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e(o) = é for constrained applications. It may be that certain
Tocations become constrained which would not previously be so if

e(0) = b were used. In the solution of e, once a constraint is
violated, it has to be met and as this could also happen starting
with_é, the test probiem in the next chapter based on the London
Traffic Survey data has been operated using basic employment as the
starting vector. However, in the next chapter, some tests on the
larger Berkshire model are reported which use é as the starting point.
These tests although not definitive, do suggest that the problems

of constraint referred to are marginal, and that these are out-weighted

by increases in speed.

In the sequel, the submodels which determine the matrices T(t) and

S(t) will be outlined firstand this will complete the statement of

the model as it is to be tested. 1In the following chapter the test
results are then described: first the locational constraints procedure
based on biproportional factoring is stated and tested quite separately
from the calibration procedure. Some discussion of the calibration
procedure is then presented relating to methods of unconstrained
optimisation and their application to different sequences of the
iterative process. The results of these runs are reported and this
leads to the assembly of the integrated algorithm and its test. ATl
the results are taken from the model as applied to the London Traffic
Survey data which as discovered later was an excellent test problem.

10 zones are defined based on traffic sectors but the interaction between
the sectors is considerable and a complete data base is available for

the model in terms of basic and service employment, population,

locational attractors, journey-to-work and service trip interaction
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patterns and distance measures (LCC, 1964). The integrated algorithm
is finally tested on a Targer model of Central and West Berkshire
based on some 63 zones, and this confirms the efficiency of the

method.
SPECIFIC FORMS FOR THE SPATIAL INTERACTION SUBMODELS.

From the discussion so far, it is clear that the problem of constraining
or controlling the model's solution relates not to the linear sequence
which is determined by the aggregaté prbperties ofhthe recursive process
but by the elements of the matrices which translate population into
employment and vice versa. In particular, if the above assumption that
A(t)B(t) = T(t)A L S(t) is adopted, it is the matrices T(t) and S(t) which
determine the formof the solution, and these must be examined accordingly.
For the matrix T(t), a typical element tij(t) is modelled using a singly-
constrained gravity model which predicts the probability of an employee

working in i and living in j at time or iteration t.  Then

B.(t)D, exp{u](t)di.}
t;;(t) = Jo ) J S Itgs(t) =1, (8.27)
? Bj(t)Dj exp{—u](t)dij} i

where Dj is the locational attraction of residential zone j , dij is
some generalised measure of deterrence to travel (distance in this
case) between i and j, and u1(t) is a parameter which controls the
effect of the deterrence and thus the total amount of travel made in
the system. Bj(t) is a weight or factor which is applied to the
locational attraction so that it is adjusted towards a level which
meets a related constraint. Bj(t) and u](t) are the factors and

parameter respectively, associated with the residential submodel and
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which have to be determined by the constraints procedure and

calibration during the iterative process.

An analogous model is used to predict the elements sjk(t) of S(t)
and this too can be interpreted as a singly-constrained gravity
model. Sjk(t) is the conditional probability of the demand for
services in location k, given that the demand originates at the

residential Tocation j, and this is modelled using

A (t)F, exp{-u,(t)d. }
kK A psg(t)=1 , (8.28)

N ’ J
E Ak(t)Fk exp{ uz(t)djk} k

where Fk is the locational attraction of service centre k, djk is a
measure of generalised deterrence as used in the residential location
model and uz(t) is an associated parameter controlling the total
amount of service demand generated. Ak(t) is a weight or factor
which scales the locational attraction towards a level which implies
that some constraint on location is satisfied, and thus Ak(t) and
“2(t) represent the factors and parameter to be calculated when

the constraint and calibration procedures are applied to the model.

Using equations (8.27) and (8.28) it is possible to write the matrix

iterative equation (8.16) in more explicit terms as

ek(r+1) = xy{§ ei(r)ﬁ tij(r)sjk<r)} + bk . (8.29)

Clearly the sequence of values ek(r), ek(r+1),... depends on the matrix
elements tij(r) and sjk(r) which in turn are only time-dependent in
terms of the constraint factors and the parameters. For the model to

reach an equi]fbrium,ti.(t) and sjk(t) must converge to ti

§ and sjk

J
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which are then independent of t. In equilibrium, equation (8.29)

becomes

e, = xy{§ e, ? tij sjk} + bk . (8.30)
which is subject to the following constraints being met
m
A Ie, tij < pj 5 (8.31)
J
m

e - bk < s 3 (8.32)
Ioe;l tij dij/g e; = c , and (8.33)
i J i

re, rt,.zrs, d.,/le =5 . (8.34)
i F iy jk ik i

In the above equations (8.31) to (8.34), p? is the maximum level of
population allowed in zone j, SE is the maximum level of service
employment allowed in zone k, C is the observed mean amount of travel
or mean work trip length in the system, and S is the mean amount of
service demand: note that both these means are defined with respect

to the frequency of interaction over distance.

Some explanation of the precise meaning given to these constraints

is necessary before proceeding to outline methods for meeting them.
Equations (8.31) and (8.32) are the population and service location
constraints respectively and the factors Bj(t) and Ak(t) are

associated with their satisfaction. The mean trip lengths in equations
(8.33) and (8.34) relate to the amounts of travel generated by the

two submodels, and this is controlled by the parameters u](t) and uz(t)

respectively. Clearly in terms of the submodels presented in equations
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(8.27) and (8.28), for equilibrium to occur, these factors and
parameters must also converge to stable values: that is, Ak(t) > Ak’
Bj(t) -> Bj , u](t) > up and “2(t) > U, as the equilibrium is
approached.  The problem as set out in equations (8.30) to (8.34)

is to be solved using the framework of matrix iterative analysis
already introduced, but it is possible that there are other ways of
solving the system. For example, if equation (8.30) were treated

as a constraint equation, and an appropriate objective function

specified, then the problem might be amenable to standard optimisation

methods.

Indeed, the rather promising work along these lines done by Williams
and Coelho (1977) was reported in Chapter 2. However there is
Tittle computational experience with such algorithms as yet and what
does exist appears to suggest that nonlinear programming algorithms
when applied to such problems can be extremely slow. Cesario (1973)
demonstrates that the solution of a doubly-constrained gravity model
by such algorithms can be in the order of 500 times slower than

the more conventional interpolation methods for calculating the
parameters embedded in a biproportional scheme. Some of Cesario's
results were so bad that he did not consider it worthwhile to report
them in his paper and although the problem with his algorithms may
rest on the choice of a suitable objective function, his work does
note bode well for the use of such techniques in practice, unless
specifically adapted to the problem structure. And it is to these
specific adaptations based on the problem structure that the methods

introduced here pertain.
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It is proposed to solve the system of equations given in (8.30) to
(8.34) using the iterative scheme implied by equation (8.29), and to
match this iterative procedure to the standard biproportional (Furness)
procedure used to determine factors which are appropriate to the
locational constraints;and to an unconstrained optimisation procedure
based on Newton methods used to determine the parameters appropriate

to the observed mean trip lengths. The obvious advantage of this
scheme is that the Newton methods which involve matrix inversion are
used for problems of small dimensionality whereas the biproportional
methods which involve simple factoring are restricted to large problems.
In this sense, the problem is partitioned into two related parts which
are handled by two different techniques, and subproblem size is traded
off against sophistication of the solution method. The use of these
methods alongside the matrix iterative scheme enables corrections to

be made to the total activity generated and distributed so far in

terms of the constraint factors and the parameters so that the constraints

in equations (8.31) to (8.34) are ultimately met.

No proof that these procedures will converge will be offered here.
Proofs of convergence of the completely constrained biproportional
problem exist (see Bacharach, 1970; Evans, 1970; Macgill, 1976)

but a partially constrained problem of this kind is more uncertain.
However, it is in the nature of the factoring procedure that the
averaging inherent in the method will lead to convergence for a subset
of equality constraints, and the procedure defined below will be
specified accordingly. It is Tikely that a proof of such convergence
could be offered for this problem but this is beyond the scope and

emphasis taken in this paper. In the case of the calibration using

297.



Newton's method or some such method, a proof of convergence depends
upon convergence of the biproportional process, and upon convexity of
the objective function. Although the experiments reported below
reveal that the appropriate function is convex wherever it has been
evaluated, no such proof can be offered although it is likely that

convergence will always be obtained for typical problems.

In the next chapter, the biproportional solution of equations (8.31)
and (8.32) will be first attempted assuming that u1(t) and uz(t) are
given. Then the optimisation procedure in which u1(t) and ”2(t)

are chosen will be described assuming that the constraints on

locations are non-applicable. Finally, both procedures will be tested
together. In all the test runs reported, a Timit of 30 iterations

was fixed on the solution of equation (8.29) to conserve computer time.
This as expected is a sufficient number to enable a comprehensive
analysis to be developed, but to demonstrate more detailed convergence,
the model has been run for 100 iterations. The final algorithm is
ultimately tested on a more realistic problem which was also Timited to

30 jterations.
CONSTRAINTS PROCEDURES BASED ON BIPROPORTIONAL FACTORING.

We will present the conventional biproportional procedure in this
chapter before testing it in the next. First define two sets of
zones, P and Z° which contain the set of constrained residential
and service centre zones respectively. At the start of the model's
operations when r = Q, P =75 - Q, the empty set, and the factors
T At the end of each iteration, a test
is made to see whether a residential and/or service centre zone
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should be constrained and if this is the case, new factors are computed.
Then for any residential zone j,

if oAz ei(r)t

co(r) = p? , zone j - I° . (8.35)
j

1J

The operation described in equation (8.35) is performed for all zones
J and on this basis, if a zone belongs to the constrained set Zp, a

new factor Bj(r+1) is computed from

ol
B.(r+1) = B.(r) J , ez . (8.36)
J J AZ ei(r)tij(r)

1

The same kind of operation is performed in relation to service centre

zones: for any zone k ,
if ek(r+1) - bkz SE , zone k » ZS , (8.37)

and for all the zones belonging to Z° after equation (8.37) has been

tested, new factors Ak(r+1) are computed from

i
(r+1) = Ak(r) , keZ

A 5.

' (8.38)

Note that zones which have not entered the constrained set are associated
with factors which have remained unchanged from the ‘first jteration,

and are thus still equal to unity.

A number of points about this process need to be made. The term
biproportional was first used generally by Bacharach (1970) in connection
with the RAS method of adjusting an input-output table. To demonstrate
that this method of factoring is equivalent to the row-column adjustment
of a matrix such as an input-output table, it is necessary (as in this

first set of test runs) to assume that the parameters are constant and
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independent of time. Then for the residential Tocation mode]l
u1(t) = Hps Vt, and it is now necessary to define the matrix to be
biproportionally adjusted as the matrix of trips Tij(t)' From
equation (8.27), it is clear that on iteration r, the work trips

T..(r) are computed from

1]
T_ij(Y‘) N e_i(Y‘)t_iJ-(Y‘)
= ai(r)ei(r)Bj(r)Dj exp{—u]dij}, (8.39)
where the factor ai(r) is defined as
ai(r) = 1/§Bj(r)DJ exp{-u1dij} . (8.40)

J

Substituting for Bj(r+1) from equation (8.36) into the equation for

Tij(r+]) analogous to (8.39), it is easy to show that

e.(r+l) p?
T.s(rel) = i - T s (8.41)
P
J
§ T‘sz T. () i Tigtr)

where the two terms in the large brackets represent the appropriate
proportional factors applied to the rows and columns of the trip
matrix elements Tij(r) to determine Tij(r+1)' Note that the process
implied by equation (8.41) assumes that Tij(r) is first factored with
respect to the columns and the resulting matrix is then factored with
respect to the rows: the operations have been collapsed into a
single equation although usually these are separated in more formal
statementsof the method (see for example, Bacharach, 1970, or Evans,

1970).
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Clearly what the procedure does is to scale up or down the appropriate
Tocational attractors at the origin and destination towards the intended
constraint values which are known. For example, in terms of the
destination scaling operations implied by equations (8.36) and (8.38),
the factors can be seen as weights which reduce or increase the
attraction of the destinations to the location of activity. And such
reductions or increases are required to move towards the intended
constraint levels. The process is similar to the one suggested in
economic equilibrium models of the Walrasian variety in which prices

are reduced or increased according to whether excess demands are
negative or positive (see for example, Scarf, 1973).  The other point
worth noting is that once a constraint has been violated, the above
procedure ensures that constraint will eventually be met. This is
achieved by testing to determine whether a zone should enter the
constrained set if a violation occurs, and once in the set, the zone

can never leave. The factoring is then determined on the basis of zones
in the constrained set. It is an elementary point that constraint
Tevels must be achieved once a violation occurs, otherwise convergence

would never be possible.

The central question, of course, is whether or not the process will
converge. As mentioned above, proofs are only available for the
totally-constrained problem in which all rows and columns of the
matrix are factored. A number of related proofs are now available
(Macgill, 1975) and it does seem intuitively obvious that these could
be extended to a partial set of row or column constraints. The

process of averaging implicit in equation (8.41), for example, 1is
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such that eventually the intended constraint levels are likely

to be met, although convergence in such partially-constrained
problems is likely to be much sTower than in the totally-constrained.
Difficulties might be encountered if the structure of values in the
original matrix reflected some Toop or cycle but in problems of this
type, this is not possible. However, an extension of the various
proofs already available to partially constrained problems would

be useful as these methods are used quite extensively in urban

mode1Tling.

The speed of convergence is more of a problem because both theory

and practice suggest that this is extremely slow. In methods of
this sort which are essentially trial and error, slow convergence

is to be expected but Robillard and Steward (1974) show that the
slowness is also a function of the size of the problem. Clearly

this is due to the fact that it takes more time in larger matrices for
the row and column factoring to be felt throughout the system. But
the speed of convergence which Rob111ard and Stewart demonstrate is
horrific:  they show that for a totally constrained problem, a
conservative estimate for the percentage error in the total trip
estimates to converge to within 5 digits precision from iteration

to 1teratio