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Overview 
• Asynchronous Serial Communications 

• RS-232 
• USB 

 
• Synchronous Serial Communications 

• Generic  
• SPI 
• I2C 
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Generic Synchronous Serial Communications 
Inter-Connection Architecture 

• Two or more devices may be inter-connected using five wires: 
• Request to Send (RTS) 
• Clear to Send (CTS) 
• Serial Data Out (SDO) 
• Serial Data In (SDI) 
• Serial Clock (SCK) 
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Generic Synchronous Serial Communications 
Directionality 

• Full Duplex 
• Data may be transmitted simultaneously in both directions 
• Not a requirement, but the option of simultaneous bi-directional transmission is supported 

 
• Half Duplex 

• Allows data to be transmitted in both directions, but not simultaneously, i.e., simultaneous 
bi-directional transmission is not supported 
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Generic Synchronous Serial Communications 
Hardware Handshaking Protocol 

• RTS and CTS are hardware handshaking control lines 
• Example: Device 1 requests to send to Device 2: 

• D1 requests to send by asserting D1 RTS 
• D1 RTS is connected to D2 CTS 
• D2 senses D2 CTS asserted, and if it wants to grant the request, D2 will assert D2 RTS 
• D2 RTS is connected to D1 CTS 
• D1 senses D1 CTS asserted, and at this point knows that D2 has granted its request 
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Serial Bit Transmission/Reception 
Transmission/Reception Synchronized by Clock 

• Data is transmitted from one device to the other serially, i.e., one bit at a time 
 

• Transmission of the data is synchronized with the clock 
 

• The transmitter sends a bit at the first edge of the clock period, and the receiver 
receives the bit at the second edge of the clock period. 
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Generic Synchronous Serial Communications 
Detailed Inter-Connection Architecture 
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Generic Synchronous Serial Communications 
Transmit and Receive Operation 

• Transmit Operation 
• μC1 asserts Request to Send (RTS), and then waits for Clear To Send (CTS) 
• μC1 writes a byte of data to the Transmit Data Register (TDR) 
• TDR is copied to the Transmit Shit Register (TSR) 
• Data is shifted out onto the SDO pin, one bit at a time 

• Each bit is sent on the first edge of the clock (SCK) 
 

• Receive Operation 
• μC2 detects Request to Send (RTS), and then sends Clear To Send (CTS) 
• Data is shifted into the Receive Shift Register (RSR), one bit at a time 

• Each bit is received on the second edge of the clock (SCK) 
• When a complete byte has been received, the RSR is copied into the Received 

Data Register (RDR) 
• μC2 reads the data from the RDR 
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Generic Synchronous Serial Communications 
 Transmit and Receive Timing 
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Generic Synchronous Serial Communications 
 Bit-Banging Implementation 

• Port pins are used to implement hardware handshaking RTS and CTS 
• RTS port pin is configured as an output 

• Choose RA0 
• CTS port pin is configured as an input 

• Choose RA1 
 

• Port pins are used to implement the serial data input and output lines 
• SDO port pin is configured as an output 

• Choose RA2 
• SDI port pin is configured as an input 

• Choose RA3 
 

• Port pin may be used to implement the serial clock (SCK) 
• SCK port pin is configured as an output 

• Choose RA5 
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Generic Synchronous Serial Communications 
 Bit-Banging Schematic 
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Generic Synchronous Serial Communications 
 Bit-Banging Transmitter Flowchart: Example of sending 0..255 continually 
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Hardware Handshaking Problem 

• Port pins will be floating when no power is 
applied or when the device has not yet 
configured the pin as output 
 

• A port pin that is floating may be read and 
interpreted as either logic 1 or logic 0. 
 

• Therefore, the transmitter may flow past 
point A even before the receiver's power 
has switched on 
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Solution to the Hardware Handshaking Problem 

• A solution is to use a pull-down (PD) 
resistor 
• When the power is off, the pin would be 

connected to system ground through the 
PD resistor 

• It would be “electrically” connected to 
ground even when power is off 

 
• In addition, a check must be added prior to 

entering the data transmission phase 
because the true condition of the receiver 
is CTS = 0, which is the default case when 
no power is applied 
• The addition is to prepend a Read! 

Handshake 
• The receiver’s power must be on to 

make the transmitter’s CTS=1 
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SDO = ((TSR&0b10000000) != 0); 

 

• TSR&0b10000000 performs a bitwise AND of TSR 
and 0b10000000 
 

• The 8-bit result of TSR&0b10000000 is stored 
in temp1 
 

• If temp1 is 0b00000000, which means TSR<7>=0, 
then (temp1 != 0) is false and so SDO = 0; 
 

• If temp1 is 0b10000000, which means TSR<7>=1, 
then (temp1 != 0) is true and so SDO = 1; 
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MPLAB Project 
 Bit-Banging Serial Transmitter 

Main.c 
#include <htc.h> 

#include "ProcessorConfiguration.h" 

#include "functionPrototypes.h" 

#include "definitions.h" 

 

void delay(unsigned char loops) { 

 unsigned char i; 

 for(i=0; i<loops;i++){} 

} 

 

void main(void) { 

 unsigned char dataToSend=0, TDR, TSR, numB; 

  

 portInit(); 

 

 RTS = 1;   //Transmitter says I'm alive 

 while(CTS == 0){} //Wait for Receiver Alive 

 

Main.c (Continued) 
 

  

 while(1){ 

  RTS = 0;          //Make a request to send 

  while(CTS == 1){} //Wait for clearance 

  TDR = dataToSend; 

  TSR = TDR; 

  for(numB = 0;numB < 8;numB++){ 

   SDO = ((TSR&0b10000000) != 0); 

   SCK = 1; 

   delay(0); 

   TSR = TSR << 1; 

   SCK = 0; 

   delay(0); 

  } 

  while(CTS == 0){} //Wait for Ack 

  RTS = 1;          //Acknowledge 

  dataToSend++; 

 }  

} 
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MPLAB Project 
Bit-Banging Serial Transmitter 

Defintions.h 
#define RTS  RA0 

#define CTS  RA1 

#define SDO  RA2 

#define SDI  RA3 

#define SCK  RA5 

 

FunctionPrototypes.h 
void main(void); 

void portInit(void); 

void delay(unsigned char); 

 

ProcessorConfiguration.h 
__CONFIG (FOSC_EXTRC & WDTE_OFF & LVP_OFF & 

DEBUG_ON); 

// Set configuration bits (See pic16f877a.h) 

 

 

PortInitialization.c 
#include <htc.h> 

#include "definitions.h" 

 

void portInit(void) { 

 

  PCFG3 = 0; // Configure PORTA digital I/O 

  PCFG2 = 1;    

  PCFG1 = 1;   

  TRISA0 = 0; //SDO=A0 

  TRISA1 = 1; //SDI=A1 

  TRISA2 = 0; //RTS=A2 

  TRISA3 = 1; //CTS=A3 

  TRISA5 = 0; //SCK=A5 

  SCK = 0;    // Initial value of SCK 

} 
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Generic Synchronous Serial Communications 
 Bit-Banging Receiver Flowchart: Verifying Data 0..255 
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MPLAB Project 
 Bit-Banging Serial Receiver 

Main.c 
#include <htc.h> 

#include "ProcessorConfiguration.h" 

#include "functionPrototypes.h" 

#include "definitions.h” 

 

void main(void) { 

 unsigned char expectedValue=0, errorCnt=0, numB; 

 unsigned char RSR = 0, RDR = 0; 

 portInit(); 

 

Main.c (Continued) 
 

 RTS = 1;     //Receiver says I'm alive 

 while(CTS == 0){}//Wait for Transmitter Alive 

 while(1){ 

  while(CTS == 1){} //Wait for RequestToSend 

  RTS = 0;          //Give clearance 

  for(numB = 0;numB < 8;numB++){ 

   while(SCK == 0){} //Wait for SCK=1 

   while(SCK == 1){} //Wait for SCK=0 

   RSR = RSR << 1; 

   RSR |= (bit)SDI; 

  } 

  RDR = RSR; 

  if(RDR!=expectedValue) 

   errorCount++; 

  expectedValue++;  

  RTS = 1;          //Acknowledge 

  while(CTS == 0){} //Wait for Ack 

 }  

} 
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MPLAB Project 
Bit-Banging Serial Receiver 

Defintions.h 
#define RTS  RA0 

#define CTS  RA1 

#define SDO  RA2 

#define SDI  RA3 

#define SCK  RA5 

 

FunctionPrototypes.h 
void main(void); 

void portInit(void); 

 

ProcessorConfiguration.h 
__CONFIG (FOSC_EXTRC & WDTE_OFF & LVP_OFF & 

DEBUG_ON); 

// Set configuration bits (See pic16f877a.h) 

 

 

PortInitialization.c 
#include <htc.h> 

void portInit(void) { 

 

  PCFG3 = 0; // Configure PORTA digital I/O 

  PCFG2 = 1;    

  PCFG1 = 1;   

  TRISA0 = 0; //RTS=A0 

  TRISA1 = 1; //CTS=A1 

  TRISA2 = 0; //SDO=A2 

  TRISA3 = 1; //SDI=A3 

  TRISA5 = 1; //SCK=A5, input for receiver 

} 
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Generic Synchronous Serial Communications 
 Bit-Banging Results 

560 μs 

• Transfer rate: 1/(560 μs/8 bits) = 14.3 kbps  
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Generic Synchronous Serial Communications 
Inter-Connection Architecture, Reduced wires 

• Two or more devices may be inter-connected using three wires: 
• Serial Data Out (SDO) 
• Serial Data In (SDI) 
• Serial Clock (SCK) 

 
• Unless both devices are ready at the same time, this method is impossible to 

implement without loosing data 
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Xon Xoff Protocol 

• Instead of hardware handshaking, a software protocol may be designed and 
implemented to control the transfer of data 
• Xon - Xoff Protocol 

• Transmitter continually transmits the code for ENQ (0x05), meaning that is 
requesting to send 

• Transmitter waits for an acknowledgment from the receiver ACK (0x06) 
• When the transmitter receives and ACK from the receiver, the transmitter 

thane waits for Xon (0x11) from the receiver, which means the receiver is 
ready to receive data. 

• If at any time the receiver want to pause the transmission, receiver send Xoff 
(0x13) 

• Problem – Xon and Xoff codes cannot appear in the data transmission, otherwise 
they will be interpreted to pause transmission (Xoff), for example 

• Solution, encode the data in larger number of bits so that Xon and Xoff have 
code that will never appear in the data. 

• For example, encode all data as 0 DDDD DDDD, and encode control codes 
as 1 CCCC CCCC 
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