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0 Introduction 

Independence in usual noncommutative probability theory (or in quantum physics) 
is based on tensor products. This lecture is about what happens if tensor products 
are replaced by free products. The theory one obtains is highly noncommutative: 
freely independent random variables do not commute in general. Also, at the level 
of groups, this means instead of Z n we will consider the noncommutative free 
group F (n) = Z * • • • * Z or, looking at the Cay ley graphs, a lattice is replaced by 
a homogeneous tree. 

Three different models of free probability theory are provided by convolution 
operators on free groups, creation and annihilation operators on the Fock space of 
Boltzmann statistics, and random matrices in the large Af limit. 

Important problems on the von Neumann algebras of free groups have been 
solved using free probability techniques, and surprisingly the random matrix model 
has played a major role in this. In another direction there is a free entropy quantity 
that goes with free independence. 

Concerning connections with other fields we should signal that combinato­
rial objects (noncrossing partitions, random permutations) have appeared in free 
probability theory and that random matrices are used in physics. 

We have divided our survey into five sections: 

(1) Free random variables 
(2) Free harmonic analysis 
(3) Asymptotic models 
(4) Applications to operator algebras 
(5) Free entropy. 

At the end, an Appendix explains a few basic notions in operator algebras for the 
reader not conversant in C*- and W*-algebras. 

1 Free Random Variables 

For noncommutative probability spaces, the usual prescription applies: replace the 
functions on a space by elements of a (possibly noncommutative) algebra. Thus: 
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1.1 DEFINITION. A noncommutative probability space is a imitai algebra A over 
C endowed with a linear functional 0 : A —> C such that 0(1) = 1. The elements 
of A are called random variables and the distribution of a random variable a G A 
is the map \ia : C[X] -> C given by ßa(P(X)) = 0(P(a)). 

The above definition is only an algebraic caricature, sufficient for discussing 
questions such as independence. (Positivity and almost everywhere convergence 
require additional structure: A a C*-algebra and <f> a state or, even more, a von 
Neumann algebra with a normal state. In the C*-case, if a — a*, the distribution 
functional fia extends to a compactly supported probability measure on K.) 

Usually independence is modeled on tensor products. The idea of free prob­
ability theory is to replace tensor products by free products. 

1.2 DEFINITION. A family of subalgebras 1 G Ai C A (i G J) in a noncommutative 
probability space (A, (ß) is called a free family of subalgebras if 

cj)(ai... On) = 0 

whenever aj G ^U(j) with i(j) ^ i(j + 1) (1 < j < n) and (ß(aj) = 0 (1 < j <n). 
Families of subsets or of random variables in (A, cß) aie free if the generated unital 
subalgebras are free. 

As for usual independence, if the free family of subalgebras Ai (i E I) gen­
erates A, then (j) is completely determined by the restrictions (ß\Ai (i G I) . What 
distinguishes freeness and independence is that free random variables are highly 
noncommuting. 

1.3 EXAMPLES, (a) Let G = * Gì be a free product of groups and let A be 
ièi 

the left regular representation of G on £2(G). Let further W and Wi (i G /) be 
the weakly closed subalgebras generated by X(G) and X(Gi) respectively. The von 
Neumann trace r : W —> C is given by r(T) = (T6e,6e) where 6g (g G G) is the 
canonical basis of £2(G). Then the Wi (i G /) are free in (W,r). 

(b) Let U be a complex Hilbert space and let TTL = ®k>oH®k where H®° = 
CI. Let further l(h)£ = /i®£ be the creation operators on the full Fock space TTC 
and let e(X) = (XI, 1) be the vacuum expectation. If Hi (i G / ) are mutually 
orthogonal subspaces of TL, then the generated subalgebras C*(£(?ii)) (i G /) are 
free in {C*{l{H)\e). 

1.4 The analogue of the Gaussian law in the free context is the semicircle law, i.e. 
probability measures on M with densities having a semiellipse graph: 0 if \t — a\ > R 
and equal to 2TT~1R~2(R2 — (t — a)2)* if \t — a\ < R. Indeed, we have the following 

F R E E CENTRAL LIMIT THEOREM [32]. If (fn)neN is a free family of random 
variables in (A, cß) so that (ß(fn) = 0 (n G N), 

lim AT1 Y cß(f2) = A^R2 > 0 
l<n<iV 

sup |0(/£)| < oo for all k G N 
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then, if 

AH £ h 
l<k<N 

the distributions ßsN converge pointwise on C[X) to the semicircle law with density 
27T~1R-2Re(R2-t2)i. 

Convergence in the previous theorem is in a very weak sense. Actually, in 
the free context convergence to the central limit is much stronger than in usual 
probability theory (see [1] concerning this superconvergence). 

1.5 Roughly speaking, the Gaussian process over a real Hilbert TL space is the pro­
cess indexed by H, the random variable corresponding to h being ( • , h) : H —> M, 

"when TL is endowed with the Gaussian measurer This is part -of the Gaussian" 
functor of second quantization, which takes real Hilbert spaces and contractions 
to commutative von Neumann algebras with specified trace state and trace- and 
unit-preserving completely positive maps. The canonical anticommutation rela­
tions provide a fermionic analogue. We have found a third such functor, which is 
the free analogue of these. 

T H E F R E E ANALOGUE OF THE GAUSSIAN FUNCTOR [32]. If H is a real Hilbert 
space, let He be its complexification and let THc and £(h) be as in 1.3(b). Let 
further s(h) = l/2(£(h) + £(h)*). 

(i) The von Neumann algebra $(H) generated by s(H) is isomorphic to the 
III factor of a free group on dim H generators (if dim H > 1) and the trace state 
is given by the vacuum expectation (-1,1). 

(ii) If T : Hi —> H2 is a contraction there is a unique completely positive 
map $(T) : <&(Hi) -> ®(H2) such that 

(®(T))(X)1=T(TC)(X1). 

The map $(T) is trace and unit preserving. 
(iii) If (Hi) iç. 1 is a family of pairwise orthogonal subspaces in H and v(i) are 

the corresponding inclusions, then ($(v(i)))($(Hi))i£i is free in $(H). 
(iv) Orthogonal vectors correspond to free variables via the map s : H —> 

$(H) and the distribution of s(h) is a centered semicircle law. 

Gaussian processes are obtained by mapping the index set of the process into 
a Hilbert space and then composing with the Gaussian process over the Hilbert 
space. Composing with the free analogue (i.e. with s : H —> ®(H)) one gets the free 
analogue of Gaussian processes. Free increments correspond to the requirement of 
orthogonal increments for the map into the Hilbert space. For instance, Brownian 
motion corresponds to H — L2(0,oo) and the Hilbert space curve [0,00) 3 t —> 
%[o,t) G L2(0,00). The free analogue of Brownian motion is then obtained by taking 
[0,oo) 3 t —> sC^o,*)), a possibility used in [28]. 

1.6 Generalizations of various parts of the free probability context have been 
studied. We would like to mention here the following two. 
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(a) Free products with amalgamation over an algebra B [32], [36]. One re­
places the complex field C by an algebra B over C. The noncommutative probabil­
ity space A is then an algebra containing B as a subalgebra and the expectation (ß 
is a B — 5-bimodule projection 0 : A —> B. There is a corresponding definition of 
S-freeness and the corresponding operator-algebra context has also been studied. 

(b) Deformed Cuntz relations [6]. A natural model in which free random 
variables arise is provided by the creation operators 1(h) (Example 1.3(b)). They 
satisfy the Cuntz relations £(h)*£(k) = (h, k)I. A deformation of these relations is 

£(h)*£(k)-fi£(k)£(hy = (h,k)I 

fi G [—1,1]. This provides an interpolation between the three cases fi = —1,0,1, 
which correspond, respectively, to the fermionic, free, and bosonic creation oper­
ators. 

1.7 Free stochastic integrations. Stochastic integration in the free case has been 
studied in papers by R. Speicher, K. R. Parthasarathy, B. K. Sinha, F. Fagnola, 
L. Accardi, and B. Kümmerer. 

2 Free Harmonic Analysis 

2.1 Free convolution. The distribution of the sum of two independent random 
variables is the (additive) convolution of their distributions. By analogy on E = 
{/ : C[X] —• C[ / linear, / ( I ) = 1}, there are operations EH and Ê3 called, respec­
tively, additive and multiplicative free convolution so that if a, b aie free random 
variables in some noncommutative probabihty space then fia+b = Ma B3 /i& and 
fiab = fia ^ fib [32]. Because this does not depend on the concrete realizations of 
the variables with distribution fia, fib and because the sum of self-adjoint operators 
is self-adjoint j the product of the unitaries unitary, etc., we have that EB extends to 
an operation on compactly supported probabihty measures on IR, while Ë3 defines 
operations on the compactly supported probability measures o n l x , M+, and T. 
Clearly EB is commutative and actually Kf is also commutative. Moreover, [2] EB 
extends to an operation on all probability measures on IR, while Kl extends to an 
operation on probability measures on IR+ — which correspond to operations on 
"unbounded" random variables. 

2.2 The linearizing transforms. The computation of free convolution can be done 
using a linearizing transform. This is like computing the usual convolution of two 
probabihty measures using the logarithm of the Fourier transform (which linearizes 
convolution). 

THEOREM [33]. If fi G E let G^(z) = z~x + £ n > i / i p f " ) * - " " 1 and let K^z) G 
z~x + C[[z]} be such that Gß(Kß(z)) = z. Then Rß(z) = Kß(z) - z'1 has the 
property that Rß3 = Rßl + Rß2 if fis = fii ffl fi2-

If fi is a compactly supported probability measure then G^ is its Cauchy 
transform and R^ is analytic near 0. The linearization result also extends to the 
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case of unbounded supports using analytic functions in angular domains ([2], an 
intermediate generalization is given in [16]). 

A similar linearization result holds for the multiplicative free convolution E3 
[34] and also has an analytic function extension to the case of unbounded supports 
[2]-

2.3 F-Infinitely divisible laws. A probability measure fi on IR is called F-infinitely 
divisible if for every n G N there is fii/n so that fi\/n EB • • • EB fii/n = fi. A family of 

v v ' 
7i times 

probability measures (fit)t>o on IR is an F1-convolution semigroup if fit+s = fit^fis 
and fit depends continuously on t. There is bijection between ^-infinitely divisible 
measures and F-convolution semigroups. Stationary processes with free increments 

-naturally-leadto -these definitions^— 
If (fit)t>o is an JF-convolution semigroup, then the Cauchy transforms 

G(t,z) = Gflt^nf(z) for some probability measure 7 on R satisfy the complex 
quasilinear equation 

dG dG ±f^ n 

where (j)(z) = Rßl(z). In particular, the complex Burger equation 

dG „ dG n 

is the analogue of the heat equation, as R^(z) = az if fi is a centered semicircle 
law (which is the free analogue of the Gauss law). 

THEOREM, fi is F-infinitely divisible iff Rß has an analytic extension to {z G 
C|Im z < 0} with values in {z G C|Im z < 0}. 

(The case of compactly supported measures is given in [33], the intermediate 
case of measures with finite variance in [16], and the result in full generality in 

[2].) 
The condition on the imaginary part of Rß(z) implies the existence of an 

integral representation, which makes the above theorem an analogue of the Levy-
Khintchine theorem. The analogy goes even further when we remark that the free 
Poisson distribution defined by 

.ffln 

n 
lim ((1 - -)60 + - 6b) n-»00 \ n n J 

has the R-function R(z) — ab(l — bz)^. The free Poisson measure is given by 

(1 - a)6Q + v i f 0 < a < l 

v 11 a > 1 

where v has support in [&(1 — yfa)2,6(1 + \fa)2\ and density (27T6£) 1(4ab2 — (t — 
&(l + a))2)l. 
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2.4 F-Stable laws [2]. Replacing usual convolution by free convolution in the 
definition of stable laws one defines F-stable laws. F-stable laws were classified in 
[2], up to taking certain linear combinations, the main types are given by 

(i) R(z) = a, a G C, Im a < 0 
(ii) R(z) = z^signia - 1), a G (0,1) U (1,2) 

(iii) R(z) = log z. 

As for infinitely divisible laws this runs essentially parallel to the classical 
case. 

The usual Cauchy distribution and the free Cauchy distribution, given by 
R(z) = —i coincide. 

2.5 Multiplicative F-infinite divisibility. Infinitely divisible probability measures 
with respect to the operation IE on T were classified in [1] and on R + in [2]. 

Note that the generating function for the measure fi, which is the free ana­
logue of the multiplication Gaussian distribution (i.e. of the log-normal distribu­
tion) iß(z) = ]Cn>i/i(^77');z71'> c a n be expressed using the generating series for 
rooted labelled trees 

- l 

zn . ^ n\ 
n>l 

2.6 Nonprossing partitions. Because the map fi —> Rß linearizes the free con­
volution it follows that if R^(z) = ^CnX^^WiCAO^77, ^n e coefficients Rn+i(fi) are 
polynomials in the moments of fi and i ^ + i ^ i EB fi2) = Rn+i(fii) -f- Rn+i(fi2)-
The Rn+i(fi) are the free analogues of the cumulants of fi. In [29] it was shown 
that the formulae giving the free cumulants are entirely analogous to those for 
the usual cumulants if we replace the lattice of all partitions of { 1 , . . . ,n} by the 
lattice of noncrossing partitions (i.e. partitions with crossing pairs {a,c},{6,c} 
where a < b < c < d do not lie in different sets of the partition). There are more 
general such formulae based on noncrossing partitions [29], [30], [20], [21] which 
characterize freeness of sets of random variables. It seems that the passage from all 
partitions to the noncrossing partitions is the combinatorial aspect of going from 
usual independence to free independence,. 

2.7 Generalizations of the free harmonic analysis, (a) 5-free convolution. Free 
convolution and its linearization were extended to the context of 5-freeness in [36]. 
A combinatorial approach based on noncrossing partitions to linearization and to 
the classification of infinitely divisible distributions (with moments of all orders) 
in the B-free context was developed in [30]. 

Multiplicative free convolution is no longer commutative for general B and 
there are nonlinear systems of differential equations that replace linearization [36]. 

(b) Deformed linearization maps. The linearization map involves certain 
canonical forms of random variables in creation and annihilation operators on 
the full Fock-space. Passage to the deformed Cuntz-relation was used to construct 
deformed free convolution [6] and its linearization map [21]. 
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3 Asymptotic Models 

3.1 Gaussian random matrices. The semicircle law that appears in the free cen­
tral limit theorem also occurs in Wigner's work on the asymptotic distribution of 
eigenvalues of large Gaussian random matrices [41], [42]. The explanation we found 
[38] for this coincidence is that large Gaussian random matrices with independent 
entries give rise asymptotically to free random variables. Moreover, this asymptotic 
model is the bridge connecting classical and free probability theory. Indeed, inde­
pendence of matrix-valued random variables is transformed into free independence 
of the corresponding noncommutative random variables (asymptotically). 

The precise statements are as follows. 
Let (An,cßn) and (A^^oo) be noncommutative probability spaces and let 

(Xnii)i£i, n G N U {oo} be in An. Then (XUii)iei converges in distribution to 

(^oo.ijiei if 
lim (ßn(P((Xn^j)) —> cß00(P(X00ii)ieI) 

for every noncommutative polynomial P in indeterminates indexed by I. In par­
ticular the (XUii)iej are asymptotically free if they converge in distribution to a 
free family. 

A family (xi)iei is called semicircular iî the Xi have equal centered semicircle 
distributions and are free. In a C*-probability space we require in addition that 
Xi — X • . 

For asymptotics of random matrices the appropriate (An,(ßn) are An = 
rii<p<oo Lp(ü, Mn) where (ft, da) is some standard probability measure space and 

(ßn(X) = - [ TrX(uj)da(uj) . 

THEOREM [38]. Let Y(i,n) = (a(i,j',n,i)i<iij<n) G An be real random matrices 
(L G / ) . Assume a(i,j;n,i) = a(j,i\n,i) and {a(i,j;n,i)\l < i < j < n, L G / } is 
a family of independent Gaussian (0,1/n) random variables. Let further Dn G An 

be a constant diagonal random matrix having a limit distribution as n —> oo. 
Then {Y(L,Iï)\L G / } U {Dn} is asymptotically free as n —> oo and {Y(L,U)\L G / } 
converges in distribution to a semicircular family. 

3.2 Unitary random matrices. Using polar decomposition (i.e. noncommutative 
functional calculus) and results of Gromov-Milman on isoperimetric inequalities 
yields stronger versions of the preceding result for unitary random matrices. 

THEOREM [38]. Given e > 0 and a nontrivial element 

q = nkl nk2 ... qkm 

(m > 1, kj ^ 0, is ^ is-j-i) of the free group on p generators, let 

fin(ff) = {("i, • • • ,uv) e (U(n)Y\rn(u^ .. . u ^ ) | < e) 
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where rn = n~1Tr is the normalized trace on (n x n) -matrices. Then we have 

lim fin(iïn(g)) = 1 
n—>oo 

where fin is the normalized Haar measure on (U(n))p. 

The preceding theorem has a more general form where a constant diagonal 
unitary also appears. This implies asymptotic freeness results for random matrices, 
which as matrix-valued variables are independent and are distributed according 
to the invariant measures of unitary orbits of self-adjoint matrices (this includes 
random projections, etc.). 

3.3 Further results. Further extensions of the preceding theorems include results 
for real symmetric and antisymmetric Gaussian random matrices [38], for matrices 
with fermionic entries [38], and matrices with independent non-Gaussian entries 
together with a finite-dimensional constant algebra [10]. A generalization of the 
random matrix result involving representations has been obtained in [4]. 

In a different direction in [18] freeness results were obtained for indepen­
dent uniformly distributed random permutation matrices. (Further combinatorial 
results for words in independent random permutations related to this are given 
in [19].) 

3.4 Applications. Many of the known asymptotic distribution of eigenvalue results 
for random matrices can be recovered from the asymptotic freeness results. Indeed, 
many of these are obtained via noncommutative functional calculus from random 
matrices like those in the preceding theorems. Hence the limit distribution of 
eigenvalues in the large n limit is the same as the distribution of an element in a 
certain algebra generated by free random variables, the distribution of which can 
be computed, in certain cases via free convolution operations. 

Related to the asymptotic freeness results for random matrices, it was re­
cently discovered in [5] that free convolution occurs asymptotically in the de­
composition into irreducible representations of tensor products of representations 
of U(n). 

Last but not least there are applications to the Hi factor of free groups, 
which we shall survey in the next section. 

4 Applications to Operator Algebras 

Free probabihty theory and especially asymptotic random matrix realization have 
led to a surge of new results on the von Neumann algebras of free groups. These 
recent results will be surveyed here, preceded by some background on Hi -factors. 

4.1 J/i-Factors of discrete groups. A factor is a von Neumann algebra M with 
trivial center Z(M) = CI. The factor M is type Hi if it has a trace-state r : 
M —> C (which is then unique) and is infinite dimensional. As P ranges over 
projections in M, r(P) takes all values in [0,1], which corresponds to a geometry 
with subspaces having dimensions in [0,1]. 
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L(G), the von Neumann algebra of the left regular representation A(G), is a 
Jii-factor iff G has infinite conjugacy classes (i.c.c). The L(G)'s are a rich source 
of Ui-factors (G will be assumed countable in what follows). 

By a deep theorem of Connes [7] all L(G) with amenable G are isomorphic 
— the hyperfinite Hi -factor. This is the "best" among all Hi -factors; it has a 
large automorphism group and good finite-dimensional approximation properties, 
and there are approximately central elements (property T of von Neumann). The 
remarkable properties of the hyperfinite Hi -factor made an in-depth study of its 
subfactors possible. 

At the other extreme are the L(C7)'s for G with property T of Kazhdan [8], 
[9]. These Hi -factors have rigidity properties, few automorphisms, no approxima­
tion properties, and no approximate center (non-r). It is conjectured (by Connes) 

-thatMsomoiphisms-among-these-L^ 
ing groups. 

The free group factors L(Fn) (n = 2,3,..., oo) have intermediate properties: 
some approximation properties (compact instead of finite-rank) and some proper­
ties towards rigidity (non-r). Like the hyperfinite Hi -factor, which is related to 
the fermionic context of the canonical anticommutation relations, the free group 
factors are related to the free analogue of the Gaussian functor. This could mean 
that the free group factors are the "best" among the "bad" (i.e. non-r) Hi -factors. 

4.2 The free probabihty technique [37] Semicircular and circular systems are the 
free analogues of, respectively, independent real and complex Gaussian random 
variables. They provide convenient sets of generators for free group factors. The 
asymptotic random matrix models based on Gaussian random matrices are the 
source for many of the properties of circular and semicircular systems. 

A system of self-adjoint random variables (SJ)J^J is semicircular if the s '̂s 
are free and have identical centered semicircle distributions. Similarly, (ci)i^i is 
circular if (Re Cì)ì^I U (Im Cì)ìEJ is semicircular. 

A block of a Gaussian random matrix, being a matrix of the same kind, 
implies that if p — p* = p2 is free with respect to a semicircular system (s j ie j 
then the compression (psip)i^r is semicircular in (pAp, 0(p)_10(-))- i n the polar 
decomposition c = ii|c| of a circular element, u and \c\ are free. Cutting and pasting 
blocks of Gaussian random matrices have analogues for circular and semicircular 
systems. For instance, if (cij-^icij^^^s is circular, then the matrices Xs = 
Y^i<i,j<n

 cijis ® Cij, s G S, form a circular system. 

I introduced this free probability technique and used it to obtain results on 
free group factors in [37] ; the applications to free group factors were subsequently 
carried much further by Radulescu and Dykema. 

4.3 The fundamental group J7(L(F1(oo))). If M is a Ui-factor and p = p2 G M 
the isomorphism class of pMp depends only on À = r(p) and is denoted M\. The 
fundamental group F(M) [17] consists of those A G (0,1] such that M\ ~ M and 
their inverses. For the hyperfinite Hi -factor R, F(R) = (0,oo). By a result of 
Connes T(L(G)) is countable if G is an i.c.c. group with property T. 
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THEOREM. ^(X(F(oo))) = (0,oo). 

That .F(L(.F(oo))) D Qn(0,oo) was proved in [37] by me, the complete result 
was then obtained by Radulescu [23]. 

4.4 The compressions (L(F(n)))\ 

THEOREM [37]. (L(F(n)))i/N ~ L(F(N2(n - 1) + 1)), N G N, n = 2 , 3 , . . . , oo. 

The preceding result, a first application of the free probability technique, was 
extended in several directions. 

THEOREM [24], [25]. Ifp,qeN, 2<p<q, and X = (p - l)*(q - 1)"2, then 

(L(F(p)))x = L(F(q)). 

Building on this, Dykema [12] and Radulescu [25] (independently) defined 
interpolated free group factors L(F(s)), s > 1, s G IR, satisfying the formula in 
the preceding theorem for arbitrary real q > p > 1. Moreover for arbitrary real 
p>l, q>l, 

L(F(p))*L(F(q))~L(F(p + q)). 

4.5 Free products. A few preliminary results [37], [10] identifying certain free 
product von Neumann algebras with free group factors were greatly extended by 
Dykema [11]. If A, B are injective separable von Neumann algebras with specified 
faithful normal trace-states and if A * B is a factor, then it is isomorphic to one of 
the interpolated free group factors L(F(s)). Moreover, formulae for the parameter 
s axe given in [11]. A further generalization is given in [13]. 

4.6 Subfactors. Radulescu has shown in [25] that £(^(00)) has subfactors of all 
allowable Jones indices < 4, i.e. the numbers 4 cos2 ^ of [15]. The proof involves 
random matrices and results of [22] on constructing subfactors via amalgamated 
free products. Note that the fundamental group of L(F(oo)) being (0,oo) implies 
the existence of subfactors of indices > 4. 

4.7 The isomorphism problem. The question of whether the free group factors 
L(F(m)) are isomorphic or not for different values of m is still unresolved (this 
problem appears on Kadison's Baton Rouge problem list). 

4.8 Type III factors. In [26] Radulescu showed that the free product of L("Z) with 
the (2x2) matrix algebra endowed with a nontracial state is a type III factor and 
that its core is isomorphic to L(F00)<S}B(H). Further results on free product type 
III factors were obtained by Barnett and Dykema. 

4.9 Quasitraces. Uses of semicircular systems have not been confined to W*-
algebra questions. A surprising application of semicircular systems appears in 
Haagerup's solution of the quasitraces problem for exact C*-algebras [14]. 
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5 Free Entropy [39] 

5.1 The definition of free entropy. In classical probability theory, the entropy of 
an 7i-tuple / = (fi,... , fn) of random variables is given by 

S(f) = - [ p(t)]agp(t)dt 

where p is the density of the distribution of (fi,... ,fn). To define a free en­
tropy x(Xi) • •. ,Xn) for an 77,-tuple of self-adjoint random variables in a tra-
cial W*-probability space, we had to go back to Boltzmann's S = klogW (i.e., 
roughly, the entropy is proportional to the logarithm of the measure of a set of mi-
crostates) and take into account that independence of random matrices gives rise 
asymptotically to freeness. This means we will choose approximating microstates 
V-R(Xi, ,Xn\771,k,E) to-be-the sets of-(j4i,.. .~,An) G (M^)71 so-that 

\r(Xi, ...Xip)- k-'TiiAi, ... Aiv)\ < e 

for all 1 < p < m, (ii,... ,ip) G {1 , . . . ,n}p and ||Aj|| < R, 1 < j < n. With vol 
denoting the volume on (M^a)n f°r ^n e s c a ^ a r product defined by the trace Tr, we 
take 

liiYisup(/c-2 log vol TR(Xi,..., Xn; m, k, e) + - log k) 
/c-»oo ^ 

and then define x(Xi,... ,Xn) to be 

sup inf inf 
R>Q mGN £ > 0 

of that quantity. 
Note that a similar definition for the classical entropy is possible, taking 

instead of all matrices M^ only the diagonal ones. 

5.2 Properties of free entropy 

(1) For one variable X with distribution fi, 

X(X) = j j log \s - t\ dfi(s) dfi(t) + | + \ log 2TT 

(2) x(Xu • • • , Xn) < I log(27re7i-1C) where C2 = r(X2 + • • • + X2). 
(3) If (X[p),... , X^) converge strongly to (Xu. ..,Xn) then 

lim sup x(x[p),..., XW ) < x(Xi,.. •, Xn) 
p—>oo 

(4) x(Xi,... ,Xm+n) < x(Xi,... ,Xm) + x(Xm+i,. • • , Xm+n) 
(5) If Xi,..., Xn are free, then X{XU . . . , X n ) = x(Xi) + • • • + x(Xn)-
(6) Let F — (Fi,... ,Fn) where Fj are noncommutative power series in n 

indeterminâtes. Under suitable convergence assumptions and the existence 
of an inverse (with respect to composition) of the same kind, 

X(F(Xlt... ,Xn)) = x(XU- • • ,Xn) + \og\J\ 

where |,7| (the "positive Jacobian") is the Kadison-Fuglede positive de­
terminant of the differential DF(Xi,... ,Xn) viewed as an element of 
M(g)Mo p(8)Mi-
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5.3 The free analogue of Fisher's information measure. By analogy with the 
classical case, the free analogue of the Fisher information measure is 

$(X) = l i m e - 1 ^ * + VÏS) - x(X)) 
ej.0 

where S is (0, l)-semicircular and X, S are free. If dfi(t) = v(t)dt (fi the distribution 
of X) then 

<S>(X) = \jv*(t)dt. 

The free analogue of the Cramér-Rao inequality is 

(/«"(*)*)(/*"«(*)*) >J ï 
where v G L1 n L3 is a probability density. Equality holds iff v is a centered 
semicircle law. 

5.4 The free entropy dimension. The entropy being a kind of normalized (loga­
rithm of) volume, one may imitate the idea of the Minkowski content and define 
a dimension quantity from the asymptotic of volumes of ^-neighborhoods. This is 
realized via a free semicircular perturbation. The free entropy dimension is 

r,v ^ x . r x(Xi+eSi,...,Xn + eSn) 
6(Xi,..., Xn) =n + hmsup — : 

e-o | log e | 
where ( S i , . . . , Sn) and (Xi,... ,Xn) aie free and (Si,..., Sn) is a semicircular 
system. 

(1) ö(Xi,... ,Xn) < n and it is > 0 if Xi,... , Xn can be realized in a free 
group factor L(Frn). 

(2) 6(Xi,... ,Xv+q) < 6(Xi,... ,XP) + fi(-Xp+i,... ,-Xp+g). 

(3) If Xi,... ,Xn are free then 8(XU ...,Xn) = 6(Xi) + • - - + 6(Xn). 

(4) If fi is the distribution of X, 6(X) = 1 - Y^teR&dt}))2• 

5.5 Free entropy dimension and smooth changes of generators 

THEOREM. If Xi,..., Xn and Yi , . . . , Ym are semicircular generators of the same 
W*-algebra M and if Y i , . . . , Ym are "smooth noncommutative functions ofXi,..., 
Xn" then n>m. 

Here Yj is a smooth noncommutative function of (Xi,... ,Xn) if 

d2(Yj,W*(Xi+£Si,...,Xn + eSn)) = 0(Es) forali s < l 

where d2 is the 2-norm distance defined by the trace ( S i , . . . , Sn) semicircular and 
free with respect to (Xi,... ,Xn). For instance, elements obtained via suitably 
convergent noncommutative power series are smooth. 

Note that if "smooth" could be replaced by "Borei" the corresponding result 
would imply m ^ n => L(F7n) nonisomorphic to L(Fn). In particular, the same 
conclusion, concerning the isomorphism problem of free group factors, would be 
reached, from an affirmative answer to the 
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S E M I C O N T I N U I T Y P R O B L E M . If (x[p\... ,Xn) converges strongly to (Xi,..., 

Xn) does it follow that liminfJl-_00 6(x[p),.. .,X^p)) > 6(XU... ,Xn) ? 

The explicit formula for 8 in case n = 1 implies an affirmative answer. 
Note also tha t if Xi,... ,Xn arc free and generate a factor, then comparing 

S(Xi,... ,Xn) with the results of [11] we have 

W*(XU • • •, Xn) ~ L(F(6(XU..., Xn))) . 

Appendix: Operator Algebra Glossary 

C*-algebras are involutive Banach algebras isomorphic to norm-closed sub-alge­
bras of the algebra of all bounded operators on some complex Hilbert space B{Ji) 
and which together with an operator T contain its adjoint T*. 

A functional (ß : A —> C (A a C*-algebra) is a state if \\(ß\\ = 1 and (ß is positive, 
i.e. (ß(a*a) > 0 for all a G A. By a theorem of Gel'fand-Naimark commutative C*-
algebras are precisely the algebras of continuous functions CQ(X) vanishing at 
infinity on some locally compact space — states are Radon probability measures 
o n X . 

A von Neumann algebra M (or W*- algebra) is a *-subalgebra of B(H) tha t 
contains the identity and is closed in the weak operator topology, i.e. if Xi is a net 
of operators in M and (xi,h,k) —» (xh,k) for some x G B(7i) and all h, k G Ti, 
then x is in M. 

A functional r : A —> C on an algebra is a trace if r(ab) = r(ba) for all 
a,b G A. 
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