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Abstract

We present an introduction to Isogeometric Analysis, a new methodology for

solving partial differential equations (PDEs) based on a synthesis of Computer

Aided Design (CAD) and Finite Element Analysis (FEA) technologies. A prime

motivation for the development of Isogeometric Analysis is to simplify the pro-

cess of building detailed analysis models for complex engineering systems from

CAD representations, a major bottleneck in the overall engineering process.

However, we also show that Isogeometric Analysis is a powerful methodology

for providing more accurate solutions of PDEs, and we summarize recently ob-

tained mathematical results and describe open problems.
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1. Introduction

Designers generate CAD (Computer Aided Design) files and these must be

translated into analysis-suitable geometries, meshed and input to large-scale fi-

nite element analysis (FEA) codes. This task is far from trivial and for complex

engineering designs is now estimated to take over 80% of the overall analysis

time, and engineering designs are becoming increasingly more complex; see Fig-

ure 1. For example, presently, a typical automobile consists of about 3,000 parts,

a fighter jet over 30,000, the Boeing 777 over 100,000, and a modern nuclear

submarine over 1,000,000. Engineering design and analysis are not separate en-

deavors. Design of sophisticated engineering systems is based on a wide range of

computational analysis and simulation methods, such as structural mechanics,

fluid dynamics, acoustics, electromagnetics, heat transfer, etc. Design speaks

to analysis, and analysis speaks to design. However, analysis-suitable models
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Figure 1. Engineering designs are becoming increasingly complex, making analysis a

time consuming and expensive endeavor. (Courtesy of General Dynamics / Electric

Boat Division.)

are not automatically created or readily meshed from CAD geometry. Although

not always appreciated in the academic analysis community, model generation

is much more involved than simply generating a mesh. There are many time

consuming, preparatory steps involved. And one mesh is no longer enough. Ac-

cording to Steve Gordon, Principal Engineer, General Dynamics Electric Boat

Corporation, “We find that today’s bottleneck in CAD-CAE integration is not

only automated mesh generation, it lies with efficient creation of appropriate

‘simulation-specific’ geometry.” (In the commercial sector analysis is usually re-

ferred to as CAE, which stands for Computer Aided Engineering.) The anatomy

of the process has been studied by Ted Blacker, Manager of Simulation Sciences,

Sandia National Laboratories. At Sandia, mesh generation accounts for about

20% of overall analysis time, whereas creation of the analysis-suitable geom-

etry requires about 60%, and only 20% of overall time is actually devoted to

analysis per se; see Figure 2. The 80/20 modeling/analysis ratio seems to be a

very common industrial experience, and there is a strong desire to reverse it,

but so far little progress has been made, despite enormous effort to do so. The

integration of CAD and FEA has proven a formidable problem. It seems that

fundamental changes must take place to fully integrate engineering design and

analysis processes.

It is apparent that the way to break down the barriers between engineer-

ing design and analysis is to reconstitute the entire process, but at the same
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Figure 2. Estimation of the relative time costs of each component of the model gener-

ation and analysis process at Sandia National Laboratories. Note that the process of

building the model completely dominates the time spent performing analysis. (Cour-

tesy of Michael Hardwick and Robert Clay, Sandia National Laboratories.)

time maintain compatibility with existing practices. A fundamental step is to

focus on one, and only one, geometric model, which can be utilized directly as

an analysis model, or from which geometrically precise analysis models can be

automatically built. This will require a change from classical FEA to an anal-

ysis procedure based on CAD representations. This concept is referred to as

Isogeometric Analysis, and it was introduced in [21]. Since then a number

of additional papers have appeared [1, 2, 3, 5, 6, 7, 8, 9, 13, 14, 16, 18, 19] as

well as a book [12].

There are a number of candidate computational geometry technologies that

may be used in Isogeometric Analysis. The most widely used in engineering de-

sign are NURBS (non-uniform rational B-splines), the industry standard (see

[17, 22, 23, 11]). The major strengths of NURBS are that they are convenient

for free-form surface modeling, can exactly represent all conic sections, and

therefore circles, cylinders, spheres, ellipsoids, etc., and that there exist many

efficient and numerically stable algorithms to generate NURBS objects. They

also possess useful mathematical properties, such as the ability to be refined

through knot insertion, Cp−1
-continuity for pth-order NURBS, and the varia-

tion diminishing and convex hull properties. NURBS are ubiquitous in CAD

systems, representing billions of dollars in development investment. One may

argue the merits of NURBS versus other computational geometry technologies,

but their preeminence in engineering design is indisputable. As such, they were

the natural starting point for Isogeometric Analysis and their use in an analysis

setting is the focus of this paper.
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T-splines [24, 25] are a recently developed forward and backward generaliza-

tion of NURBS technology. T-splines extend NURBS to permit local refinement

and coarsening, and are very robust in their ability to efficiently sew together

adjacent patches. Commercial T-spline plug-ins have been introduced in Maya

and Rhino, two NURBS-based design systems (see references [27] and [28]).

Initiatory investigations of T-splines in an Isogeometric Analysis context have

been undertaken by [4] and [15]. These works point to a promising future for

T-splines as an isogeometric technology.

2. Basics of NURBS-based Isogeometric

Analysis

In FEA there is one notion of a mesh and one notion of an element, but an ele-

ment has two representations, one in the parent domain and one in the physical

space. Elements are usually defined by their nodal coordinates and the degrees-

of-freedom are usually the values of the basis functions at the nodes. Finite

element basis functions are typically interpolatory and may take on positive

and negative values. Finite element basis functions are often referred to as “in-

terpolation functions,” or “shape functions.” See [20] for a discussion of the

basic concepts.

In NURBS, the basis functions are usually not interpolatory. There are two

notions of meshes, the control mesh
1
and the physical mesh. The control points

define the control mesh, and the control mesh interpolates the control points.

The control mesh consists of multilinear elements, in two dimensions they are

bilinear quadrilateral elements, and in three dimensions they are trilinear hex-

ahedra. The control mesh does not conform to the actual geometry. Rather, it

is like a scaffold that controls the geometry. The control mesh has the look of

a typical finite element mesh of multilinear elements. The control variables are

the degrees-of-freedom and they are located at the control points. They may be

thought of as “generalized coordinates.” Control elements may be degenerated

to more primitive shapes, such as triangles and tetrahedra. The control mesh

may also be severely distorted and even inverted to an extent, while at the same

time, for sufficiently smooth NURBS, the physical geometry may still remain

valid (in contrast with finite elements).

The physical mesh is a decomposition of the actual geometry. There are

two notions of elements in the physical mesh, the patch and the knot span. The

patch may be thought of as a macro-element or subdomain. Most geometries

utilized for academic test cases can be modeled with a single patch. Each patch

has two representations, one in a parent domain and one in physical space.

1The control mesh is also known as the “control net,” the “control lattice,” and curiously
the “control polygon” in the univariate case.
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Figure 3. Quadratic B-spline basis functions for open, non-uniform knot vector Ξ =

{0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}.

In two-dimensional topologies, a patch is a rectangle in the parent domain

representation. In three dimensions it is a cuboid.

Each patch can be decomposed into knot spans. Knots are points, lines,

and surfaces in one-, two-, and three-dimensional topologies, respectively. Knot

spans are bounded by knots. These define element domains where basis func-

tions are smooth (i.e., C∞
). Across knots, basis functions will be Cp−m

where

p is the degree
2
of the polynomial and m is the multiplicity of the knot in

question. Knot spans are convenient for numerical quadrature. They may be

thought of as micro-elements because they are the smallest entities we deal

with. They also have representations in both a parent domain and physical

space. When we speak of “elements” without further description, we usually

mean knot spans.

There is one other very important notion that is a key to understanding

NURBS, the index space of a patch. It uniquely identifies each knot and

discriminates among knots having multiplicity greater than one.

NURBS basis functions are the rational counterpart of standard B-spline

basis functions. For a discussion of the construction of B-spline basis functions

on the parent domain from preassigned knot vectors, see Chapter 2 of [12].

A quadratic example is presented in Figure 3. B-spline basis functions exhibit

many desirable properties, including partition of unity, compact support, and

point-wise positivity. Multi-dimensional basis functions are defined through a

tensor product, and basis functions are defined in physical space through a

push-forward, i.e. by considering a composition with the inverse of the ge-

ometrical mapping. In Isogeometric Analysis, the isoparametric concept is

invoked. That is, the same basis is used for both geometry and analysis. Ana-

logues of h- and p-refinement also exist in Isogeometric Analysis in the form of

knot insertion and order elevation, and there is a new refinement scheme called

k-refinement. See Chapter 2.1.4 of [12].

2There is a terminology conflict between the geometry and analysis communities. Geome-
ters will say a cubic polynomial has degree 3 and order 4. In geometry, order equals degree
plus one. Analysts will say a cubic polynomial is order three, and use the terms order and
degree synonymously. This is the convention we adhere to.
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See Table 2 for a summary of NURBS paraphernalia employed in Isogeo-

metric Analysis. A schematic illustration of the ideas is presented in Figure 4

for a NURBS surface in R3
. For more details on B-splines and NURBS, see

[17, 22, 23, 11].

Index Space

Control Mesh Physical Mesh

Multilinear Control Elements Patches Knot Spans

Topology:

1D: Straight lines defined

by two consecutive

control points

2D: Bilinear quadrilaterals

defined by four control

points

3D: Trilinear hexahedra

defined by eight

control points

Patches: Images of

rectangular meshes in

the parent domain

mapped into the

actual geometry.

Patches may be

thought of as

macro-elements or

subdomains.

Topology of knots in

the parent domain:

1D: Points

2D: Lines

3D: Planes

Topology:

1D: Curves

2D: Surfaces

3D: Volumes

Topology of knots in

the physical space:

1D: Points

2D: Curves

3D: Surfaces

Patches are

decomposed into knot

spans, the smallest

notion of an element.

Topology of knots

spans, i.e.,

“elements”:

1D: Curved

segments

connecting

consecutive

knots

2D: Curved

quadrilaterals

bounded by

four curves

3D: Curved

hexahedra

bounded by six

curved surfaces

Table 1. NURBS paraphernalia in Isogeometric Analysis
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Figure 4. Schematic illustration of NURBS paraphernalia for a one-patch surface

model. Open knot vectors and quadratic C1-continuous basis functions are used. Com-

plex multi-patch geometries may be constructed by assembling control meshes as in

standard FEA. Also depicted are C
1-quadratic (p = 2) basis functions determined

by the knot vectors. Basis functions are multiplied by control points and summed to

construct geometrical objects, in this case a surface in R3. The procedure used to

define basis functions from knot vectors is described in detail in Chapter 2 of [12].



306 Thomas J.R. Hughes and John A. Evans

3. Boundary Value Problems

As an example of solving a differential equation posed over the domain defined

by a NURBS geometry, let us consider Laplace’s equation. The goal is to find

u : Ω̄ → R such that

∆u+ f = 0 in Ω, (1a)

u = g on ΓD, (1b)

∇u · n = h on ΓN , (1c)

βu+∇u · n = r on ΓR, (1d)

where ΓD

⋃

ΓN

⋃

ΓR = Γ ≡ ∂Ω, ΓD

⋂

ΓN

⋂

ΓR = ∅, and n is the unit outward

normal vector ∂Ω. The functions f : Ω → R, g : ΓD → R, h : ΓN → R, and r :

ΓR → R are all given, as is the constant β. Equation (1) constitutes the strong

form of the boundary value problem (BVP). The boundary conditions given

in (1b), (1c), and (1d) represent the three major types of boundary conditions

one is likely to encounter. These are Dirichlet conditions, Neumann conditions,

and Robin conditions, respectively.

For a sufficiently smooth domain, and under certain restrictions on g, h, and

r, a unique solution u satisfying (1) is known to exist, but an analytical expres-

sion will usually be impossible to obtain. However, we may seek an approximate

solution of the form

uh =

∑

A

dANA (2)

where NA is a basis function and dA is an unknown to be determined. We

generically refer to techniques for doing so as numerical methods. Different

numerical methods are simply different techniques for finding dA such that

uh ≈ u. We focus here on the Bubnov-Galerkin method that underlies most of

modern FEA.

The technique begins by defining a weak, or variational, counterpart of (1).

To do so, we need to characterize two classes of functions. The first is to be

composed of candidate, or trial solutions. From the outset, these functions will

be required to satisfy the Dirichlet boundary condition of (1b).

To define the trial and weighting spaces formally, let us first define the space

of square integrable functions on Ω. This space, called L2
(Ω), is defined as the

collection of all functions u : Ω → R such that

∫

Ω

u2 dΩ < +∞. (3)

Let us consider a multi-index ααα ∈ Nd
where d is the number of spatial

dimensions in the space. Forααα = {α1, . . . , αd}, we define |ααα| =
∑d

i=1
αi. We now

have a concise way to represent derivative operators. LetDααα
= D

α1

1 D
α2

2 . . . D
αd

d
,

where D
j

i
=

∂
j

∂x
j
i

. So that certain expressions to be employed in the formulation
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make sense, we shall require that the derivatives of the trial solutions be square-

integrable. Such a function is said to be in the Sobolev space H1
(Ω), which is

characterized by

H1
(Ω) = {u|Dαααu ∈ L2

(Ω), |ααα| ≤ 1}. (4)

We may now define the collection of trial solutions, denoted by S, as all

of the function which have square-integrable derivatives and that also satisfy

u|ΓD
= g. (5)

This is written as

S = {u | u ∈ H1
(Ω), u|ΓD

= g}. (6)

The second collection of functions in which we are interested is called the

weighting functions. This collection is very similar to the trial functions,

except that we have the homogeneous counterpart of the Dirichlet boundary

condition. That is, the weighting functions are denoted by a set V defined by

V = {w | w ∈ H1
(Ω), w|ΓD

= 0}. (7)

We may now obtain a variational statement of the BVP by multiplying (1a)

by an arbitrary test function w ∈ V and integrating by parts, incorporating

(1c) and (1d) as needed. The resulting weak form of the problem is now: Given

f , g, h, and r, find u ∈ S such that for all w ∈ V

∫

Ω

∇w · ∇u dΩ+ β

∫

ΓR

wudΓ

=

∫

Ω

wf dΩ+

∫

ΓN

whdΓ +

∫

ΓR

wr dΓ. (8)

This weak form may be rewritten as

a(w, u) = L(w) (9)

where

a(w, u) =

∫

Ω

∇w · ∇u dΩ+ β

∫

ΓR

wudΓ, (10)

and

L(w) =

∫

Ω

wf dΩ+

∫

ΓN

whdΓ +

∫

ΓR

wr dΓ. (11)

This concise notation, or variants thereof, is quite common in the finite element

literature. For problems other than the Laplace equation, the details vary, but

the basic form remains. It captures the essential mathematical features of the

variational method (as well as suggesting features of a finite element implemen-

tation) that are more general than the details of the equation itself.

The solution to (8), or equivalently (9), is called a weak solution. Under

appropriate regularity assumptions, it can be shown that the weak solution and

the strong solution of (1) are equivalent; see [20].
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The Bubnov-Galerkin method, abbreviated as Galerkin’s method, consists

of constructing finite-dimensional approximations of S and V, denoted S
h
and

V
h
, respectively. Strictly speaking, these will be subsets such that

S
h

⊂ S, (12)

V
h

⊂ V. (13)

Furthermore, these will be associated with subsets of the space spanned by the

isoparametric basis. In Isogeometric Analysis, these spaces consist of mapped

NURBS functions.

We can further characterize S
h
by recognizing that if we have a given func-

tion gh ∈ S
h
such that gh|ΓD

= g, then for every uh ∈ S
h
, there exists a unique

vh ∈ V
h
such that

uh = vh + gh. (14)

We can now write a variational equation of the form of (9). The Galerkin form

of the problem is: Given gh, h, and r, find uh = vh + gh, where vh ∈ V
h
, such

that for all wh
in V

h

a(wh, uh) = L(wh
). (15)

Recalling (14) and the bilinearity of a(·, ·), we can rewrite (15) as

a(wh, vh) = L(wh
)− a(wh, gh). (16)

In this latter form, the unknown information is on the left-hand-side, while

everything on the right-hand-side is given, as before.

The finite-dimensional nature of the function spaces used in Galerkin’s

method leads to a coupled system of linear algebraic equations. Let the solu-

tion space consist of all linear combinations of a given set of NURBS functions

NA : Ω̂ → R, where A = 1, . . . , nnp. Without loss of generality, we may assume

a numbering for these functions such that there exists an integer neq < nnp
such that

NA|ΓD
= 0 ∀A = 1, . . . , neq. (17)

Thus, for all wh
∈ V

h
, there exist constants cA, A = 1, . . . , neq such that

wh
=

neq
∑

A=1

NAcA. (18)

Furthermore, the function gh (frequently called a “lifting”) is given similarly

by coefficients gA, A = 1, . . . , nnp. In practice, we will always choose gh such

that g1 = . . . = gneq
= 0 as they have no effect on its value on ΓD, and so

gh =

nnp
∑

A=neq+1

NAgA. (19)
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Finally, recalling again (14), for any uh ∈ S
h
there exist dA, A = 1, . . . , neq

such that

uh =

neq
∑

A=1

NAdA +

nnp
∑

B=neq+1

NBgB =

neq
∑

A=1

NAdA + gh. (20)

Proceeding to define

KAB = a(NA, NB), (21)

FA = L(NA)− a(NA, g
h
), (22)

and

K = [KAB ], (23)

F = {FA}, (24)

d = {dA}, (25)

for A,B = 1 . . . , neq, we can rewrite (16) as the matrix problem

Kd = F. (26)

The matrix K is commonly referred to as the stiffness matrix, and F and d are

referred to as the force and displacement vectors, respectively.

It is important to note that K is a sparse matrix. This is a result of

the fact that the support of each basis function is highly localized. Thus,

for many combinations of A and B in the neq × neq global stiffness matrix,

KAB = a(NA, NB) = 0. We can take advantage of this fact in order to reduce

the amount of work necessary in building and solving the algebraic system.

Things are further simplified by employing Gaussian quadrature to perform

integrations. This process is detailed in Section 3.3.1 of [12]. Even though the

NURBS functions are not necessarily polynomials, Gaussian quadrature seems

to be very effective for integrating them. Though this approach to integra-

tion is only approximate, it is important to note that integrating the classical

polynomial functions by quadrature on elements with curved sides is only an

approximation as well.

Once Galerkin’s method has been applied and an approximation, uh, has

been obtained, it is fair to inquire as to just how good of an approximation

it is. Results for classical FEA and Isogeometric Analysis are discussed in the

next session. It turns out that, for elliptic problems such as the one considered

in this section, the solution is optimal in a very natural sense; see Chapter 4

of [20].

4. Error Estimates for NURBS

4.1. FEA. Well established a priori approximation results exist for classical

finite elements applied to elliptic problems (see, for example, the classic text
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by [10]). The Sobolev space of order r is defined by

Hr
(Ω) = {u|Dαααu ∈ L2

(Ω), |ααα| ≤ r}. (27)

The norm associated with Hr
(Ω) is given by

‖u‖2r =

∑

|ααα|≤r

∫

Ω

(Dαααu) · (Dαααu) dx. (28)

In classical FEA, the fundamental error estimate for the elliptic boundary value

problem, expressed as a bound on the difference between the exact solution, u,
and the FEA solution, uh

, takes the form

‖u− uh
‖m ≤ Chβ‖u‖r, (29)

where ‖ · ‖m and ‖ · ‖r are the norms corresponding to Sobolev spaces Hm
(Ω)

and Hr
(Ω), respectively, h is a characteristic length scale related to the size of

the elements in the mesh, β = min(p+1−m, r−m) where p is the polynomial

order of the basis, and C is a constant that does not depend on u or h.

The term of interest in (29) is hβ . The mesh parameter, h, can be defined in

several ways, with the specific definition affecting C. A fairly general definition

is the diameter of the smallest circle (in two dimensions) or sphere (in three

dimensions) that is large enough to circumscribe any element in the mesh. The

order of convergence, β, expresses how the error changes under refinement

of the mesh. In particular, if we use h-refinement to bisect each of the elements

in the mesh (i.e., h is replaced with h/2), we would expect the error to decrease

by a factor of (1/2)β .

4.2. NURBS. The extremely technical details of the process of obtaining

a result analogous to (29) for NURBS can be found in [3]. Here we present

the basic ideas, but encourage the interested reader to consult the original

publication.

For classical FEA polynomials, the result in (29) is obtained by first es-

tablishing the interpolation properties of the basis. Let Πm be the projection

operator from Hm
(Ω) into the space spanned by the FEA basis. Then the

optimal interpolate is the function

ηh = Πmu (30)

such that

‖u− ηh‖m ≤ ‖u− vh‖m ∀vh ∈ S
h, (31)

where S
h
is the finite element space. To establish just how good this optimal

approximation is (i.e., to determine how can ‖u−ηh‖m be bounded), we obtain

a bound on each element, and then sum over all of the elements to get a global

result. With this interpolation result in hand, the second step in the process is
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to relate the result of the Galerkin finite element method, uh, to the optimal

interpolate, ηh. In particular, it can be shown that the order of convergence

of the finite element solution is the same as for the optimal interpolate. Taken

together, these two results yield the the bound (29), which states that (up to a

constant) Galerkin’s method gives us the optimal result.

When we seek an analogous result for NURBS, we face several difficulties.

The first is that the approximation properties of this rational basis are harder to

determine than are those of a standard polynomial basis. In particular, note that

the weights are determined by the geometry and so are out of our control when

we attempt to approximate a field over that geometry and cannot be adjusted to

improve the result. The second difficulty originates from the large support of the

spline functions. Standard interpolation estimates seek to find a best fit within

each element and then aggregate these results to obtain an approximation over

the entire domain. This is non-trivial with the spline functions because the

support of each function spans several elements, and so we cannot determine

optimal values for the control variables by looking at each element individually.

The issue is further complicated by the possibility of differing levels of continuity

(and thus differing sizes of the the supports of the functions) throughout the

domain.

To overcome the fact that the basis is rational rather than polynomial, we

first note that the parameter space Ω̂ can be considered to be the unit cube

[0, 1]d. No generality is lost in this assumption as dividing a knot vector by a

constant or adding a constant does not change the resulting physical domain

in any way. Let us first denote a NURBS basis function as:

Ri(ξ) =
Ni(ξ)wi

W (ξ)
, (32)

with

W (ξ) =

n
∑

i=1

Ni(ξ)wi (33)

where Ni is the corresponding B-spline basis function. The important thing

to note is that the weighting function
3
, W (ξ), does not change as we h-refine

the mesh (it does not change under p-refinement either, though this is not

the case we are interested in at present). While both the weights and the basis

functions change, they do so in such a way as to leaveW (ξ) unaltered. Similarly,

the geometrical mapping from the parameter space into the physical space,

F : Ω̂ → Ω, does not change as we insert new knot values. See Figure 5. It

remains exactly the same at all levels of refinement. To take advantage of this

fact, we consider the function we wish to approximate, u : Ω → R`
. As the

geometrical mapping is one-to-one, we can pull this back to the parametric

3Do not confuse this use of the term “weighting function” with the unrelated use of the
same terminology in Galerkin’s method.



312 Thomas J.R. Hughes and John A. Evans

F

 

N
i

h1w
i

h1

W







i=1,…,n1  

N
i

h1w
i

h1

W
F
−1






i=1,…,n1

(a) Coarse mesh

F

 

N
i

h2w
i

h2

W







i=1,…,n2  

N
i

h2w
i

h2

W
F
−1






i=1,…,n2

(b) First h-refinement

F

 

N
i

h3w
i

h3

W







i=1,…,n3  

N
i

h3w
i

h3

W
F
−1






i=1,…,n3

(c) Second h-refinement

Figure 5. As we h-refine the mesh, the basis functions Ni and weights wi change, but

the geometrical mapping F and the weighting function W are completely fixed at the

coarsest level of discretization. They do not change under refinement.
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domain to define û = u ◦ F−1
: Ω̂ → R`

. Lastly, we can lift the image of

the function using the weighting function to define ũ = {Wû,W} : Ω̂ → R`+1
.

Recalling that we obtain the rational basis in Rd
by a projective transformation

(equivalent to dividing byW ) of a B-spline basis in Rd+1
, we see that the ability

of the rational NURBS basis to approximate u on Ω is intimately related to the

ability of the underlying B-spline basis to approximate ũ on Ω̂. Thus we have

reduced the problem of understanding a rational basis on a general domain to

that of understanding a polynomial basis on the unit cube.

The second hurdle is more technical. The fact that each function has sup-

port over many elements and that the continuity across the various element

boundaries can vary from one boundary to the next greatly complicates mat-

ters compared with the classical case. [3] address this difficulty by proving

approximation results in so-called “bent” Sobolev spaces in which the continu-

ity varies throughout the domain. A sequence of lemmas is established leading

up to an approximation result that includes not only the norm in these bent

Sobolev spaces of the function u being approximated, but also the gradient

of the mapping, ∇F. This last term presents no problem because, as already

discussed, it does not change as the mesh is refined, and thus does not affect

the rate of convergence. The resulting approximation result is: Let k and l be

integer indices such that 0 ≤ k ≤ l ≤ p+ 1, and let u ∈ H l
(Ω); then

nel
∑

e=1

|u−Πku|
2
Hk(Ωe)

≤ C

nel
∑

e=1

h2(l−k)
e

l
∑

i=0

‖∇F‖
2(i−l)

L∞(F−1(Ωe))
|u|2

Hi(Ωe). (34)

The constant C depends on p and the shape (but not size) of the domain Ω, as

well as the shape regularity of the mesh. The factors involving the gradient of

the mapping render the estimate dimensionally consistent.

Finally, with the approximation result of (34) in hand, establishing the

manner in which the Isogeometric Analysis solution, uh, relates to the optimal

interpolate, ηh, proceeds exactly as in the classical case. Combining these results

yields the desired result: The Isogeometric Analysis solution obtained using

NURBS of order p has the same order of convergence as we would expect in

a classical FEA setting using classical basis functions with a polynomial order

of p. This is an exceptionally strong result as it is independent of the order

of continuity that the mesh possesses. That is, bisecting all of the elements in

an FEA mesh (thus cutting the mesh parameter from h to h/2) requires the

introduction of many more degrees-of-freedom than does bisection of the same

number of NURBS elements while maintaining p − 1 continuity (see Section

2.1.4 of [12]). This means that NURBS can converge at the same rate as FEA

polynomials, while remaining much more efficient.

4.3. Explicit h-k-p-estimates for NURBS. The theoretical study

of [3] is continued in [6], focusing on the relation between the degree p and the

global regularity k of a NURBS space and its approximation properties. Indeed,

error estimates that are explicit in terms of the mesh-size h, and p, k are
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obtained. The approach is restricted to Ck−1
approximations, with 2k− 1 ≤ p.

The interesting case of higher regularity, up to k = p, is still open. However,

the results give an indication of the role of the smoothness k and offer a first

mathematical justification of the potential of Isogeometric Analysis based on

globally smooth NURBS. The main result, in a simplified form and in the two-

dimensional setting, is the following: let v be a function to be approximated.

Then there exists a NURBS approximation Πv such that

|v −Πv|H`(Ωe)
≤ C(p− k + 1)

−(σ−`)hσ−`

e ‖v‖Hσ(Ωe) (35)

where Ωe is a mesh element of diameter he in the NURBS physical domain Ω,

2k ≤ σ ≤ p+ 1, and ` ≤ k. In [6], different asymptotic regimes are studied. In

particular, when v is smooth, the strong advantage of higher k is shown.

5. Vibrations

The study of structural vibrations or, more specifically, of eigenvalue problems

allows us to examine in more detail the approximation properties of the smooth

NURBS functions independently of any geometrical considerations. In general,

spectrum analysis is the term applied to the study of how numerically com-

puted natural frequencies, ωh
n, compare with the analytically computed natural

frequencies, ωn. We will see that, for a given number of degrees-of-freedom and

bandwidth, the use of NURBS results in dramatically improved accuracy in

spectral calculations over classical FEA.

Let us begin by considering one of the simplest vibrational model problems

in one dimension: the longitudinal vibrations of an elastic rod. If we consider

the domain Ω = (0, L) ⊂ R, there is no longer an issue of geometrical accu-

racy. FEA basis functions and NURBS
4
are equally capable of representing this

domain exactly, and so the quality of the results will depend entirely on the

approximation properties of the basis.

To understand the formulation of the eigenproblem representing the lon-

gitudinal vibrations of a “fixed-fixed” elastic rod, let us begin by considering

the elastodynamics equation from which it is derived. The behavior of the rod,

which is assumed to move only in the longitudinal direction, is governed by the

equations of linear elasticity combined with Newton’s second law, resulting in

(Eu,x),x − ρu,tt = 0 in Ω× (0, T ), (36a)

u = 0 on Γ× (0, T ), (36b)

where Ω = (0, L), ρ : (0, L) → R is the density per unit length of the rod,

E : (0, L) → R is Young’s modulus, and the “fixed-fixed” condition (36b)

4In this simple domain, the NURBS reduce to the special case of B-splines.
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ensures that the ends of the rod do not move. For an actual dynamics problem,

we would need to augment (36) with appropriate initial conditions of the form

u(x, 0) = u0(x), (37)

u,t(x, 0) = v0(x). (38)

At present, however, we are not interested in the transient behavior of the rod.

Instead, we are interested in the natural frequencies and modes in which the

rod vibrates. We obtain these by separation of variables. In a slight abuse of

notation, we assume u(x, t) to have the form

u(x, t) = u(x)eiωt, (39)

where u(x) is a function of only the spatial variable, x, while i =
√

−1, and ω

is the natural frequency. Inserting (39) into (36a) and dividing by the common

exponential term results in the eigenproblem we are seeking:

(Eu,x),x + ω2ρu = 0 in Ω, (40a)

u = 0 on Γ. (40b)

Equation (40) constitutes an eigenproblem for the rod. The nontrivial so-

lutions are countably infinite. That is, for k = 1, 2, . . . ,∞, there is an eigen-

value λk = (ωk)
2
and corresponding eigenfunction u(k) satisfying (40). Fur-

thermore, 0 < λ1 ≤ λ2 ≤ . . ., and the eigenfunctions are orthogonal. Though

the eigenfunctions are only defined up to a multiplicative constant, we can re-

move the arbitrariness by augmenting the orthogonality condition to include

normality.

Following the now familiar process, we multiply (40a) by a test function

w and integrate by parts to obtain the weak form of the equation: Find all

eigenpairs {u, λ}, u ∈ S, λ = ω2
∈ R+

, such that for all w ∈ V

a(w, u)− ω2
(w, ρu) = 0, (41)

where

a(w, u) =

L
∫

0

w,xEu,x dx, (42)

(w, ρu) =

L
∫

0

wρudx. (43)

Note that, due to the homogeneous boundary conditions, S = V = H1
0 (0, L) =

{u ∈ H1
(0, L)|u(0) = u(L) = 0}.

The Galerkin formulation is obtained by restricting ourselves to finite-

dimensional subspaces S
h

⊂ S in the usual way. That is, w and u in (41)
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will be replaced by finite dimensional approximations wh
and uh of the form

wh
=

neq
∑

A=1

NAdA and uh =

neq
∑

B=1

NBcB , (44)

respectively. The resulting eigenpairs will contain approximations of both nat-

ural modes uh
(k)

and the natural frequencies ωh

k
. The problem becomes: Find

all ωh
∈ R+

and uh ∈ S
h
such that for all wh

∈ V
h

a(wh, uh)− (ωh
)
2
(wh, ρuh) = 0. (45)

Substituting the shape-function expansions for wh
and uh in (45) gives

rise to a matrix eigenvalue problem: Find natural frequency ωh

k
∈ R+

and

eigenvector ΨΨΨk, k = 1, . . . , neq, such that

(

K− (ωh

k )
2M

)

ΨΨΨk = 0, (46)

where

K = [KAB ], (47)

M = [MAB ], (48)

with

KAB = a(NA, NB), (49)

MAB = (NA, ρNB), (50)

and ΨΨΨk is the vector of control variables corresponding to uh
(k)

.

As before, we refer to K as the stiffness matrix. The new object, M, is

the mass matrix. Noting that ρ > 0, and that the NURBS basis functions are

pointwise non-negative, we see from (43) that every entry in the mass matrix

is also non-negative. This claim cannot be made for standard finite elements.

Let us consider the case where ρ, E, and L are each taken to be 1. Analyt-

ically, (40a) can be solved to obtain ωn = nπ for n = 1, . . . ,∞. We can assess

the quality of the numerical method by comparing the ratio of the computed

modes, ωh
n, with the analytical result. That is, (ωh

n/ωn) = 1 indicates that the

numerical frequency is identical to the analytical result. In practice, the discrete

frequencies will always obey the relationship

ωn ≤ ωh

n for n = 1, . . . , neq, (51)

and so we expect the ratio (ωh
n/ωn) to be greater than 1 (see, e.g., [26]), with

larger values indicating decreased accuracy.

Figure 6 shows a comparison of k-method (Cp−1 pth-order NURBS) and

p-method (C0 pth-order finite elements) numerical spectra for p = 1, ..., 4 (we

recall that for p = 1 the two methods coincide). Here, the superiority of the

isogeometric approach is evident, as one can see that for C0
finite elements the

higher modes diverge with p. This negative result shows that even higher-order
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Figure 6. Longitudinal vibrations of an elastic rod. Comparison of k-method and

p-method numerical spectra.

finite elements have no approximability for higher modes in vibration analysis,

and possibly explains the fragility of higher-order finite element methods in

nonlinear and dynamic applications in which higher modes necessarily partic-

ipate. In contrast, the entire NURBS spectrum converges for all modes. This

dramatic result is all the more compelling when we recall that the result is inde-

pendent of the geometry in this one-dimensional setting. Results such as these

can be understood from a more fundamental functional analysis perspective

through the notion of Kolmogorov n-widths.

6. Kolmogorov n-widths

The approximation result (34) is a basic tool for proving convergence of NURBS

to the solution of partial differential equations with h-refined meshes (see [3] for

examples). Note that the continuity of the basis functions does not explicitly

appear in (34). Consequently, the order of convergence in (34) depends only

on the order of the basis functions employed. However, the results of eigen-

value calculations indicate that there is a dramatic difference between C0
- and

Cp−1
-continuous pth-order basis functions (see, e.g., Figure 6). In Figure 6, as

p is increased, the upper part of the spectrum diverges for C0
-continuous clas-

sical finite elements whereas it converges for Cp−1
-continuous NURBS (i.e.,

B-splines in this case). This phenomenon is not revealed by standard approxi-

mation theory results of the form (34). Consequently, we much conclude that

there is a lot of information hiding in the so-called “constant” C in (34). In-

deed, the refined approximation result (35) illustrates an explicit dependence



318 Thomas J.R. Hughes and John A. Evans

of the constant on polynomial order and continuity. However, the result is

quite limited in its application as it is restricted to Ck−1
approximations, with

2k − 1 ≤ p.

It would be desirable to develop a mathematical framework that revealed

behavior like that seen in Figures 6 from the outset. The concept of Kolmogorov

n-widths seems to hold the potential to do so. A sketch of some of the main

ideas follows: Let X be a normed, linear space, equipped with norm ‖ · ‖X .

In the cases of primary interest here, X would be a Sobolev space. Let Xn

be an n-dimensional subspace of X. Assume we wish to approximate a given

x ∈ A ⊂ X, where A is a subset of X, with a member xn ∈ Xn. We define the

distance between x and Xn as

E(x,Xn;X) = inf
xn∈Xn

‖x− xn‖X , (52)

where inf stands for infimum (see Figure 7). If there exists an x∗n such that

‖x− x∗n‖X = E(x,Xn;X) (53)

then x∗n is called the best approximation of x.

X

X
n

x

xn
xn
∗

Figure 7. The point x
∗

n is the closest approximation in Xn to x with respect to the

norm ‖ · ‖X .

Now we assume we are interested in approximating all x ∈ A. For each

x ∈ A, the best we can do is expressed by (53). The question we wish to

have answered is, for which x ∈ A do we get the worst best-approximation?

In other words, for which x ∈ A is infxn∈Xn
‖x − xn‖X the largest? The idea

is to anticipate situations such as those depicted in Figures 6. The worst best-

approximation is obtained by computing the supremum of (53) over all x ∈ A;
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Figure 8. The distance between subspaces Xn and A is determined by the “worst-case

scenario.” That is, if the distance between point x
∗ ∈ A and its best approximation

x
∗

n ∈ Xn is the supremum over all such best-fit pairs, then ‖x∗ − x
∗

n‖X defines the

distance between Xn and A.

we define the deviation, or “sup-inf,” as

E(A,Xn;X) = sup
x∈A

inf
xn∈Xn

‖x− xn‖X . (54)

See Figure 8 for a schematic illustration. Sup-inf’s are useful for comparing

the approximation quality of different finite element subspaces, such as C0
and

Cp−1
splines, but prior to that we might ask what is the best n-dimensional

subspace for approximating A? This is given by the Kolmogorov n-width, or

“inf-sup-inf,” namely,

dn(A,X) = inf
Xn⊂X

dimXn=n

sup
x∈A

inf
xn∈Xn

‖x− xn‖X (55)

= inf
Xn⊂X

dimXn=n

E(A,Xn;X). (56)

If there exists an X̃n such that

E(A, X̃n;X) = dn(A,X), (57)

then X̃n is called an optimal n-dimensional subspace. In this case, we can

define the optimality ratio, that is, the sup-inf divided by the inf-sup-inf, for

a given Xn:

Λ(A,Xn;X) =
E(A,Xn;X)

dn(A,X)
. (58)
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3-continuous splines

converges toward 1.

To illustrate how one might use this measure for comparing spaces, con-

sider the following example of a uniform mesh on the unit interval [0, 1]. Let

X = H1
(0, 1), the Sobolev space of square-integrable functions with square-

integrable derivatives. Let

A = B5
(0, 1) = {x|x ∈ H5

(0, 1), ‖x‖X ≤ 1}, (59)

where H5
(0, 1) is the Sobolev space of functions having five square-integrable

derivatives. B5
(0, 1) is referred to as the unit ball in H5

(0, 1) in the H1
(0, 1)-

topology. A comparison of optimality ratios for quartic C0
and C3

splines is

shown in Figure 9. Note that as n increases, the optimality ratio of the C3

case approaches 1. Apparently, the C3
case is converging toward an optimal

subspace. In contrast, in the C0
case, the optimality ratio converges to ap-

proximately 5.5, indicating that for each n there is at least one member of

B5
(0, 1) that is much more poorly approximated by C0

splines than C3
splines.

This result seems to be qualitatively consistent with what we saw in Figures 6.

Smooth spline bases, that is the k-method, exhibit better behavior than clas-

sical C0
elements. For further results and methodology used to compute them,

see [16].

7. Smooth Isogeometric Discretizations

From the mathematical side, one of the most interesting aspects of Isogeometric

Analysis is the possibility to have smooth approximation fields. Smooth discrete
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spaces can be directly used with partial differential equations of order higher

than two. One interesting example is the stream-function approach to the Stokes

problem (see [1]). The solution of the Stokes variational equations is the pair
5

(u, p) ∈ (H1
D
(Ω))

2
× L2

(Ω) such that



















∫

Ω

grad (u) : grad (v) +

∫

Ω

pdiv v =

∫

Ω

f · v ∀v ∈ H1
D
(Ω)

∫

Ω

q divu = 0 ∀q ∈ L2
(Ω),

(60)

where H1
D
(Ω) is the Sobolev space of H1

functions vanishing on ΓD ⊂ ∂Ω. For

two-dimensional problems, the divergence-free field u can be represented as the

curl of a potential, the so called stream function, that is u = curlψ. Since
div ( curlψ) = 0, one can replace (60) with

∫

Ω

grad ( curlψ) : grad ( curlφ) =

∫

Ω

f · curlφ ∀φ ∈ H2
(Ω)

+ boundary conditions.

(61)

The advantage of the above formulation is that at the discrete level, replacing

H2
(Ω) with a suitable NURBS space with at least global C1

-continuity, one

obtains an approximation uh = curlψh which is exactly divergence-free.

The application of this approach to a more realistic problem is presented

in [2] where the capability of various numerical methods to correctly reproduce

the stability range of finite strain (nonlinear) problems in the incompressible

regime is studied. The stream-function isogeometric NURBS approach is ap-

plied to a linearized problem at each Newton step of the finite strain problem.

This technique is able to sharply estimate the stability limits of the continuous

problem in contrast with various standard finite element methods. For example,

a simple benchmark problem (an elastic incompressible square in plain strain

under constant body load and clamped on three sides) is shown to be stable

under compression up to a loading factor of 6.6, while various finite element

methods show instabilities around a loading factor of 1.

Another application area where smooth isogeometric discretizations can be

utilized is the numerical simulation of phase-field models. Phase-field models

provide an alternative description for phase-transition phenomena. The key

idea in the phase-field approach is to replace sharp interfaces by thin transition

regions where the interfacial forces are smoothly distributed. The transition

regions are part of the solution of the governing equations and, thus, front

tracking is avoided. Phase-field models are typically characterized by higher-

order differential operators and hence require smooth discretization techniques.

Isogeometric Analysis has been applied to several phase-field models, including

the Cahn-Hilliard equation [18] and the Navier-Stokes-Korteweg equations [19].

5Here p is the pressure instead of the degree.
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8. Vector Field Discretizations

An alternate approach to stream-functions which can also handle problems with

a solenoidal constraint is the construction of B-splines or NURBS spaces which

fulfill the divergence-free property exactly. This is possible once again due to the

smoothness of isogeometric spaces, leading to an extension of classical Raviart-

Thomas elements. These new discretizations can be used for a much wider class

of problems (e.g., Stokes flow (60)) than classical Raviart-Thomas elements.

In [9], smooth Raviart-Thomas B-splines and NURBS spaces are introduced

and their study is initiated. In [7], these spaces are used in the simulation of

incompressible fluid flows.

The mathematical structure behind the construction in [9] can be under-

stood in the framework of the Exterior Calculus. This has been done in [8]

where a De Rham complex for B-spline spaces
6
is constructed. Notably, there

exist B-spline spaces Xi

h
, i = 0, . . . , 3, of any degree and commuting projectors

Π
i
, i = 0, . . . , 3 such that

H1
(Ω)

grad

−−−−→ H(curl; Ω)
curl

−−−−→ H(div; Ω)
div

−−−−→ L2
(Ω)

Π
0





y Π
1





y Π
2





y Π
3





y

X0
h

grad

−−−−→ X1
h

curl
−−−−→ X2

h

div
−−−−→ X3

h
.

(62)

The above diagram paves the way to stable discretizations of a wide class of

differential problems. For example, it provides spurious free smooth approxi-

mation of the Maxwell eigenproblem: find ω ∈ R, and u ∈ H(curl; Ω) , u 6= 0
such that

∫

Ω

curl u · curl v = ω2

∫

Ω

u · v ∀v ∈ H(curl; Ω) . (63)

For more details, see [8].

9. Conclusions

We have presented a brief mathematical introduction to Isogeometric Analysis,

a new numerical methodology for solving partial differential equations (PDEs)

that combines and synthesizes Computer Aided Design (CAD) and Finite Ele-

ment Analysis (FEA) technologies. A main motivation of Isogeometric Analy-

sis is to simplify the process of building FEA models from CAD files, a major

bottleneck in the overall engineering process. However, Isogeometric Analysis

has also provided new insights and methods for solving PDEs. By way of an

6Note that these are B-splines and not NURBS.
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example, we have shown that Isogeometric Analysis can provide more accu-

rate solutions of PDEs than classical C0
-continuous finite elements. However,

these differences are not revealed by standard error analysis procedures utiliz-

ing functional analysis techniques in that they are rather insidiously hidden

in “constants” in functional analysis inequalities. The example also illustrates

a striking deficiency of classical, higher-order, C0
-continuous finite elements,

namely, the errors in higher modes diverge with increasing polynomial order.

This surprising result seems to explain the observed fragility of these finite el-

ement spaces when used to obtain the solution of nonlinear problems, which

often involve higher-mode behavior. We also reported on initial investigations

using Kolmogorov n-widths to computationally determine the relative merits

of finite-dimensional approximating spaces. This amounts to an a priori ap-

proach capable of exposing deficiencies of approximating spaces for computing

the solutions of PDEs.

We have also noted that the smooth, higher-order basis functions of Iso-

geometric Analysis open the way to efficiently solving higher-order PDEs on

complex domains. Problems of this kind, such as those representing multi-phase

phenomena, have proven very difficult for standard FEA approaches. Finally,

we briefly reviewed recent mathematical work in Isogeometric Analysis devoted

to the construction of smooth, divergence-free, approximating spaces for vector

field problems, and mentioned seminal functional analysis results that explicitly

reveal the improvements garnered by the smooth approximating spaces used in

Isogeometric Analysis.
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