
1

ECE 3730 Principles of Embedded
Systems:

Serial Communications

 Overview,

Generic Serial Communications

2

Overview
• Asynchronous Serial Communications

• RS-232
• USB

• Synchronous Serial Communications

• Generic
• SPI
• I2C

3

Generic Synchronous Serial Communications
Inter-Connection Architecture

• Two or more devices may be inter-connected using five wires:
• Request to Send (RTS)
• Clear to Send (CTS)
• Serial Data Out (SDO)
• Serial Data In (SDI)
• Serial Clock (SCK)

Device
1

Device
2

SDO

SDI

SCK

SDI

SDO

SCK

CTS RTS

RTS CTS

4

Generic Synchronous Serial Communications
Directionality

• Full Duplex
• Data may be transmitted simultaneously in both directions
• Not a requirement, but the option of simultaneous bi-directional transmission is supported

• Half Duplex

• Allows data to be transmitted in both directions, but not simultaneously, i.e., simultaneous
bi-directional transmission is not supported

Device 1 Device 2 SDO

SDI

SCK

SDI

SDO

SCK

CTS RTS

RTS CTS

5

Generic Synchronous Serial Communications
Hardware Handshaking Protocol

• RTS and CTS are hardware handshaking control lines
• Example: Device 1 requests to send to Device 2:

• D1 requests to send by asserting D1 RTS
• D1 RTS is connected to D2 CTS
• D2 senses D2 CTS asserted, and if it wants to grant the request, D2 will assert D2 RTS
• D2 RTS is connected to D1 CTS
• D1 senses D1 CTS asserted, and at this point knows that D2 has granted its request

Device 1 (D1) Device 2 (D2) SDO

SDI

SCK

SDI

SDO

SCK

CTS RTS

RTS CTS

6

Serial Bit Transmission/Reception
Transmission/Reception Synchronized by Clock

• Data is transmitted from one device to the other serially, i.e., one bit at a time

• Transmission of the data is synchronized with the clock

• The transmitter sends a bit at the first edge of the clock period, and the receiver
receives the bit at the second edge of the clock period.

7

Generic Synchronous Serial Communications
Detailed Inter-Connection Architecture

8

Generic Synchronous Serial Communications
Transmit and Receive Operation

• Transmit Operation
• μC1 asserts Request to Send (RTS), and then waits for Clear To Send (CTS)
• μC1 writes a byte of data to the Transmit Data Register (TDR)
• TDR is copied to the Transmit Shit Register (TSR)
• Data is shifted out onto the SDO pin, one bit at a time

• Each bit is sent on the first edge of the clock (SCK)

• Receive Operation
• μC2 detects Request to Send (RTS), and then sends Clear To Send (CTS)
• Data is shifted into the Receive Shift Register (RSR), one bit at a time

• Each bit is received on the second edge of the clock (SCK)
• When a complete byte has been received, the RSR is copied into the Received

Data Register (RDR)
• μC2 reads the data from the RDR

9

Generic Synchronous Serial Communications
 Transmit and Receive Timing

10

Generic Synchronous Serial Communications
 Bit-Banging Implementation

• Port pins are used to implement hardware handshaking RTS and CTS
• RTS port pin is configured as an output

• Choose RA0
• CTS port pin is configured as an input

• Choose RA1

• Port pins are used to implement the serial data input and output lines
• SDO port pin is configured as an output

• Choose RA2
• SDI port pin is configured as an input

• Choose RA3

• Port pin may be used to implement the serial clock (SCK)
• SCK port pin is configured as an output

• Choose RA5

11

Generic Synchronous Serial Communications
 Bit-Banging Schematic

PIC1

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21

8 9 10 11 12 13 14 15 16 17 18 19 20

Programming Clock
Programming Data

10 kΩ 3.3 kΩ 33 pF

10 μF

RJ-12

VDD (5 V)

VSS (GND)

VDD (5 V)

VSS (GND)

PIC2

PIC1 PIC2

SCK (7)

SDO (4)

SDI (5)

CTS (3)

RTS (2)

SCK (7)

SDO (4)

SDI (5)

CTS(3)

RTS (2)

1 2 3 4 5 6 7
RTS

CTS
SDO

SDI
CLK

2 3 4 5 7

RTS
CTS

SDO
SDI CLK

RAO RA5

Master Clear

1 kΩ
PD

12

Generic Synchronous Serial Communications
 Bit-Banging Transmitter Flowchart: Example of sending 0..255 continually

RTS = 0

CTS = 0
?

TDR = Data

numB = 8

TSR = TDR

SDO = TSR<<1
SCK = 1, delay
SCK = 0, delay

numB = numB-1 numB = 0
?

RTS = 1
Data = Data + 1

SDO = TSR<<1

SDO = ((TSR&0b10000000) != 0);
SCK = 1;
delay(0);
TSR = TSR << 1;
SCK = 0;
delay(0);

N

Y

N

Y

CTS = 1
?

N

Y

Assert
Request
to Send

Wait for
Clearance

Wait for
Receiver

Acknowledge

Remove
Request to Send
and Acknowledge

Point A

13

Hardware Handshaking Problem

• Port pins will be floating when no power is
applied or when the device has not yet
configured the pin as output

• A port pin that is floating may be read and
interpreted as either logic 1 or logic 0.

• Therefore, the transmitter may flow past
point A even before the receiver's power
has switched on

RTS = 0

CTS = 0
?

N

Y

Assert
Request
to Send

Wait for
Clearance

Point A

14

Solution to the Hardware Handshaking Problem

• A solution is to use a pull-down (PD)
resistor
• When the power is off, the pin would be

connected to system ground through the
PD resistor

• It would be “electrically” connected to
ground even when power is off

• In addition, a check must be added prior to

entering the data transmission phase
because the true condition of the receiver
is CTS = 0, which is the default case when
no power is applied
• The addition is to prepend a Read!

Handshake
• The receiver’s power must be on to

make the transmitter’s CTS=1

RTS = 0

CTS = 0
?

N

Y

Assert
Request
to Send

Wait for
Clearance

Point A

RTS = 1

CTS = 1
?

N

Y

Transmitter:
I’m Ready!

Wait for Receiver
to Indicate it is

ready

15

SDO = ((TSR&0b10000000) != 0);

• TSR&0b10000000 performs a bitwise AND of TSR
and 0b10000000

• The 8-bit result of TSR&0b10000000 is stored
in temp1

• If temp1 is 0b00000000, which means TSR<7>=0,
then (temp1 != 0) is false and so SDO = 0;

• If temp1 is 0b10000000, which means TSR<7>=1,
then (temp1 != 0) is true and so SDO = 1;

16

MPLAB Project
 Bit-Banging Serial Transmitter

Main.c
#include <htc.h>

#include "ProcessorConfiguration.h"

#include "functionPrototypes.h"

#include "definitions.h"

void delay(unsigned char loops) {

 unsigned char i;

 for(i=0; i<loops;i++){}

}

void main(void) {

 unsigned char dataToSend=0, TDR, TSR, numB;

 portInit();

 RTS = 1; //Transmitter says I'm alive

 while(CTS == 0){} //Wait for Receiver Alive

Main.c (Continued)

 while(1){

 RTS = 0; //Make a request to send

 while(CTS == 1){} //Wait for clearance

 TDR = dataToSend;

 TSR = TDR;

 for(numB = 0;numB < 8;numB++){

 SDO = ((TSR&0b10000000) != 0);

 SCK = 1;

 delay(0);

 TSR = TSR << 1;

 SCK = 0;

 delay(0);

 }

 while(CTS == 0){} //Wait for Ack

 RTS = 1; //Acknowledge

 dataToSend++;

 }

}

17

MPLAB Project
Bit-Banging Serial Transmitter

Defintions.h
#define RTS RA0

#define CTS RA1

#define SDO RA2

#define SDI RA3

#define SCK RA5

FunctionPrototypes.h
void main(void);

void portInit(void);

void delay(unsigned char);

ProcessorConfiguration.h
__CONFIG (FOSC_EXTRC & WDTE_OFF & LVP_OFF &

DEBUG_ON);

// Set configuration bits (See pic16f877a.h)

PortInitialization.c
#include <htc.h>

#include "definitions.h"

void portInit(void) {

 PCFG3 = 0; // Configure PORTA digital I/O

 PCFG2 = 1;

 PCFG1 = 1;

 TRISA0 = 0; //SDO=A0

 TRISA1 = 1; //SDI=A1

 TRISA2 = 0; //RTS=A2

 TRISA3 = 1; //CTS=A3

 TRISA5 = 0; //SCK=A5

 SCK = 0; // Initial value of SCK

}

18

Generic Synchronous Serial Communications
 Bit-Banging Receiver Flowchart: Verifying Data 0..255

RTS = 0
numB = 8

errorCount = 0
expectedValue = 0

CTS = 0
?

N

Y

Is there a
request to

send?

Give
clearance
to send

SCK = 1
?

N

numB = 0
?

Y RSR<<1
RSR |= SDI

numB = numB-1

SCK = 0
?

N

Y
N

RDR =
expectedValue

?

N RDR
=

RSR

Y

Wait for
Transmitter

Acknowledge

Acknowledge
Has Next Bit

Been
Transmitted?

Receive
Bit

errorCount
++

expectedValue
++

RTS = 1

CTS = 1
? N

19

MPLAB Project
 Bit-Banging Serial Receiver

Main.c
#include <htc.h>

#include "ProcessorConfiguration.h"

#include "functionPrototypes.h"

#include "definitions.h”

void main(void) {

 unsigned char expectedValue=0, errorCnt=0, numB;

 unsigned char RSR = 0, RDR = 0;

 portInit();

Main.c (Continued)

 RTS = 1; //Receiver says I'm alive

 while(CTS == 0){}//Wait for Transmitter Alive

 while(1){

 while(CTS == 1){} //Wait for RequestToSend

 RTS = 0; //Give clearance

 for(numB = 0;numB < 8;numB++){

 while(SCK == 0){} //Wait for SCK=1

 while(SCK == 1){} //Wait for SCK=0

 RSR = RSR << 1;

 RSR |= (bit)SDI;

 }

 RDR = RSR;

 if(RDR!=expectedValue)

 errorCount++;

 expectedValue++;

 RTS = 1; //Acknowledge

 while(CTS == 0){} //Wait for Ack

 }

}

20

MPLAB Project
Bit-Banging Serial Receiver

Defintions.h
#define RTS RA0

#define CTS RA1

#define SDO RA2

#define SDI RA3

#define SCK RA5

FunctionPrototypes.h
void main(void);

void portInit(void);

ProcessorConfiguration.h
__CONFIG (FOSC_EXTRC & WDTE_OFF & LVP_OFF &

DEBUG_ON);

// Set configuration bits (See pic16f877a.h)

PortInitialization.c
#include <htc.h>

void portInit(void) {

 PCFG3 = 0; // Configure PORTA digital I/O

 PCFG2 = 1;

 PCFG1 = 1;

 TRISA0 = 0; //RTS=A0

 TRISA1 = 1; //CTS=A1

 TRISA2 = 0; //SDO=A2

 TRISA3 = 1; //SDI=A3

 TRISA5 = 1; //SCK=A5, input for receiver

}

21

Generic Synchronous Serial Communications
 Bit-Banging Results

560 μs

• Transfer rate: 1/(560 μs/8 bits) = 14.3 kbps

22

Generic Synchronous Serial Communications
Inter-Connection Architecture, Reduced wires

• Two or more devices may be inter-connected using three wires:
• Serial Data Out (SDO)
• Serial Data In (SDI)
• Serial Clock (SCK)

• Unless both devices are ready at the same time, this method is impossible to

implement without loosing data

Device 1 Device 2

SDO

SDI

SCK

SDI

SDO

SCK

23

Xon Xoff Protocol

• Instead of hardware handshaking, a software protocol may be designed and
implemented to control the transfer of data
• Xon - Xoff Protocol

• Transmitter continually transmits the code for ENQ (0x05), meaning that is
requesting to send

• Transmitter waits for an acknowledgment from the receiver ACK (0x06)
• When the transmitter receives and ACK from the receiver, the transmitter

thane waits for Xon (0x11) from the receiver, which means the receiver is
ready to receive data.

• If at any time the receiver want to pause the transmission, receiver send Xoff
(0x13)

• Problem – Xon and Xoff codes cannot appear in the data transmission, otherwise
they will be interpreted to pause transmission (Xoff), for example

• Solution, encode the data in larger number of bits so that Xon and Xoff have
code that will never appear in the data.

• For example, encode all data as 0 DDDD DDDD, and encode control codes
as 1 CCCC CCCC

	��ECE 3730 Principles of Embedded Systems: �Serial Communications��
	Overview
	Generic Synchronous Serial Communications�Inter-Connection Architecture
	Generic Synchronous Serial Communications�Directionality
	Generic Synchronous Serial Communications�Hardware Handshaking Protocol
	Serial Bit Transmission/Reception�Transmission/Reception Synchronized by Clock
	Generic Synchronous Serial Communications�Detailed Inter-Connection Architecture
	Generic Synchronous Serial Communications�Transmit and Receive Operation
	Generic Synchronous Serial Communications� Transmit and Receive Timing
	Generic Synchronous Serial Communications� Bit-Banging Implementation
	Generic Synchronous Serial Communications� Bit-Banging Schematic
	Generic Synchronous Serial Communications� Bit-Banging Transmitter Flowchart: Example of sending 0..255 continually
	Hardware Handshaking Problem
	Solution to the Hardware Handshaking Problem
	SDO = ((TSR&0b10000000) != 0);
	MPLAB Project� Bit-Banging Serial Transmitter
	MPLAB Project�Bit-Banging Serial Transmitter
	Generic Synchronous Serial Communications� Bit-Banging Receiver Flowchart: Verifying Data 0..255
	MPLAB Project� Bit-Banging Serial Receiver
	MPLAB Project�Bit-Banging Serial Receiver
	Generic Synchronous Serial Communications� Bit-Banging Results
	Generic Synchronous Serial Communications�Inter-Connection Architecture, Reduced wires
	Xon Xoff Protocol

