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Non Linear Elliptic Theory and 
the Monge-Ampere Equation 

Luis A. Caffarelli* 

Abstract 

The Monge-Ampere equation, plays a central role in the theory of fully 
non linear equations. In fact we will like to show how the Monge-Ainpere 
equation, links in some way the ideas comming from the calculus of variations 
and those of the theory of fully non linear equations. 
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When learning complex analysis, it was a remarkable fact tha t the real part u 
of an analytic function, just because it satisfies the equation: 

« I I +Uyy = A U = 0 

(Laplace's equation) is real analytic, and furthermore, the oscillation of u in any-
given domain U, controls all the derivatives of u, of any order, in any subset Ü, 
compactly contained in U. 

One can give three, essentially different explanations of this phenomena. 
a) Integral r epresenta t ions (Cauchy integral, for instance). This gives rise to 
many of the modern aspects of real and harmonic analysis: fundamental solutions, 
singular integrals, pseudo-differential operators, etc. For our discussion, an impor­
tan t consequence of this theory are the Schauder and Calderon-Zygmund estimates. 

Heuristically, they say tha t if we have a solution of an equation 

AìJ(X)DìJU = 0 

and Aij (x) is, in a given functional space, a small perturbat ion of the Laplacian 
then DijU is actually in the same functional space as A^. For instance, if [A^] is 
Holder continuous (Ca(Uj) and positive definite, we can transform it to the identity 
(the Laplacian) at any given point aro by an affine transformation, and will remain 
close to it in a neighborhood. Thus £>y« will also be Ca(U). 
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b) Energy considerations. Harmonie functions, u, are also local minimizers of 
the Dirichlet integral 

E(v) = ((Vvf dx . 

That is, if we change u to w, in U CC U 

E(w)\fJ > E(u)\fJ . 

This gives rise to the theory of calculus of variations (minimal surface, harmonic 
maps, elasticity, fluid dynamics). 

One is mainly concerned, there, with equations (or systems) of the form 

DiFi(Vu,X) = 0 . (1) 

For instance, in the case in which « is a local minimizer of 

E(u) = j T(Vu, X) dx 

(1) is simply the Euler-Lagrange equation associated to E: 

Fi = VPT . 

If we attempt to write (1) in second derivatives form, we get 

Fij(Vu,X)Diju + --- = 0 . 

This strongly suggests that in order for the variational problem to be "elliptic", 
like the Laplacian, Ftj should be positive definite, that is T should be strictly-
convex. 

It also leads to the natural strategy of showing that V«, that in principle is 
only in L2 (finite energy), is in fact Holder continuous. Reaching this regularity-
allows us to apply the (linear) Schauder theory. 

That implies £>y« is Ca(U), thus V« is C1,a(Ü), and so on (the bootstrapping 
method). 

The difficulty with this approach is that solutions, u, are invariant under Rn+1-
dialations of their graphs. 

This fact keeps the class of Lipschitz functions (bounded gradients) invariant. 
There is no reason, thus, to expect that this equation will "improve" under diala-
tions. The fact that V« is indeed Holder continuous is the celebrated De Giorgi's 
theorem, that solved the nineteenth Hubert's problem: 

De Giorgi looked at the equation that first derivatives, ua satisfy 

DiFijÇvu)DjUa = 0. 

He thought of Fy(V«) as elliptic coefficients Aij(x) that had no regularity-
whatsoever, and he proved that any solution w of 

DìAìJ(X)DJW = 0 
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was Holder continuous 

I M I c - ( A < C \ W \ L * ( U ) • 

De Giorgi's theorem is in fact a linear one, but for a new invariant class of 
equations. No matter how the solution (and the equation) is renormalized, it stays 
far from the constant coefficient theory, and a radically new idea surfaces: if we have 
a class of functions for which at every scale, in some average sense, the function 
controls its derivatives (the energy inequality), further regularity follows. 

Finally, the third approach is 
c) Comparison principle. Two solutions «i , «2 of Au = 0 cannot "touch without 
crossing". That is, if «1 —«2 is positive it cannot become zero in some interior point, 
Xo, of U. 

Again, heuristically, this is because the function 

F(D2u) = Au = Trace[£>2u] 

is a monotone function of the Hessian matrix [-Dyti] and, thus, in some sense, we 
must have F(D2ui) ">" F(D2U2) at X0 (or nearby). 

The natural family of equations to consider in this context, is then 

F(D2u) = 0 

for F a strictly monotone function of D2u. 
Such type of equations appear in differential geometry. For instance, the co­

efficients of the characteristic polynomial of the Hessian 

P(X) = det(D2u - XI) 

are such equations if we restrict D2u to stay in the appropriate set of Rnxn. If A, 
denote the eigenvalues of D2u 

Ci = Au = 2_. \ (Laplace) 

C2 = 22XkXj... 

Cn = TT A, = det D2u (Monge-Ampere) . 

In the case of Cn = det D2u = f] A, is a monotone function of the Hessian provided 
that all Aj's are positive. That is, provided that the function, u, under consideration 
is convex. 

If F(D2u,X) is uniformly elliptic, that is, if F is strictly monotone as a func­
tion of the Hessian, or in differential form, 

Fij(M) = Dmi.F 

is uniformly positive definite, then solutions of F(D2u) are C1,a(Ü). As in the 
divergence case, this is because first derivatives ua satisfy an elliptic operator, 

Fij(D
2u)Dijua = 0 
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now in non divergence form. As long as we do not have further information on D2u, 
we must think again of Fy as bounded measurable coefficients. 

The De Giorgi type theorem for ay(ar)i?ytiQ = 0 is due to Krylov and Safanov, 
and states again that solutions of such an equation are Holder continuous. 

We point out that, again this result has "jumped" invariance classes. Rescaling 
of ay (a;) does not improve them. Unfortunately, this is not enough to "bootstrap", 
as in the divergence case: The coefficients, *4y(a:) = Fy(iAti), depend on second 
derivatives. If we will manage to prove that D2u is Holder continuous, then, from 
equation (1), Dau would be C2,a(Ü), i.e., u would be C3'a(U) and we could improve 
and improve. 

To prove this, once more convexity reappears. If F(D2u) is concave (or con­
vex) then all pure second derivatives are sub (or super) solutions of the linearized 
operator. This, together with the fact that D2u lies in the surface F(D2u), implies 
the Holder continuity of D2u, and, by the bootstrapping argument u is as smooth 
as F allows. 

The Monge-Ampere equation and optimal transportation 
We would like now to turn our attention to the Monge-Ampere equation 

det D2u = TT A, = f(x, u, V«) . 

As pointed out before, the equation fits in the context of elliptic equations provided 
that we consider convex solutions. That is, provided that / is positive. Further 
log det D2u = Y^ log K is concave as function of the A, and thus is a concave function 
of D2u. Unfortunately deti?2« is not uniformly strictly convex. 

For instance if we prescribe 

det Du = J J Xi = 1 

ellipticity deteriorates as one of the A's goes to infinity and some other is forced to 
go to zero. This difficulty is compensated by two fundamental facts. 

1) The rich family of invariances that the Monge-Ampere equation enjoys. 
2) Its "hidden" divergence structure. 

The divergence structure is due to the fact that det D2u can be thought of as 
the Jacobian of the gradient map: X —t Vu. Thus for any domain Ü 

det D2udx = Vol(X7u(U)). 
u 

But if Ü CC U, u being convex implies that 

(Vti)lf; < C ose u\u-

This gives us a sort of "energy inequality" that controls a positive quantity of D2u 
by the oscillation of u: 

detD2u<C(Ü,U)(oscu)n. 
u 
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Invariances 
The Monge-Ampere equation is invariant of course, under the the standard 

families of transformations: 

a) Rigid motions, R: 

b) Translations: 

c) Quadratic dialations: 

deti?2ti(i?a;) = f(Rx), 

det D2u(x + v) = f(x + v), 

det D2—u(tx) = / ( t e ) . 1 

fi 
But also 

d) Monge-Ampere is invariant under any affine transformation A, of determinant 

det£>2u(.4a:) = f(Ax) . 

If / is, for instance, in one of the following classes: 

a) / constant, 
b) / close to constant (|/ — 1| < e), 
c) f bounded away from zero and infinity (0 < ^ < / < a), 

any of the transformations above gives a new u in the same class of solutions. 
For instance, if « is a solution of 

det£>2ti = 1 

then, «(ear, \y) is also a solution of the same equation. But this has dramatically 
"deformed" the graph of u. It is then almost unavoidable that there are singular 
solutions (Pogorelov). 

In fact, for n > 3, one can construct convex solutions u that contain a line their 
graph and are not differentiable in the direction transversal to that line, solutions 
of 

det£>2ti = f(x) 

with / a smooth positive function. 
Fortunately, this geometry can only be inherited from the boundary of the 

domain. 

Theo rem 0.1 . If in the domain U C Rn 

a) - < det D2u < a, 
b) u > 0, 
c) The set F = {« = 0} is not a point, then T is generated as "convex combina­

tions " of its boundary points 

T = convex envelope of T n dU . 

A corollary of this theorem is that 
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a) If we can "cut a slice" of the graph of u, with a hyperplane l(x) so that the 
support S oî (u — l)^ is compactly contained in U, then u is, inside S, both 
C1,a regular and also C1,a- strictly convex, i.e., separates from any of its 
supporting planes with polynomial growth. 

This is the equivalent of De Giorgi's and Krylov-Safanov result (remember that 
the Ca theorems were applied to the derivatives of the solutions of the non-linear 
equations under consideration). 

Note that by an affine transformation and a dilation we can always renormalize 
the support of the "slice" S to be equivalent to the unit ball of Rn: Bi C S C Bn. 

After this normalization, it is possible to reproduce for u all the classical 
estimates we had for the Laplacian: 

a) (Calderon-Zygmund). If / is close to constant (|/ — 1| < e), then D2u G 
Lp(Biß) (p = p(e) goes to infinity when e goes to zero). 

b) If / G Ck'a (has up to k derivatives Holder continuous) then u G Ck+2'a (all 
second derivatives of u are Ck,a. 

Note that / plays, for Monge-Ampere, simultaneously the role of "right hand 
side" and "coefficients" due to the structure of its non-linearity. 

The Monge-Ampere equation and optimal transportation (the 
Monge problem) 

The Monge-Ampere equation has many applications, not only in geometry, but 
also in applied areas: optimal design of antenna arrays, vision, statistical mechanics, 
front formation in meteorology, financial mathematics. 

Many of these applications are related to optimal transportation and the 
Wasserstein metric between probability distributions. In the discrete case, opti­
mal transportation consists of the following. 

We are given two sets of k points in Rn: Xi,...,Xk and Yi,..., Yk, and want 
to map the X's onto the Y's, i.e., we look at all one-to-one functions Y(Xj). But 
we want to do so, minimizing some transportation costs 

C = J2C(Y(XJ)-Xj 

For our discussion C(X — Y) =\\X — Y\2. It is easy to see that the minimizing 
map must be the gradient (subdifferential) of a convex potential (p. 

In the continuous case, instead of having fc-points we have two probability-
densities, f(X) dX and g(Y) dY and we want to consider those (admissible) maps 
Y(X) that "push forward" / to g. 

Heuristically that means that in the change of variable formula, we can sub­
stitute 

g(Y(X)) det DxY(X)«=»f(X). 
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A weak formulation, substitutes the map Y(X), by a joint probability density 
v(X,Y) with marginals f(X)dX and g(Y)dY, i.e., 

f(XQ) = J dYv(Xo,Y), 

g(Y0) = / dxv(X,Yo). 

(We don't ask the "map" to be one-to-one any more, the image of X0 may now 
spread among "many Y's". 

Among all such v, we want to maximize correlation 

K= j {X,Y)dv(X,Y) 

or minimize cost 

C= fhx-Y\2dv(X,Y 

\[C defines a metric, the Wasserstein metric among probability densities. 
Under mild hypothesis, we have the 

Theorem 0.2. The unique optimal VQ concentrates in a graph (is actually a one-
to-one map, Y(X)). Further Y(X) is the subdifferential of a convex potential ip, 
i.e., Y(X) = Vip. Heuristically, then, ip must satisfy the Monge-Ampere equation 

g(V<p)detD2tp= f(X). 

For several reasons, the weak theory does not apply in general, but one can 
still prove, for instance: 

Theorem 0.3. If f and g never vanish or if the supports of f and g are convex 
sets, the map Y(X) is "one derivative better" than f and g. 

Some applications and current issues 
a) It was pointed out by Otto, that the Wasserstein metric can be used to 

describe the evolution of several of the classical "diffusion" equations: heat equation, 
porous media, lubrication. 

The idea is that a diffusion process for one equation with conservation of 
mass, consists of the balance of two factors: trying to minimize distance between 
consecutive distributions (u(x,tu) and u(x,tk+ij), plus trying to flatten or smooth 
(diffuse), u(x,tk+i)-

This fact has allowed to prove rates of decay to equilibrium in many of the 
classical equations, as well as a number of new phenomena. The fine relations be­
tween the discrete and continuous problems is an evolving issue (rate of convergence, 
regularity of the discrete problems, etc.). 

b) Another family of problems, coming both from geometry and optimal trans­
portation concerns the study of several issues on solutions of Monge-Ampere equa­
tions in periodic or random media. 
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bi) Liouville type theorems: We start with a theorem of Calabi of Liouville 
type: Given a global convex solution of Monge-Ampere equation, det D2u = 1, u 
must be a quadratic polynomial. Suppose now that instead of RHS equal to one, 
we have a general RHS, f(x). Given a global solution, to discover its behavior at 
infinity we may try to "shrink it" through quadratic transformations: 

u= = e2« I — ) , satisfies det D2u. = 
Ve/ ve 

Suppose now that / averages out at infinity, for instance / is periodic. Then due 
to the "divergence structure" of Monge-Ampere ue should converge to a quadratic 
polynomial. 

Theorem 0.4. Given a RHS f(x), periodic, with average -f f = a 

i) Given any quadratic polynomial P with det D2P = a, there exists a unique 
periodic function w, such that 

det£>2(F + w) = f(x) 

(w is a "corrector" in homogenization language). 
ii) Conversely (Liouville type theorem): Given a global solution u, it must be of 

the form P + w. 

What are the implications for homogenization? What can we say if f(X, u, Vu) 
is periodic in X and «? What can we say if fw(x) is random in XI 

\)2) Vorticity transport: (2 dimensions) Again in the periodic context we 
seek a "vorticity density", p(X,i) periodic in X. At each time t, p generates a 
periodic "stream function", ip(X,t) by the equation 

det(i + D2ip) = p . 

In turn, ip generates a periodic velocity field v = —(ipy,ipx) that transports p: 

Pt + div(up) = 0 . 

Given some initial data po(x), what can we say about p? 
If po is a vorticity patch, po(x) = 1 + xn, does it stay that way? 
If we choose po, '<po so that po = F('(pQ), that is det I + D2ip0 = F('<Po), we have 

a stationary vorticity array, i.e., p(X,i) = p0. 
What can we say, in parallel to the classic theory of rotating fluids, or plasma, 

where det is substituted by A'ipl 
c) Another area of research relates to optimal transportation as a natural 

"map" between probability densities. It has been shown that optimal transportation 
explains naturally interpolation properties of densities (of Brunn Minkowski type), 
monotonicity properties (like correlation inequalities that express in which way the 
probability density, g, is shifted in some cone of directions with respect to / ) , and 
concentration properties of g versus / (in which sense for instance, a log concave 
perturbation of a Gaussian is more concentrated than a Gaussian). 
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Of particular interest would be to understand optimal transportation as di­
mension goes to infinity. Since convex potentials are very stable objects, this would 
provide, under some circumstances, an "infinite dimensional" change of variables 
formula between probability densities. 

d) Finally, one of my favorite problems is to understand the geometry of 
optimal transportation in the case in which the cost function C(X — Y) is still 
strictly convex, but not quadratic. In that case, the optimal map is still related to 
a potential that satisfies 

det(I + D(Fj(Vip)j) = ---

where Fj is now the gradient of the convex conjugate to C. 
At this point, we have come full circle and we are now in a higher hierarchy, 

in a sort of Lagrangian version of the Euler-Lagrange equation from the calculus of 
variations. 

In fact if we put an epsilon in front of D and linearize, 

det(I+eD(Fj(V'ip))) = 1+e Trace(D(F i(Vt/')))+0(e2) = 1+e div F,(Vip) +0(e2). 
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