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Pat tern Theory: The Mathematics of 
Perception 

David Mumford* 

Abstract 

Is there a mathematical theory underlying intelligence? Control theory 
addresses the output side, motor control, but the work of the last 30 years has 
made clear that perception is a matter of Bayesian statistical inference, based 
on stochastic models of the signals delivered by our senses and the structures 
in the world producing them. We will start by sketching the simplest such 
model, the hidden Markov model for speech, and then go on illustrate the 
complications, mathematical issues and challenges that this has led to. 

Keywords and Phrases: Perception, Speech, Vision, Bayesian, Statistics, 
Inference, Markov. 

1. Introduction 
How can we understand intelligent behavior? How can we design intelligent 

computers? These are questions that have been discussed by scientists and the 
public at large for over 50 years. As mathematicians, however, the question we 
want to ask is "is there a mathematical theory underlying intelligence?" I believe 
the first mathematical attack on these issues was Control Theory, led by Wiener and 
Pontryagin. They were studying how to design a controller which drives a motor 
affecting the world and also sits in a feedback loop receiving measurements from the 
world about the effect of the motor action. The goal was to control the motor so that 
the world, as measured, did something specific, i.e. move the tiller so that the boat 
stays on course. The main complication is that nothing is precisely predictable: 
the motor control is not exact, the world does unexpected things because of its 
complexities and the measurements you take of it are imprecise. All this led, in the 
simplest case, to a beautiful analysis known as the Wiener-Kalman-Bucy filter (to 
be described below). 

But Control Theory is basically a theory of the output side of intelligence with 
the measurements modeled in the simplest possible way: e.g. linear functions of the 
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state of the world system being controlled plus additive noise. The real input side 
of intelligence is perception in a much broader sense, the analysis of all the noisy-
incomplete signals which you can pick up from the world through natural or artificial 
senses. Such signals typically display a mix of distinctive patterns which tend to 
repeat with many kinds of variations and which are confused by noisy distortions 
and extraneous clutter. The interesting and important structure of the world is 
thus coded in these signals, using a code which is complex but not perversely so. 

1.1. Logic vs. Statistics 

The first serious attack on problems of perception was the attempt to recognize 
speech which was launched by the US defense agency ARPA in 1970. At this point, 
there were two competing ideas of what was the right formalism for combining 
the various clues and features which the raw speech yielded. The first was to use 
logic or, more precisely, a set of 'production rules' to augment a growing database 
of true propositions about the situation at hand. This was often organized in 
a 'blackboard', a two-dimensional buffer with the time of the asserted proposition 
plotted along the ar-axis and the level of abstraction (i.e. signal — phone — phoneme 
— syllable — word — sentence) along the y-axis. The second was to use statistics, 
that is, to compute probabilities and conditional probabilities of various possible 
events (like the identity of the phoneme being pronounced at some instant). These 
statistics were computed by what was called the 'forward-backward' algorithm, 
making 2 passes in time, before the final verdict about the most probable translation 
of the speech into words was found. This issue of logic vs. statistics in the modeling 
of thought has a long history going back to Aristotle about which I have written in 
[M]. 

I think it is fair to say that statistics won. People in speech were convinced in 
the 1970's, artificial intelligence researchers converted during the 1980's as expert 
systems needed statistics so clearly (see Pearl's influential book [P]), but vision 
researchers were not converted until the 1990's when computers became powerful 
enough to handle the much larger datasets and algorithms needed for dealing with 
2D images. 

The biggest reason why it is hard to accept that statistics underlies all our 
mental processes — perception, thinking and acting — is that we are not consciously-
aware of 99% of the ambiguities with which we deal every second. What philosophers 
call the 'raw qualia', the actual sensations received, do not make it to consciousness; 
what we are conscious of is a precise unambiguous enhancement of the sensory signal 
in which our expectations and our memories have been drawn upon to label and 
complete each element of the percept. A very good example of this comes from 
the psychophysical experiments of Warren & Warren [W] in 1970: they modified 
recorded speech by replacing a single phoneme in a sentence by a noise and played 
this to subjects. Remarkably, the subjects did not perceive that a phoneme was 
missing but believed they had heard the one phoneme which made the sentence 
semantically consistent: 
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ACTUAL SOUND 

the leel is on the shoe 
the leel is on the car 
the leel is on the table 
the leel is on the orange 

PERCEIVED WORDS 

the fteel is on the shoe 
the wheel is on the car 
the meal is on the table 
the peel is on the orange 

Two things should be noted. Firstly, this showed clearly that the actual au­
ditory signal did not reach consciousness. Secondly, the choice of percept was a 
matter of probability, not certainty. That is, one might find some odd shoe with a 
wheel on it, a car with a meal on it, a table with a peel on it, etc. but the words 
which popped into consciousness were the most likely. An example from vision of 
a simple image, whose contents require major statistical reasoning to reconstruct, 
is shown in figure 1. 

F i g u r e 1: Why is this old man recognizable from a cursory glance? His out­
line threads a complex path amongst the cluttered background and is broken 
up by alternating highlights and shadows and by the wrinkles on his coat. 
There is no single part of this image which suggests a person unambiguously 
(the ear comes closest but the rest of his face can only be guessed at). No 
other object in the image stands out — the man's cap, for instance, could 
be virtually anything. Statistical methods, first grouping contours, secondly 
guessing at likely illumination effects and finally using probable models of 
clothes may draw him out. No known computer algorithm comes close to 
finding a man in this image. 

It is important to clarify the role of probability in this approach. The uncer­
tainty in a given situation need not be caused by observations of the world being 
truly unpredictable as in quantum mechanics or even effectively so as in chaotic 
phenomena. It is rather a matter of efficiency: in order to understand a sentence 
being spoken, we do not need to know all the things which affect the sound such as 
the exact acoustics of the room in which we are listening, nor are we even able to 
know other factors like the state of mind of the person we are listening to. In other 
words, we always have incomplete data about a situation. A vast number of physical 
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and mental processes are going on around us, some germane to the meaning of the 
signal, some extraneous and just cluttering up the environment. In this 'blooming, 
buzzing' world, as William James called it, we need to extract information and 
the best way to do it, apparently, is to make a stochastic model in which all the 
ir relè vent events are given a simplified probability distribution. This is not unlike 
the stochastic approach to Navier-Stokes, where one seeks to replace turbulence or 
random molecular effects on small scales by stochastic perturbations. 

1.2. The Bayesian setup 
Having accepted that we need to use probabilities to combine bits and pieces 

of evidence, what is the mathematical set up for this? We need the following 
ingredients: a) a set of random variables, some of which describe the observed 
signal and some the 'hidden' variables describing the events and objects in the 
world which are causing this signal, b) a class of stochastic models which allow one 
to express the variability of the world and the noise present in the signals and c) 
specific parameters for the one stochastic model in this class which best describes 
the class of signals we are trying to decode now. More formally, we shall assume we 
have a set x = (x0,Xh) of observed and hidden random variables, which may have 
real values or discrete values in some finite or countable sets, we have a set 0 of 
parameters and we have a class of probability models Pr(x | 0) on the As for each 
set of values of the 0's. The crafting or learning of this model may be called the 
first problem in the mathematical theory of perception. It is usual to factor these 
probability distributions: 

Pr(x | 0) = Pr(x0 | Xh, 0) • Pr(xh | 0), 

where the first factor, describing the likelihood of the observations from the hidden 
variables, is called the imaging model and the second, giving probabilities on the 
hidden variables, is called the prior. In the full Bayesian setting, one has an even 
stronger prior, a full probability model Pr(xf,,, 0), including the parameters. 

The second problem of perception is that we need to estimate the values of 
the parameters 0 which give the best stochastic model of this aspect of the world. 
This often means that you have some set of measurements {x*")} and seek the value 
of 0 which maximizes their likelihood T7Q Pr(x*A \ 0). If the hidden variables as 
well as the observations are known, this is called supervised learning; if the hidden 
variables are not known, then it is unsupervised and one may maximize, for instance, 
l i a S x P r(xo , Xh | 0). If one has a prior on the 0's too, one can also estimate 
them from the mean or mode of the full posterior Pr(0 | {x*")}). 

Usually a more challenging problem is how many parameters 0 to include. 
At one extreme, there are simple 'off-the-shelf models with very few parameters 
and, at the other extreme, there are fully non-parametric models with infinitely-
many parameters. Here the central issue is how much data one has: for any set 
of data, models with too few parameters distort the information the data contains 
and models with too many overfit the accidents of this data set. This is called the 
bias-variance dilemma. There are two main approaches to this issue. One is cross-
validation: hold back parts of the data, train the model to have maximal likelihood 
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on the training set and test it by checking the likelihood of the held out data. There 
is also a beautiful theoretical analysis of the problem due principally to Vapnik [V] 
and involving the VC dimension of the models — the size of the largest set of data 
which can be split in all possible ways into more and less likely parts by different 
choices of 0. 

As Grenander has emphasized, a very useful test for a class of models is to 
synthesize from it, i.e. choose random samples according to this probability measure 
and to see how well they resemble the signals we are accustomed to observing in 
the world. This is a stringent test as signals in the world usually express layers and 
layers of structure and the model tries to describe only a few of these. 

The third problem of perception is using this machinary to actually perceive: 
we assume we have measured specific values x0 = x0 and want to infer the values of 
the hidden variables Xh in this situation. Given these observations, by Bayes' rule, 
the hidden variables are distributed by the so-called posterior distribution: 

-r-, / i --- „N. r r ( x 0 Xh, u) • rr(Xh u) _ ,^. , n _ , , n Pr(xh x0 , 0) = ' ' oc Pr(x0 xh , 0) • Pr(xh 0) 
r r (x 0 I 0) 

One may then want to estimate the mode of the posterior, the most likely value of 
Xh- Or one may want to estimate the mean of some functions /(xh) of the hidden 
variables. Or, if the posterior is often multi-modal and some evidence is expected 
to available later, one usually wants a more complete description or approximation 
to the full posterior distribution. 

2. A basic example: HMM's and speech recogni­
tion 

A convenient way to introduce the ideas of Pattern Theory is to outline the 
simple Hidden Markov Model method in speech recognition to illustrate many of 
the ideas and problems which occur almost everywhere. Here the observed random 
variables are the values of the sound signal s(t), a pressure wave in air. The hidden 
random variables are the states of the speaker's mouth and throat and the identity 
of the phonemes being spoken at each instant. Usually this is simplified, replacing 
the signal by samples sk = s(kAt) and taking for hidden variables a sequence xk 

whose values indicate which phone in which phoneme is being pronounced at time 
kAt. The stochastic model used is: 

Pr(x.,s.) = J[pi(xk | xk-i)p2(sk | xk) 

i.e. the {xk} form a Markov chain and each sk depends only on xk. This is expressed 
by the graph: 

Sfe- l Sfe Sfe + 1 

Xk + 1 
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in which each variable corresponds to a vertex and the graphical Markov property-
holds: if 2 vertices a, b in the graph are separated by a subset S of vertices, then the 
variables associated to a and 6 are conditionally independent if we fix the variables 
associated to S. 

This simple model works moderately well to decode speech because of the 
linear nature of the graph, which allows the ideas of dynamic programming to be 
used to solve for the marginal distributions and the modes of the hidden variables, 
given any observations ?.. This is expressed simply in the recursive formulas: 

Pr(xk | s<k) 
T,xk^P^(xk I xk-i)p2(sk | xk)Pr(xk-i | s<lk-i)) 

YA numerator 
£. ' Xk 

maxp(xk,i<k) = max Pr(xk,x<k-i,s<k) 
def œ<(t-i) 

= max(pi(xk I xk-i)p2(sx | xk)maxp(xk-i,s<{k_i))) . 
Xk-l - \ i / 

Note that if each xk can take N values, the complexity of each time step is 0(N2). 
In any model, if you can calculate the conditional probabilities of the hidden 

variables and if the model is of exponential type, i.e. 

Pr(ar. | 0.) = - J_ e E*e*-^ (* . ) > 
Z(0) 

then there is also an efficient method of optimizing the parameters 0. This is called 
the EM algorithm and, because it holds for HMM's, it is one of the key reasons for 
the early successes of the stochastic approach to speech recognition. For instance, 
a Markov chain {xk} is an exponential model if we let the 0's be log(p(a | 6)) and 
write the chain probabilities as: 

p r(x ) = e^2a.blos(p(a\b)\{k\xk=a,xk^1=b}\^ 

The fundamental result on exponential models is that the 0's are determined by 
the expectations Ek = Exp(Ek) and that any set of expectations Ek that can be 
achieved in some probability model (with all probabilities non-zero), is also achieved 
in an exponential model. 

2.1. Continuous and discrete variables 
In this model, the observations sk are naturally continuous random variables, 

like all primary measurements of the physical world. But the hidden variables 
are discrete: the set of phonemes, although somewhat variable from language to 
language, is always a small discrete set. This combination of discrete and continuous 
is characteristic of perception. It is certainly a psychophysical reality: for example 
experiments show that our perceptions lock onto one or another phoneme, resisting 
ambiguity (see [L], Ch.8, esp. p.176). But it shows itself more objectively in the low-
level statistics of natural signals. Take almost any class of continuous real-valued 
signals s(t) generated by the world and compile a histogram of their changes x = 
s(t+At)—s(t) over some fixed time interval At. This empirical distribution will very 
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likely have kurtosis (= Exp ((x — x)4) /a(x)4) greater than 3, the kurtosis of any 
Gaussian distribution! This means that, compared to a Gaussian distribution with 
the same mean and standard deviation, x has higher probability of being quite small 
or quite large but a lower probability of being average. Thus, compared to Brownian 
motion, s(t) tends to move relatively little most of the time but to make quite large 
moves sometimes. This can be made precise by the theory of stochastic processes 
with iid increments, a natural first approximation to any stationary Markov process. 
The theory of such processes says that (a) their increments always have kurtosis at 
least 3, (b) if it equals 3 the process is Brownian and (c) if it is greater, samples 
from the process almost surely have discontinuities. At the risk of over-simplfying, 
we can say kurtosis > 3 is nature's universal signal of the presence of discrete 
events/objects in continuous space-time. 

A classic example of this are stock market prices. Their changes (or better, 
changes in log(price)) have a highly non-Gaussian distribution with polynomial 
tails. In speech, the changes in the log(power) of the windowed Fourier transform 
show the same phenomenon, confirming that s(i) cannot be decently modeled by-
colored Gaussian noise. 

2.2. When compiling full probability tables is impractical 
Applying HMM's in realistic settings, it usually happens that N is too large for 

an exhaustive search of complexity 0(N2) or that the xk are real valued and, when 
adequately sampled, again N is too large. There is one other situation in which the 
HMM-style approach works easily — the Kaiman filter. In Kalman's setting, each 
variable xk and sk is real vector-valued instead of being discrete and pi and P2 are 
Gaussian distributions with fixed co-variances and means depending linearly on the 
conditioning variable. It is then easy to derive recursive update formulas, similar to 
those above, for the conditional distributions on each xk, given the past data «<£. 

But usually, in the real-valued variable setting, the p's are more complex than 
Gaussian distributions. An example is the tracking problem in vision: the position 
and velocity xk of some specific moving object at time kAt is to be inferred from a 
movie %, in which the object's location is confused by clutter and noise. It is clear 
that the search for the optimal reconstruction xk must be pruned or approximated. 
A dramatic breakthrough in this and other complex situations has been to adapt the 
HMM/Kalman ideas by using weak approximations to the marginals Pr(arj; | «</.) 
by a finite set of samples, an idea called particle filtering: 

N 

Pr(xk | s<k) ~ y^Wi,köXLk(xk), that is, 
weak 

« = 1 

JV 

Exp(/(xfc) | s<k) « ^2wi,kf(xi,k), for suitable / . 
«=i 

This idea was proposed originally by Gordon, Salmond and Smith [G-S-S] and is 
developed at length in the recent survey [D-F-G]. An example with explicit estimates 
of the posterior from the work of Isard and Blake [I-B] is shown in figure 2. They 
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follow the version known as bootstrap particle filtering in which, for each k, N 
samples x\ are drawn with replacement from the weak approximation above, each 
sample is propagated randomly to a new sample x" at time (k + 1) using the prior 
p(xk+i | x'[) and these are reweighted proportional to p(sk+i | x"). 

1200 ms 

F i g u r e 2: Work of Blake and Isard tracking three faces in a moving image 
sequence. The curves represent estimates of the posterior probability distri­
butions for faces at each location obtained by smoothing the weighted sum of 
delta functions at the 'particles'. Note how multi-modal these are and how 
the tracker recovers from the temporary occlusion of one face by another. 

2.3. No process in na ture is t ruly Markov 

A more serious problem with the HMM approach is that the Markov assump­
tion is never really valid and it may be much too crude an approximation. Consider 
speech recognition. The finite lexicon of words clearly constrains the expected 
phoneme sequences, i.e. if xk are the phonemes, then pi(xk \ xk-i) depends on the 
current word(s) containing these phonemes, i.e. on a short but variable part of the 
preceding string {xk-i, Xk-2, • • • } of phonemes. To fix this, we could let xk be a pair 
consisting of a word and a specific phoneme in this word; then pi(xk \ Xk-i) would 
have two quite different values depending on whether Xk-i was the last phoneme in 
the word or not. Within a word, the chain needs only to take into account the vari­
ability with which the word can be pronounced. At word boundaries, it should use 
the conditional probabilities of word pairs. This builds much more of the patterns 
of the language into the model. 

Why stop here? State-of-the-art speech recognizers go further and let xk be 
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a pair of consecutive words plus a triphone1 in the second word (or bridging the 
first and second word) whose middle phoneme is being pronounced at time kAt. 
Then the transition probabilities in the HMM involve the statistics of 'trigrams', 
consecutive word triples in the language. But grammar tells us that words sequences 
are also structured into phrases and clauses of variable length forming a parse tree. 
These clearly affect the statistics. Semantics tells us that words sequences are 
further constrained by semantic plausibility ('sky' is more probable as the word 
following 'blue' than 'cry') and pragmatics tells us that sentences are part of human 
communications which further constrain probable word sequences. 

All these effects make it clear that certain parts of the signal should be grouped 
together into units on a higher level and given labels which determine how likely 
they are to follow each other or combine in any way. This is the essence of gram­
mar: higher order random variables are needed whose values are subsets of the low 
order random variables. The simplest class of stochastic models which incorporate 
variable length random substrings of the phoneme sequence are probabilistic context 
free grammars or PCFG's. Mathematically, they are a particular type of random 
branching tree. 

Definition A PCFG is a stochastic model in which the random variables are 
(a) a sequence of rooted trees {%,,}, (b) a linearly ordered sequence of observations 
sk and a 1:1 correspondence between the observations sk and the leaves of the whole 
forest of trees such that the children of any vertex of any tree form an interval 
{sk, sk+i, • • • ,sk'} in time and (c) a set of labels xv for each vertex. The probability 
model is given by conditional probabilities Pi(xVk \ xv) for the labels of each child 
of each vertex2 andp2(sk | xVk) for the observations, conditional on the label of the 
corresponding leaf. 

See figure 3 for an example. This has a Markov property if we define the 
'extended' state x*k at leaf k to be not only the label xk at this leaf but the whole 
sequence of labels on the path from this leaf to the root of the tree in which this 
leaf lies. Conditional on this state, the past and the future are independent. 

This is a mathematically elegant and satisfying theory: unfortunately, it also 
fails, or rather explodes because, in carrying it out, the set of labels gets bigger and 
bigger. For instance, it is not enough to have a label for noun phrase which expands 
into an adjective plus a noun. The adjective and noun must agree in number and (in 
many languages) gender, a constraint that must be carried from the adjective to the 
noun (which need not be adjacent) via the label of the parent. So we need 4 labels, 
all combinations of singular/plural masculine/feminine noun phrases. And semantic 
constraints, such as Pr('blue sky') > Pr('blue cry'), would seem to require even more 
labels like 'colorable noun phrases'. Rather than letting the label set explode, it is 
better to consider a bigger class of grammars, which express these relations more 
succinctly but which are not so easily converted into HMM's: unification grammars 
[Sh] or compositional grammars [B-G-P]. The need for grammars of this type is 

1 So-called co-articulation effects mean that the pronunciation of a phoneme is affected by the 
preceding and suceeding phonemes. 

2 Caution to specialists: our label xv is the name of the 'production rule' with this vertex as 
its head, esp. it fixes the arity of the vertex. We are doing it this way to simplify the Markov 
property. 
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especially clear when we look at formalisms for expressing the grouping laws in 
vision: see figure 3. The further development of stochastic compositional grammars, 
both in language and vision, is one of the main challenges today. 

S-conj 

NP V-Aux-inf NP Conj V-Aux-pipNP PrepP NP V-Aux-inf NP PrepP AdvP 

PrN Aux-3s-fut Vinf N AuxVpip Art Prep PrN Aux-ls-fut Vinf N Prep Pro Quant Adv 

Helen 's going to mix cake, ?making some for Margaret. ? Am going to put sugar in it pretty soon 
T Î • A î 

Figure 3 : Grouping in language and vision: On top, parsing the not quite 
grammatical speech of a 2 1/2 year old Helen describing her own intentions 
([H]): above the sentence, a context-free parse tree; below it, longer range 
non-Markov links — the identity 'cake'='some'=' i t ' and the unification of 
the two parts 'Helen's going to ' = '(I) am going to ' . On the bottom, 2 kinds 
of grouping with an iso-intensity contour of the image in Figure 1: note 
the broken but visible contour of the back marked by 'A' and the occluded 
contours marked by 'B ' and ' C behind the man. 

3. The 'natural degree of generality': MRF's or 
Graphical Models 

The theory of HMM's deals with one-dimensional signals. But images, the 
signals occurring in vision, are usually two-dimensional — or three-dimensional for 
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MR scans and movies (3 space dimensions and 2 space plus 1 time dimension), even 
four-dimensional for echo cardiograms. On the other hand, the parse tree is a more 
abstract graphical structure and other 'signals', like medical data gathered about 
a particular patient, are structured in complex ways (e.g. a set of blood tests, a 
medical history). This leads to the basic insight of Grenander's Pattern Theory 
[G]: that the variables describing the structures in the world are typically related in 
a graphical fashion, edges connecting variables which have direct bearing on each 
other. Finding the right graph or class of graphs is a crucial step in setting up a 
satisfactory model for any type of patterns. Thus the applications, as well as the 
mathematical desire to find the most general setting for this theory, lead to the idea 
of replacing a simple chain of variables by a set of variables with a more general 
graphical structure. The general concept we need is that of a Markov random field: 

Definition A Markov random field is a graph G = (V,E), a set of random 
variables {xv}vev, one for each vertex, and a joint probability distribution on these 
variables of the form: 

pT(x ) = _ e - £ c Ec({Xv}v£c) 
Zi 

where C ranges over the cliques (fully connected subsets) of the graph, Ec are any 
functions and Z a constant. If the variables xv are real-valued for v £ V, we make 
this into a probability density, multiplying by Yln€Vi dxn. Moreover, we can put 
each model in a family by introducing a temperature T and defining: 

P r T ( x . ) = —e-^cEc({xv}v€CÌ/T^ 
Zp 

These are also called Gibbs models in statistical mechanics (where the Ec are 
called energies) and graphical models in learning theory and, like Markov chains, are 
characterized by their conditional independence properties. This characterization, 
called the Hammersley-Clifford theorem, is that if two vertices a,b £ V are separated 
by a subset S C V (all paths in G from a to 6 must include some vertex in S), then 
xa and Xf, are conditionally independent given {xv}ves- The equivalence of these 
independence properties, plus the requirement that all probabilities be positive, 
with the simple explicit formula for the joint probabilities makes it very convincing 
that MRF's are a natural class of stochastic models. 

3.1. The Ising model 

This class of models is very expressive and many types of patterns which occur 
in the signals of nature can be captured by this sort of stochastic model. A basic 
example is the Ising model and its application to the image segmentation problem. 
In the simplest form, we take the graph G to be a square N x N grid with two 
layers, with observable random variables Pij £ R, 1 < i,j < N associated to the 
top layer and hidden random variables Xij £ {+1, —1} associated to the bottom 
layer. We connect by edges each Xij vertex to the Pij vertex above it and to its 4 
neighbors £ J ± I , J , £ J , J ± I in the ar-grid (except when the neighbor is off the grid) and 
no others. The cliques are just the pairs of vertices connected by edges. Finally, we 
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take for energies: 

Ec = —Xì,j • Xi'ji, when C = {(i,j), (i',j')}, two adjacent vertices in the ar-grid, 

Ec = —Xì,j • Vì,j, when C consists of the (i,j) vertices in the x- and y-grids. 

The modes of the posteriors Pry (a:. | y.) are quite subtle: As at adjacent vertices try-
to be equal but they also seek to have the same sign as the correponding y. If y has 
rapid positive and negative swings, these are in conflict. Hence the more probable 
values of x will align with the larger areas where y is consistently of one sign. This 
can be used to model a basic problem in vision: the segmentation problem. The 
vision problem is to decompose the domain of an image y into parts where distinct 
objects are seen. For example, the oldman image might be decomposed into 6 
parts: his body, his head, his cap, the bench, the wall behind him and the sky. 
The decomposition is to be based on the idea that the image will tend to either 
slowly varying or to be statistically stationary at points on one object, but to change 
abruptly at the edges of objects. As proposed in [G-G], the Ising model can be used 
to treat the case where the image has 2 parts, one lighter and one darker, so that 
at the mode of the posterior the hidden variables x will be +1 on one part, - I on 
the other. An example is shown in figure 4. This approach makes a beautiful link 
between statistical mechanics and perception, in which the process of finding global 
patterns in a signal is like forming large scale structures in a physical material as 
the temperature cools through a phase transition. 

F i g u r e 4: Statistical mechanics can be applied to the segmentation of im­
ages. On the top left, a rural scene taken as the external magnetic field, with 
its intensity scaled so that dark areas are negative, light areas are positive. At 
the top right, the mode or ground state of the Ising model. Along the bottom, 
the Gibbs distribution is sampled at a decreasing sequence of temperatures, 
discovering the global pattern bit by bit. 
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More complex models of this sort have been used extensively in image analysis, 
for texture segmentation, for finding disparity in stereo vision, for finding optic flow 
in moving images and for finding other kinds of groupings. We want to give one 
example of the expressivity of these models which is quite instructive. We saw 
above that exponential models can be crafted to reproduce some set of observed 
expectations but we also saw that scalar statistics from natural signals typically 
have high kurtosis, i.e. significant outliers, so that their whole distribution and not 
just their mean needs to be captured in the model. Putting these 2 facts together 
suggests that we seek exponential models which duplicate the whole distribution 
of some important statistics /.. This can be done using as parameters not just 
unknown constants but unknown functions: 

Pr(x. | <j>,) 
1 

m. 
oT,k 4>k(fk(x.)) 

If fk depends only the variables xv £ Ck, for some clique Ck, this is a MRF, whose 
energies have unknown functions in them. An example of this fitting is shown in 
Figure 5. 

F i g u r e 5: On the left, an image of the texture of a Cheetah's hide, in the 
middle a synthetic image from the Gaussian model with the same second 
order statistics, on the right a synthetic image in which the full distribution 
on 7 filter statistics are reproduced by an exponential model. 

3.2. Bayesian belief propagation 

However, a problem with MRF models is that the dynamic programming style 
algorithm used in speech and one-dimensional models to find the posterior mode has 
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no analog in 2D. One strategy for dealing with this, which goes back to Metropolis, 
is to imitate physics and introduce an artifical dynamics into the state space whose 
equilibrium is the Gibbs distribution. This dynamics is called a Monte Carlo Markov 
Chain (MCMC) and is how the panels in figure 4 were generated. Letting the 
temperature converge to zero, we get simulated annealing (see [G-G]) and, if we do 
it slowly enough, will find the mode of the MRF model. Although slow, this can be 
speeded up by biasing the dynamics (called importance sampling — see [T-Z] for 
a state-of-the-art implementation with many improvements) and is an important 
tool. 

Recently, however, another idea due to Weiss and collaborators (see [Y-F-W]) 
and linked to statistical mechanics has been found to give new and remarkably effec­
tive algorithms for finding these modes. From an algorithmic standpoint, the idea 
is to use the natural generalization of dynamic programming, called Bayesian Belief 
Propagation (BBP), which computes the marginals and modes correctly whenever 
the graph is a tree and just use it anyway on an arbitrary graph G\ Mathematically, 
it amounts to working on the universal covering graph G, which is a tree, hence 
much simpler, instead of G. In statistical mechanics, this idea is called the Bathe 
approximation, introduced by him in the 30's. 

To explain the idea, start with the mean field approximation. The mean field 
idea is to find the best approximation of the MRF p by a probability distribution in 
which the variables xv are all independent. This is formulated as the distribution 
YlvPv(xv) which minimizes the Kullback-Liebler divergence KL(f\vpv,p). Unlike 
computing the true marginals of p on each xv which is very hard, this approximation 
can be found by solving iteratively a coupled set of non-linear equations for the pv. 
But the assumption of independence is much too restrictive. The idea of Bethe is 
instead to approximate p by a ni (G)-invariant distribution on G. 

Such distributions are easy to describe: note that a Markov random field on a 
tree is uniquely determined by its marginals pe (xv, xw) for each edge e = (v, w) and, 
conversely, if we are given a compatible set of distributions pe for each edge (in the 
sense that, for all edges (v,wk) abutting a vertex v, the marginals of P(V}Wk) give 
distributions on v independent of k), they define an MRF on G. So if we start with 
a Markov random field on any G, we get a ni (G)-invariant Markov random field on 
G by making duplicate copies for each random variable xv,v £ V for each v £ V 
over v and lifting the edge marginals. But more generally, if we have any compatible 
set of probability distributions {pe(v,w)}eeE on G, we also get a m(G)-invariant 
MRF on G. Then the Bethe approximation is that family {pe} which minimizes 
KL({pe},p). As in the mean field case, there is a natural iterative method of solving 
for this minimum, which turns out, remarkably, to be identical to the generalization 
of BBP to general graphs G. 

This approach has proved effective in some cases at finding best segmentations 
of images via the mode of a two-dimensional MRF. Other interesting ideas have 
been proposed for solving the segmentation problem which we do not have time 
to sketch: region growing, see esp. [Z-Y]), using the eigenfunctions of the graph-
theoretic Laplacian, see [S-M], and multi-scale algorithms, see [P-B] and [S-B-B]. 
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4. Continuous space and time and continuous sets 
of random variables 

Although signals as we measure them are always sampled discretely, in the 
world itself signals are functions on the continua, time or space or both together. 
In some situations, a much richer mathematical theory emerges by replacing a 
countable collection of random variables by random processes and asking whether 
we can find good stochastic models for these continuous signals. I want to conclude 
this talk by mentioning three instances where some interesting analysis has arisen 
when passing to the continuum limit and going into some detail on two. We will 
not worry about algorithmic issues for these models. 

4.1. Deblurring and denoising of images 

This is the area where the most work has been done, both because of its 
links with other areas of analysis and because it is one of the central problems of 
image processing. You observe a degraded image I(x, y) as a function of continuous 
variables and seek to restore it, removing simultaneously noise and blur. In the 
discrete setting, the Ising model or variants thereof discussed above can be applied 
for this. There are two closely related ways to pass to the continuous limit and 
reformulate this as a problem in analysis. As both drop the stochastic interpretation 
and have excellent treatments in the literature, we only mention briefly one of a 
family of variants of each approach: 

Optimal piecewise smooth approximation of I via a variational problem: 

min f ci (I — J)2dxdy + C2 / / \\X/J\\2dxdy + cs\T 

where J, the improved image, has discontinuities along the set of 'edge' curves F. 
This approach is due to the author and Shah and has been extensively pursued 
by the schools of DeGiorgi and Morel. See [M-S]. It is remarkable that it is still 
unknown whether the minima to this functional are well behaved, e.g. whether F 
has a finite number of components. Stochastic variants of this approach should 
exist. 

Non-linear diffusion of I: 

m = d l v { w J \ \ J + X { I ^ J ) 

where J at some future time is the enhancement. This approach started with the 
work of Perona and Malik and has been extensively pursued by Osher and his 
coworkers. See [Gu-M]. It can be interpreted as gradient descent for a variant of 
the previous variational problem. 
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4.2. Self-similarity of image statistics and image models 

One of the earliest discoveries about the statistics of images J was that their 
power spectra tend to obey power laws 

Exp|(j(e,?])i2«(e2+?}2rA/2, 

where À varies somewhat from image to image but clusters around the value 2. This 
has a very provocative interpretation: this power law is implied by self-similarity! 
In the language of lattice field theory, if I(i, j), i, j £ Z is a random lattice field and 
J is the block averaged field 

!(i,j) = \ (I(2i,2j) + I(2i + l,2j) + I(2i,2j + 1) + I(2i + l,2j + lj), 

then we say the field is a renormalization fixed point if the distributions of J and of J 
are the same. The hypothesis that natural images of the world, treated as a single 
large database, have renormalization invariant statistics has received remarkable 
confirmation from many quite distinct tests. 

Why does this hold? It certainly isn't true for auditory or tactile signals. I 
think there is one major and one minor reason for it. The major one is that the 
world is viewed from a random viewpoint, so one can move closer or farther from 
any scene. To first approximation, this scales the image (though not exactly because 
nearer objects scale faster than distant ones). The minor one is that most objects 
are opaque but have, by and large, parts or patterns on them and, in turn, belong 
to clusters of larger things. This observation may be formulated as saying the world 
is not merely made up of objects but it is cluttered with them. 

The natural setting for scale invariance is pass to the limit and model images 
as random functions I(x,y) of two real variables. Then the hypothesis is that 
a suitable function space supports a probability measure which is invariant under 
both translations and scalings (x, y) >-¥ (ax, ay), whose samples are 'natural images'. 
This hypothesis encounters, however, an infra-red and an ultra-violet catastrophe: 
a) The infra-red one is caused by larger and larger scale effects giving bigger and 
bigger positive and negative swings to a local value of J. But these large scale 
effects are very low-frequency and this is solved by considering J to be defined only 
modulo an unknown constant, i.e. it is a sample from a measure on a function space 
mod constants. 
b) The ultra-violet one is worse: there are more and more local oscillations of 
the signals at finer and finer scales and this contradicts Lusin's theorem that an 
integrable function is continuous outside sets of arbitrarily small measure. In fact, 
it is a theorem that there is no translation and scale invariant probability measure 
on the space of locally integrable functions mod constants. This can be avoided by-
allowing images to be generalized functions. In fact, the support can be as small as 
the intersection of all negative Sobolev spaces f]t

 /H~e. 
To summarize what a good statistical theory of natural images should explain, 

we have scale-invariance as just described, kurtosis greater than 3 as described in 
section 2.1 and finally the right local properties: 
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Hypothes is I A theory of images is a translation and scale invariant probability-
measure on the space of generalized functions I(x, y) mod constants. 

Hypothes is I I For any filter F with mean 0, the marginal statistics of F * I(x, y) 
have kurtosis greater than 3. 

Hypothes is I I I The local statistics of images reflect the preferred local geome­
tries, esp. images of straight edges, but also curved edges, corners, bars, 'T-
junctions' and 'blobs' as well as images without geometry, blank 'blue sky' 
patches. 

Hypothesis III is roughly the existence of what Marr, thinking globally of the image 
called the primal sketch and what Julesz, thinking locally of the elements of texture, 
referred to as taxions. By scale invariance, the local and global image should have 
the same elements. 

To quantify Hypothesis III, what is needed is a major effort at data mining. 
Specifically, the natural approach seems to be to take a small filter bank of zero 
mean local filters A , • • • ,Fk, a large data base of natural images Ia leading to 
the sample of points in R* given by (A * Ia(x, y), • • • , FK * A(x, yj) £ R* for all 
a, x and y. One seeks a good non-parametric fit to this dataset. But Hypothesis 
III shows that this distribution will not be simple. For example Lee et al [L-P-M] 
have taken k = 8, Fi a basis of zero mean filters with fixed 3 x 3 support. They 
then make a linear tranformation in R8 normalizing the covariance of the data to 
Is ('whitening' the data), and to investigate the outliers, map the data with norms 
in the upper 20% to S7 by dividing by the norm. The analysis reveals that the 
resulting data has asymptotic infinite density along a non-linear surface in S7l This 
surface is constructed by starting with an ideal image, black and white on the two 
sides of a straight edge and forming a 3 x 3 discrete image patch by integrating 
this ideal image over a tic-tac-toe board of square pixels. As the angle of the edge 
and the offset of the pixels to the edge vary, the resulting patches form this surface. 
This is the most concrete piece of evidence showing the complexity of local image 
statistics. 

Are there models for these three hypotheses? We can satisfy the first hypoth­
esis by the unique scale-invariant Gaussian model, called the free field by physicists 
— but its samples look like clouds and its marginals have kurtosis 3, so neither the 
second nor third hypothesis is satisfied. The next best approximation seems to be 
to use infinitely divisible measures, such as the model constructed by the author 
and B.Gidas [M-G], which we call random wavelet expansions: 

I(x,y) = ^2<f>i(enx ^ Xi,eny - yi), 

where {(x»,j/j,rj)} is a Poisson process in R3 and (f>i are samples from an auxiliary 
Levi measure, playing the role of individual random wavelet primitives. But this 
model is based on adding primitives, as in a world of transparent objects, which 
causes the probability density functions of its marginal filter statistics to be smooth 
at 0 instead of having peaks there, i.e. the model does not produce enough 'blue 
sky' patches with very low constrast. 
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A better approach are the random collage models, called dead leaves models by 
the French school: see [L-M-H]. Here the & are assumed to have bounded support, 
the terms have a random depth and, instead of being simply added, each term 
occludes anything behind it with respect to depth. This means I(x,y) equals the 
one fa which is in front of all the others whose support contains (x, y). This theory-
has major troubles with both infra-red and ultra-violet limits but it does provide 
the best approximation to date of the empirical statistics of images. It introduces 
explicitly the hidden variables describing the discrete objects in the image and 
allows one to model their preferred geometries. 

Crafting models of this type is not simply mathematically satisfying. It is 
central to the main application of computer vision: object recognition. When an 
object of interest is obscured in a cluttered badly lit scene, one needs a p-value for 
the hypothesis test — is this fragment of stuff part of the sought-for object or an 
accidental conjunction of things occurring in generic images? To get this p-value, 
one needs a null hypothesis, a theory of generic images. 

4.3. Stochastic shapes via random diffeomorphisms and fluid 
flow 

As we have seen in the last section, modeling images leads to objects and these 
objects have shape — so we need stochastic models of shape, the ultimate non-linear 
sort of thing. Again it is natural to consider this in the continuum limit and consider 
a Adimensional shape to be a subset of R*, e.g. a connected open subset with nice 
boundary F. It is very common in multiple images of objects like faces, animals, 
clothes, organs in your body, to find not identical shapes but warped versions. How 
is this to be modeled? One can follow the ideas of the previous section and take 
a highly empirical approach, gathering huge databases of faces or kidneys. This 
is probably the road to the best pattern recognition in the long run. But another 
principle that Grenander has always emphasized is to take advantage of the group 
of symmetries of the situation — in this case, the group of all diffeomorphisms of 
R*. He and Miller and collaborators (see [Gr-M]) were led to rediscover the point 
of view of Arnold which we next describe. 

Let Gn = group of diffeomorphisms on R" and SQn be the volume-preserving 
subgroup. We want to bypass issues of the exact degree of differentiability of these 
diffeomorphisms, but consider Qn and SQn as infinite dimensional Riemannian man­
ifolds. Let {Ot}o<t<i be a path in SQn and define its length by: 

length of path = / I A / ||-s"-(0t
 1(x))\\2dx ] dt. 

This length is nothing but the right-in variant Riemannian metric: 

dist(#, (J + ev) o 0)2 = e2 / ||w||2(Ai • -dxn, where div(u) = 0. 

Arnold's beautiful theorem is: 
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Theorem Geodesies in SQn are solutions of Euler's equation: 

dvt , _ , „ 
-r—h (vt • v)vt = Vp, some pressure p. 
at 

This result suggests using geodesies on suitable infinite dimensional manifolds to 
model optimal warps between similar shapes in images and using diffusion on these 
manifolds to craft stochastic models. But we need to get rid of the volume-
preserving restriction. The weak metric used by Arnold no longer works on the 
full Gn and in [C-R-M], Christensen et al introduced: 

where v is any vector field and L is a fixed positive self-adjoint differential operator 
e.g. (J — A)m,m > n/2. Then a path {9t} in G has both a velocity: 

vt = d^(e^(x)) 

and a momentum: ut = Lvt (so vt = K*ut, K the Green's function of L). What is 
important here is that the momentum ut can be a generalized function, even when 
vt is smooth. The generalization of Arnold's theorem, first derived by Vishik, states 
that geodesies are: 

Qiif, \—\ -» 
~gT + (vf V)(«t) + div(vt)ut = - 2^(u*)jV((wt)i). 

Ì 

This equation is a new kind of regularized compressible Euler equation, called by 
Marsden the template matching equation (TME). The left hand side is the derivative 
along the flow of the momentum, as a measure, and the right hand side is the force 
term. 

A wonderful fact about this equation is that by making the momentum singu­
lar, we get very nice equations for geodesies on the (/„-homogeneous spaces: 

(a) £„, = set of all A-tuples of distinct points in R" and 
(b) Sn = set of all images of the unit ball under a diffeomorphism. 

In the first case, we have £„, — Qn/Gn,o where Gn,o is the stabilizer of a specific set 
{Pf- , • • • , PN } of N distinct points. To get geodesies on Cn, we look for 'particle 
solutions of the TME', i.e. 

JV 

ut = ^2üi(t)6Pi(t) 
ì=i 

where {Pi(t), • • • , PN(ì)} is a path in £n The geodesies on Qn, which are perpen­
dicular to all cosets 0Gn,a, are then the geodesies on £n for the quotient metric: 

dist({Pi},{Pi + eVi})2 = e2 infn < Lv,v > 
(j(P°) = vi) J 

= e2J2Gij(vi-vj) 
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where G = A(||Pj — Pj\\) 1 . For these we get the interesting Hamiltonian ODE: 

dPi 
~dt 

dui 
~dt 

2 ^ A ( [ | P ^ P i [ | ) « i 

j 

-^Vp^dlPï -PHIMï 

which makes points traveling in the same direction attract each other and points 
going in opposite directions repel each other. This space leads to a non-linear 
version of the theory of landmark points and shape statistics of Kendall [Sm] and 
has been developed by Younes [Yo]. 

A similar treatment can be made for the space of shapes Sn — Gn/Gn,i, where 
Gn,i is the stabilizer of the unit sphere. Geodesies on Sn come from solutions of 
the TME for which üt is supported on the boundary of the shape and perpendicu­
lar to it. Even though the first of these spaces S2 might seem to be quite a simple 
space, it seems to have a remarkable global geometry reflecting the many perceptual 
distinctions which we make when we recognize a similar shapes, e.g. a cell decom­
position reflecting the different possible graphs which can occur as the 'medial axis' 
of the shape. This is an area in which I anticipate interesting results. We can also 
use these Riemannian structures to define Brownian motion on Gn,Sn and £„, (see 
[D-G-M], [Yi]). Putting a random stopping time on this walk, we get probability-
measures on these spaces. To make the ideas more concrete, in figure 6 we show a 
simulation of the random walk on <S2. 

F i g u r e 6: An example of a random walk in the space of 2D shapes 52- The 
initial point is the circle on the left. A constant translation to the right has 
been added so the figures can be distinguished. The operator L defining the 
metric is ( I — A ) 2 

5. Final thoughts 
The patterns which occur in nature's sensory signals are complex but allow 

mathematical modeling. Their study has gone through several phases. At first, 
'off-the-shelf classical models (e.g. linear Gaussian models) were adopted based 
only on intuition about the variability of the signals. Now, however, two things are 
happening: computers are large enough to allow massive data gathering to support 
fully non-parametric models. And the issues raised by these models are driving 
the study of new areas of mathematics and the development of new algorithms for 
working with these models. Applications like general purpose speech recognizers and 
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computer driven vehicles are likely in the foreseeable future. Perhaps the ultimate 
dream is a fully unsupervised learning machine which is given only signals from 
the world and which finds their statistically significant patterns with no assistance: 
something like a baby in its first 6 months. 
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