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Hyperbolic Systems of Conservation Laws 
in One Space Dimension 

Alberto Bressan* 

Abstract 

Aim of this paper is to review some basic ideas and recent developments 
in the theory of strictly hyperbolic systems of conservation laws in one space 
dimension. The main focus will be on the uniqueness and stability of entropy 
weak solutions and on the convergence of vanishing viscosity approximations. 
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1. Introduction 
By a system of conservation laws in m space dimensions we mean a first order 

system of partial differential equations in divergence form: 

TTU + ÌT -^-Fa(U) = 0, U£lRn, (t,x)£ Rx Rm. 
at ^—' oxa 

The components of the vector U = (Ui,..., Un) are the conserved quantities. Sys­
tems of this type express the balance equations of continuum physics, when small 
dissipation effects are neglected. A basic example is provided by the equations of 
non-viscous gases, accounting for the conservation of mass, momentum and energy. 
The subject is thus very classical, having a long tradition which can be traced back 
to Euler (1755) and includes contributions by Stokes, Riemann, Weyl and Von Neu­
mann, among several others. The continued attention of analysts and mathematical 
physicists during the span of over two centuries, however, has not accounted for a 
comprehensive mathematical theory. On the contrary, as remarked in [Lx2], [D2], 
[S2], the field is still replenished with challenging open problems. In several space 
dimensions, not even the global existence of solutions is presently known, in any 

* S.I.S.S.A., Via Beirut 4, Trieste 34014, Italy. E-mail: bressan@sissa.it 

mailto:bressan@sissa.it


160 A. Bressan 

significant degree of generality. Until now, most of the analysis has been concerned 
with the one-dimensional case, and it is only here that basic questions could be 
settled. In the remainder of this paper we shall thus consider systems in one space 
dimension, referring to the books of Majda [M], Serre [SI] or Dafermos [D3] for a 
discussion of the multidimensional case. 

Toward a rigorous mathematical analysis of solutions, the main difficulty that 
one encounters is the lack of regularity. Due to the strong nonlinearity of the 
equations and the absence of diffusion terms with smoothing effect, solutions which 
are initially smooth may become discontinuous within finite time. In the presence 
of discontinuities, most of the classical tools of differential calculus do not apply. 
Moreover, for general nxn systems, the powerful techniques of functional analysis 
cannot be used. In particular, solutions cannot be represented as fixed points of 
a nonlinear transformation, or in variational form as critical points of a suitable 
functional. Dealing with vector valued functions, comparison arguments based on 
upper and lower solutions do not apply either. Up to now, the theory of conservation 
laws has progressed largely by ad hoc methods. A survey of these techniques is the 
object of the present paper. 

The Cauchy problem for a system of conservation laws in one space dimension 
takes the form 

ut + f(u)x = 0, (1.1) 

u(0,x)=ü(x). (1.2) 

Here u = (ui,...,un) is the vector of conserved quantities, while the components 
of / = ( / i , . . . , /„) are the fluxes. We shall always assume that the flux function 
/ : Rn H> Rn is smooth and that the system is strictly hyperbolic, i. e., at each 
point u the Jacobian matrix A(u) = Df(u) has n real, distinct eigenvalues 

A i ( u ) < - - - < A „ ( u ) . (1.3) 

As already mentioned, a distinguished feature of nonlinear hyperbolic systems is 
the possible loss of regularity. Even with smooth initial data, it is well known that 
the solution can develop shocks in finite time. Therefore, solutions defined globally 
in time can only be found within a space of discontinuous functions. The equation 
(1.1) must then be interpreted in distributional sense. A vector valued function 
u = u(t,x) is a weak solution of (1.1) if 

[u(j>t + f(u)(j>x]dxdt = 0 (1.4) 

for every test function <f> G C\, continuously differentiable with compact support. 
In particular, the piecewise constant function 
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is a weak solution of (1.1) if and only if the left and right states u^,u+ and the 
speed A satisfy the famous Rankine-Hugoniot equations 

/ («+) - / ( « - ) = A (U+-U-). (1.6) 

When discontinuities are present, the weak solution of a Cauchy problem may 
not be unique. To single out a unique "good" solution, additional entropy conditions 
are usually imposed along shocks [Lxl], [L3]. These conditions often have a physical 
motivation, characterizing those solutions which can be recovered from higher order 
models, letting the diffusion or dispersion coefficients approach zero (see [D3]). 

In one space dimension, the mathematical theory of hyperbolic systems of 
conservation laws has developed along two main lines. 

1. The BV setting, pioneered by Glimm (1965). Solutions are here constructed 
within a space of functions with bounded variation, controlling the BV norm by a 
wave interaction potential. 

2. The L°° setting, introduced by DiPerna (1983), based on weak convergence and 
a compensated compactness argument. 

Both approaches yield results on the global existence of weak solutions. How­
ever, it is only in the BV setting that the well posedness of the Cauchy problem 
could recently be proved, as well as the stability and convergence of vanishing vis­
cosity approximations. On the other hand, a counterexample in [BS] indicates that 
similar results cannot be expected, in general, for solutions in L°°. In the remainder 
of this paper we thus concentrate on the theory of BV solutions, referring to [DP2] 
or [SI] for the alternative approach based on compensated compactness. 

We shall first review the main ideas involved in the construction of weak so­
lutions, based on the Riemann problem and the wave interaction functional. We 
then present more recent results on stability, uniqueness and characterization of 
entropy weak solutions. All this material can be found in the monograph [B3]. The 
last section contains an outline of the latest work on stability and convergence of 
vanishing viscosity approximations. 

2. Existence of weak solutions 
Toward the construction of more general solutions of (1.1), the basic building 

block is the Riemann problem, i.e. the initial value problem where the data are 
piecewise constant, with a single jump at the origin: 

u(0,x)=\\ * *<0. (2.1) 
[ tA if x > 0 . 

Assuming that the amplitude |tA — u^\ of the jump is small, this problem was 
solved in a classical paper of Lax [Lxl], under the additional hypothesis 
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(H) For each i = l,...,n, the z-th field is either genuinely nonlinear, so that 
DXi(u) • Ti(u) > 0 for all u, or linearly degenerate, with _DA,(«) • rj(«) = 0 for 
all u. 

The solution is self-similar: u(t,x) = U(x/t). It consists of n + 1 constant states 
OJQ = u~, oji,... ,ojn = tA (see Fig. 1). Each couple of adiacent states w»_i, w» 
is separated either by a shock (the thick lines in Fig. 1) satisfying the Rankine 
Hugoniot equations, or else by a centered rarefaction. In this second case, the 
solution u varies continuously between w»_i and w» in a sector of the t-x-rAane (the 
shaded region in Fig. 1) where the gradient ux coincides with an z-eigenvector of 
the matrix A(u). 

2At 

Figure 1 

Approximate solutions to a more general Cauchy problem can be constructed 
by patching together several solutions of Riemann problems. In the Glimm scheme 
(Fig. 2), one works with a fixed grid in the x-t plane, with mesh sizes Ax, At. At 
time t = 0 the initial data is approximated by a piecewise constant function, with 
jumps at grid points. Solving the corresponding Riemann problems, a solution is 
constructed up to a time At sufficiently small so that waves generated by different 
Riemann problems do not interact. By a random sampling procedure, the solution 
u(At, •) is then approximated by a piecewise constant function having jumps only 
at grid points. Solving the new Riemann problems at every one of these points, one 
can prolong the solution to the next time interval [At, 2At], etc. . . 

x x’ 

Figure 3 

An alternative technique for contructing approximate solutions is by wave-
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front tracking (Fig. 3). This method was introduced by Dafermos [Dl] in the scalar 
case and later developed by various authors [DPI], [BI], [R], [BJ]. It now provides 
an efficient tool in the study of general nxn systems of conservation laws, both for 
theoretical and numerical purposes [B3], [HR]. 

The initial data is here approximated with a piecewise constant function, and 
each Riemann problem is solved approximately, within the class of piecewise con­
stant functions. In particular, if the exact solution contains a centered rarefaction, 
this must be approximated by a rarefaction fan, containing several small jumps. At 
the first time ti where two fronts interact, the new Riemann problem is again ap­
proximately solved by a piecewise constant function. The solution is then prolonged 
up to the second interaction time Ì2, where the new Riemann problem is solved, 
etc . . . The main difference is that in the Glimm scheme one specifies a priori the 
nodal points where the the Riemann problems are to be solved. On the other hand, 
in a solution constructed by wave-front tracking the locations of the jumps and of 
the interaction points depend on the solution itself, and no restarting procedure is 
needed. 

In the end, both algorithms produce a sequence of approximate solutions, 
whose convergence relies on a compactness argument based on uniform bounds on 
the total variation. We sketch the main idea involved in these a priori BV bounds. 
Consider a piecewise constant function u : R >-¥ Rn, say with jumps at points 
xi < X2 < • • • < XM- Call aa the amplitude of the jump at xa. The total strength 
of waves is then defined as 

V(u) = 5 > Q | . (2.2) 
Q 

Clearly, this is an equivalent way to measure the total variation. Along a solution 
u = u(t,x) constructed by front tracking, the quantity V(t) = V(u(t,-)) may well 
increase at interaction times. To provide global a priori bounds, following [G] one 
introduces a wave interaction potential, defined as 

Q(u) = ^ \aaaß\' (2-3) 
(a,ß)eA 

where the summation runs over the set A of all couples of approaching waves. 
Roughly speaking, we say that two wave-fronts located at xa < Xß are approaching 
if the one at xa has a faster speed than the one at Xß (hence the two fronts are 
expected to collide at a future time). Now consider a time r where two incoming 
wave-fronts interact, say with strengths a, a' (for example, take r = h in Fig. 3). 
The difference between the outgoing waves emerging from the interaction and the 
two incoming waves a, a' is of magnitude 0(1) • \cra'\. On the other hand, after 
time r the two incoming waves are no longer approaching. This accounts for the 
decrease of the functional Q in (2.3) by the amount \aa'\. Observing that the new 
waves generated by the interaction could approach all other fronts, the change in 
the functionals V, Q across the interaction time r is estimated as 

AV(T) = 0(1) • \aa'\, AQ(T) = -\aa'\ + 0(1) • \aa'\ V(r-). 
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If the initial data has small total variation, for a suitable constant Co the quantity 

T(t) = V(u(t,-))+ Co Q(u(t,-)) 

is monotone decreasing in time. This argument provides the uniform BV bounds on 
all approximate solutions. Using Helly's compactness theorem, one obtains the con­
vergence of a subsequence of approximate solutions, and hence the global existence 
of a weak solution. 

Theorem 1. Let the system (1.1) be strictly hyperbolic and satisfy the assumptions 
(H). Then, for a sufficiently small 5 > 0 the following holds. For every initial 
condition ü with 

||ü||L~ < ö, Tot. Var.{ü} < Ö, (2.4) 

the Cauchy problem has a weak solution, defined for all times t>0. 

This result is based on careful analysis of solutions of the Riemann problem 
and on the use of a quadratic interaction functional (2.3) to control the creation of 
new waves. These techniques also provided the basis for subsequent investigations 
of Glimm and Lax [GL] and Liu [L2] on the asymptotic behavior of weak solutions 
as t —¥ oo. 

3. Stability 
The previous existence result relied on a compactness argument which, by 

itself, does not provide informations on the uniqueness of solutions. A first under­
standing of the dependence of weak solutions on the initial data was provided by 
the analysis of front tracking approximations. The idea is to perturb the initial 
data by shifting the position of one of the jumps, say from i t o a nearby point x' 
(see Fig. 3). By carefully estimating the corresponding shifts in the positions of 
all wave-fronts at a later time t, one obtains a bound on the L1 distance between 
the original and the perturbed approximate solution. After much technical work, 
this approach yielded a proof of the Lipschitz continuous dependence of solutions 
on the initial data, first in [BC1] for 2 x 2 systems, then in [BCP] for general nxn 
systems. 

Theorem 2. Let the system (1.1) be strictly hyperbolic and satisfy the assumptions 
(H). Then, for every initial data ü satisfying (2.4) the weak solution obtained as 
limit of Glimm or front tracking approximations is unique and depends Lipschitz 
continuously on the initial data, in the L1 distance. 

These weak solutions can thus be written in the form u(t, •) = S tu, as tra-
jecories of a semigroup S :T> x [0, OG[H> T> on some domain T> containing all func­
tions with sufficiently small total variation. For some Lipschitz constants L, V one 
has 

\\St.u — Ssv||L1 < L ||« — u||Li + L'\t — s\, (3.1) 

file:////St.u
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for all t,s >0 and initial data u,v Ç.V. 

An alternative proof of Theorem 2 was later achieved by a technique introduced 
by Liu and Yang in [LY] and presented in [BLY] in its final form. The heart of the 
matter is to construct a nonlinear functional, equivalent to the L1 distance, which 
is decreasing in time along every pair of solutions. We thus seek $ = $(«, v) and a 
constant C such that 

1 , i 

C 
||L1 < $(u,v) < C • | 

! * ( « ( * ) , «(*))< 0. 

(3.2) 

(3.3) 

— 

CÛ3= v(x) 

q] " 
hi 

+ — c « 
v 

G\\ 

^ \qi 
u 

%= u(x) 

X X„ 

Figure 4 

In connection with piecewise constant functions u,v : R >-¥ Rn generated by 
a front tracking algorithm, this functional can be defined as follows (Fig. 4). At 
each point x, we connect the states u(x), v(x) by means of n shock curves. In 
other words, we construct intermediate states OJO = U(X),OJI,. .. ,ojn = v(x) such 
that each pair WJ_I,U;J is connected by an Ashock. These states can be uniquely-
determined by the implicit function theorem. Call qi,...,qn, the strengths of these 
shocks. We regard qt(x) as the z-th scalar component of the jump (u(x), v(x)). For 
some constant C, one clearly has 

1 n 

— • \v(x) — u(x)\ < \ J | % ( ï ) | < C • \v(x) — u(x)\. (3.4) 
ì=i 

The functional $ is now defined as 
n /-CX3 

$(u,v) = y j / Wi(x) \qi(x)\ dx, 
^ _ 1 J—oo 

(3.5) 

where the weights W, take the form 

Wi (x) = l + Ki • [total strength of waves in u and in v 

which approach the Awave qt(x)] 

+ K,2 • [wave interaction potentials of u and of v] 

= l + KiVi(x) + K2 [Q(u) + Q(v)] 

(3.6) 
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for suitable constants Ki,K2- Notice that, by construction, qi(x) represents the 
strength of a fictitious shock wave located at x, travelling with a speed A»(x) de­
termined by the Rankine-Hugoniot equations. In (3.6), it is thus meaningful to 
consider the quantity 

Vi(x) = ^ lCT"l> 
aeAi(x) 

where the summation extends to all wave-fronts aa in u and in v which are ap­
proaching the Ashock qi(x). From (3.4) and the boundedness of the weights W,, 
one easily derives (3.2). By careful estimates on the Riemann problem, one can 
prove that also (3.3) is approximately satisfied. In the end, by taking a limit of 
front tracking approximations, one obtains Theorem 2. 

For general n x n systems, in (3.1) one finds a Lipschitz constant L > 1. 
Indeed, it is only in the scalar case that the semigroup is contractive and the theory 
of accretive operators and abstract evolution equations in Banach spaces can be 
applied, see [K], [C]. We refer to the flow generated by a system of conservation 
laws as a Riemann semigroup, because it is entirely determined by specifying how 
Riemann problems are solved. As proved in [B2], if two semigroups S, S' yield the 
same solutions to all Riemann problems, then they coincide, up to the choice of 
their domains. 

From (3.1) one can deduce the error bound 

fT { \\w(t + h) -Shw(t)\\T1 ) 
\\w(T) - STw(0) L <L- / h i m i n f ^ , \ dt, (3.7) 
11 W | | L _ JQ ^ h^Q+ h J 

valid for every Lipschitz continuous map w : [0,T] >-¥ T> taking values inside the 
domain of the semigroup. We can think of t >-¥ w(i) as an approximate solution of 
(1.1), while t H> St.w(0) is the exact solution having the same initial data. According 
to (3.7), the distance at time T is bounded by the integral of an instantaneous error 
rate, amplified by the Lipschitz constant L of the semigroup. 

Using (3.7), one can estimate the distance between a front tracking approxima­
tion and the corresponding exact solution. For approximate solutions constructed 
by the Glimm scheme, a direct application of this same formula is not possible 
because of the additional errors introduced by the restarting procedures at times 
tk = kAt. However, relying on a careful analysis of Liu [LI], one can construct a 
front tracking approximate solution having the same initial and terminal values as 
the Glimm solution. By this technique, in [BM] the authors proved the estimate 

|| Glimm/y ) _ exact ( j . ) || 
lim Ü A = V ; | l L = 0 . (3.8) 

Ax-»o v Aa; • | In Aa, 

In other words, letting the mesh sizes Ax, At —¥ 0 while keeping their ratio Ax/At 
constant, the L1 norm of the error in the Glimm approximate solution tends to zero 
at a rate slightly slower than ^/Ax. 
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4. Uniqueness 
The uniqueness and stability results stated in Theorem 2 refer to a special 

class of weak solutions: those obtained as limits of Glimm or front tracking ap­
proximations. For several applications, it is desirable to have a uniqueness theorem 
valid for general weak solutions, without reference to any particular constructive 
procedure. Results in this direction were proved in [BLF], [BG], [BLe]. They are 
all based on the error formula (3.7). In the proofs, one considers a weak solution 
u = u(t,x) of the Cauchy problem (1.1)—(1.2). Assuming that u satisfies suitable 
entropy and regularity conditions, one shows that 

\\u(t + h) — Su,u(t)\\ t 
liminf- H*- = 0 (4.1) 
h^Q+ h 

at almost every time t. By (3.7), u thus coincides with the semigroup trajectory 
t >-¥ St.u(Ö) = St'ü. Of course, this implies uniqueness. As an example, we state 
below the result of [BLe]. Consider the following assumptions: 

( A l ) (Conservat ion Equat ions) The function u = u(t,x) is a weak solution of 
the Cauchy problem (1.1)—(1.2), taking values within the domain T> of the 
semigroup S. More precisely, u : [0,T] H> T> is continuous w.r.t. the L1 

distance. The initial condition (1.2) holds, together with 

[u 4>t + / («) <j>x] dxdt = 0 

for every C1 function <f> with compact support contained inside the open strip 
]0,T[xR. 

( A2) (Lax Ent ropy Condit ion) Let u have an approximate jump discontinuity at 
some point (r, £) G]0,T[x#i. In other words, assume that there exists states 
ur, tA G 0 and a speed A G R such that, calling 

(4.2) 

holds 

u(t,x) = {i; 

i r+p ri+p 

hm — / / 
p^0+ p2 JT_p ]i_p 

if x < £ + X(t — T), 

if x > £ + X(t — T), 

u(t,x) — U(t,x) dxdt = 0. (4.3) 

Then, for some i G { 1 , . . . , n), one has the entropy inequality: 

Ai(tA) > A > Xi(u+). (4.4) 

(A3) (Bounded Variat ion Condit ion) The function x >-¥ U(T(X),X) has bounded 
variation along every Lipschitz continuous space-like curve {t = T(X)}, which 
satisfies \dr/dx\ < ö a.e., for some constant ö > 0 small enough. 
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Theorem 3. Let u = u(t,x) be a weak solution of the Cauchy problem (1.1) (1.2) 
satisfying the assumptions (Al), (A2) and (A3). Then 

u(t,-) = Stu (4.5) 

for allt. In particular, the solution that satisfies the three above conditions is unique. 

An additional characterization of these unique solutions, based on local integral 
estimates, was given in [B2]. The underlying idea is as follows. In a forward 
neighborhood of a point (r, £) where u has a jump, the weak solution u behaves 
much in the same way as the solution of the corresponding Riemann problem. On 
the other hand, on a region where its total variation is small, our solution u can be 
accurately approximated by the solution of a linear hyperbolic system with constant 
coefficients. 

To state the result more precisely, we introduce some notations. Given a 
function u = u(t,x) and a point (r, £), we denote by Ui .T , , the solution of the 
Riemann problem with initial data 

tA = lim U(T, x), tA = lim U(T, X). (4.6) 

In addition, we define UÌU.T ^ as the solution of the linear hyperbolic Cauchy prob­
lem with constant coefficients 

wt + Awx = 0, w(0, x) = U(T,X). (4.7) 

Here A = A(U(T, £)). Observe that (4.7) is obtained from the quasilinear system 

ut + A(u)ux = 0 (.4 = Df) (4.8) 

by "freezing" the coefficients of the matrix A(u) at the point (r, £) and choosing 
U(T) as initial data. A new notion of "good solution" can now be introduced, by 
locally comparing a function u with the self-similar solution of a Riemann problem 
and with the solution of a linear hyperbolic system with constant coefficients. More 
precisely, we say that a function u = u(t,x) is a viscosity solution of the system 
(1.1) if t >-¥ u(t,-) is continuous as a map with values into ~L\0C, and moreover the 
following integral estimates hold. 

(i) At every point (r, £), for every ß' > 0 one has 

1 
lim 

h^o+ h Jz_ß,h 

i+ß'h 
U(T + h, x) — U?.TÌ)(h, x — £) dx = 0. (4.9 

(ii) There exist constants C, ß > 0 such that, for every r > 0 and a < Ç < b, one 
has 

j cb-ßh 2 
limsup— / U(T + h, x) — U,U.T ^(h,x) dx < C • (Tot.Var.{«(r); ]a, b[ } J . 

(4.10) 
h^o+ h Ja+ßh 
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As proved in [B2], this concept of viscosity solution completely characterizes 
semigroup trajectories. 

Theorem 4. Let S : T> x [0,oo[xX> be a semigroup generated by the system of 
conservation laws (1.1). A function u : [0,T] H> T> is a viscosity solution of (1.1) if 
and only if u(t) = Stu(0) for all t G [0,T]. 

5. Vanishing viscosity approximations 
A natural conjecture is that the entropie solutions of the hyperbolic system 

(1.1) actually coincide with the limits of solutions to the parabolic system 

ue
t+ f(ue)x=eue

xx, (5.1) 

letting the viscosity coefficient e —¥ 0. In view of the previous uniqueness results, 
one expects that the vanishing viscosity limit should single out the unique "good" 
solution of the Cauchy problem, satisfying the appropriate entropy conditions. In 
earlier literature, results in this direction were based on three main techniques: 

1 - Comparison principles for parabolic equations. For a scalar conservation 
law, the existence, uniqueness and global stability of vanishing viscosity solutions 
was first established by Oleinik [O] in one space dimension. The famous paper by 
Kruzhkov [K] covers the more general class of L°° solutions and is also valid in 
several space dimensions. 

2 - Singular perturbations. Let « be a piecewise smooth solution of the n x n 
system (1.1), with finitely many non-interacting, entropy admissible shocks. In 
this special case, using a singular perturbation technique, Goodman and Xin [GX] 
constructed a family of solutions u6 to (5.1), with u6 —¥ u as e —¥ 0. 

3 - Compensated compactness. If, instead of a BV bound, only a uniform 
bound on the L°° norm of solutions of (5.1) is available, one can still construct a 
weakly convergent subsequence u6 —*• u. In general, we cannot expect that this weak 
limit satisfies the nonlinear equations (1.1). However, for a class of 2 x 2 systems, 
in [DP 2] DiPerna showed that this limit u is indeed a weak solution of (1.1). The 
proof relies on a compensated compactness argument, based on the representation 
of the weak limit in terms of Young measures, which must reduce to a Dirac mass 
due to the presence of a large family of entropies. 

Since the main existence and uniqueness results for hyperbolic systems of 
conservation laws are valid within the space of BV functions, it is natural to seek 
uniform BV bounds also for the viscous approximations u6 in (5.1). This is indeed 
the main goal accomplished in [BB]. As soon as these BV bounds are established, the 
existence of a vanishing viscosity limit follows by a standard compactness argument. 
The uniqueness of the limit can then be deduced from the uniqueness theorem in 
[BG]. By further analysis, one can also prove the continuous dependence on the 
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initial data for the viscous approximations u6, in the L1 norm. Remarkably, these 
results are valid for general n x n strictly hyperbolic systems, not necessarily in 
conservation form. 

Theorem 5. Consider the Cauchy problem for a strictly hyperbolic system with 
viscosity 

Uf + A(ue)ue
x = eue

xx, ue(0,x) = u(x). (5.2) 

Then there exist constants C, L, L' and Ö > 0 such that the following holds. If 

Tot.Var.{ü} < Ö, | | « (A) | |L~ < Ö, (5.3) 

then for each e > 0 the Cauchy problem (5.2) has a unique solution u6, defined for 
all t > 0. Adopting a semigroup notation, this will be written as t >-¥ u6(t, •) = Sf tï. 
In addition, one has: 

B V bounds : Tot.Var.{Se
tu} < C Tot. Var.{u} . (5.4) 

L1 s t ab i l i ty : \\Sîu — SfwIL , < L Ilo — v\\T, , (5.5) 
•> II t t U L I — II ML1 ' v ' 

\\Sfu — Sgojlj^! < L' (\t — s\ + IVA — \fes | J . (5.6) 

Convergence. As e —¥ 0+, the solutions u6 converge to the trajectories of a 
semigroup S such that 

\\Stu - S A I L I < L\\U- tl||Li +L'\t-s\. (5.7) 

These vanishing viscosity limits can be regarded as the unique vanishing viscosity 
solutions of the hyperbolic Cauchy problems 

ut + A(u)ux = 0, «(0, a;) = «(a;). (5.8) 

In the conservative case where A(u) = Df(u) for some flux function f, the 
vanishing viscosity solution is a weak solution of 

ut + f(u)x = 0, «(0, a;) = «(a;), (5.9) 

satisfying the Liu admissibility conditions [L3]. Moreover, the vanishing viscosity 
solutions are precisely the same as the viscosity solutions defined at (4-9)-(4-10) in 
terms of local integral estimates. 

The key step in the proof is to establish a priori bounds on the total variation 
of solutions of 

ut + A(u)ux = uxx (5.10) 

uniformly valid for all times t G [0, oo[. We outline here the main ideas. 

file:////Sfu
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(i) At each point (t, x) we decompose the gradient along a suitable basis of unit 
vectors fi, say 

ux = ^2vifi. (5.11) 

(ii) We then derive an equation describing the evolution of these gradient compo­
nents 

Vi,t + (XiVi)x - vi>xx = 4>i. (5.12) 

(iii) Finally, we show that all source terms (f>i = (f>i (t, x) are integrable. Hence, for 
all r > 0, 

|[wi(T)')||Li < ||wi(0, OIILI + / / \4>i(t,x)\ dxdt < oo. (5.13) 
•JO JlR 

In this connection, it seems natural to decompose the gradient ux along the 
eigenvectors of the hyperbolic matrix A(u). This approach however does NOT work. 
In the case where the solution « is a travelling viscous shock profile, we would obtain 
source terms which are not identically zero. Hence they are certainly not integrable 
over the domain {t > 0, x G R}. 

An alternative approach, proposed by S. Bianchini, is to decompose ux as a 
sum of gradients of viscous travelling waves. By a viscous travelling t'-wave we mean 
a solution of (5.10) having the form 

w(t,x) = U(x-at), (5.14) 

where the speed a is close to the t'-th eigenvalue A, of the hyperbolic matrix A. 
Clearly, the function U must provide a solution to the second order O.D.E. 

U" = (A(U) - a)U'. (5.15) 

The underlying idea for the decomposition is as follows. At each point (t, x), given 
(u,ux,uxx), we seek travelling wave profiles Ui,...,Un such that 

Ui(x) = u(x), i = l,...,n, (5.16) 

Y^UKX) = ux(x), Y,u"(x) = «**(*) • (5-17) 
ì Ì 

In general, the system of algebraic equations (5.16)^(5.17) admits infinitely many-
solutions. A unique solution is singled out by considering only those travelling 
profiles Ui that lie on a suitable center manifold Mi- We now call ft the unit vector 
parallel to U[, so that U[ = w,fj for some scalar Vi- The decomposition (5.11) is 
then obtained from the first equation in (5.17). 

Toward the BV estimate, the second part of the proof consists in deriving the 
equation (5.12) and estimating the integrals of the source terms fa. Here the main 
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idea is that these source terms can be regarded as generated by wave interactions. 
In analogy with the hyperbolic case considered by Glimm [G], the total amount of 
these interactions can be controlled by suitable Lyapunov functionals. We describe 
here the main ones. 

1. Consider first two independent, scalar diffusion equations with strictly different 
drifts: 

j zt+ [X(t,x)z]x - zxx = 0, 

\z;+[X*(t,x)z*]x-z*xx = 0, 

assuming that 
inf A* (t, x) — sup X(t, x) > c > 0. 
t,x t,x 

We regard z as the density of waves with a slow speed A and z* as the density of 
waves with a fast speed A*. A transversal interaction potential is defined as 

Q(z,z*) = - j i K(x2 — xi)\z(xi)\ \z*(x2)\ dxidx2 , (5.18) 
c R2 

vi \ • i e-cy/2 if y>0, ,, i n \ 
K(y) = { 1 .f J £ 0 ; (5.19) 

One can show that this functional Q is monotonically decreasing along every couple 
of solutions z, z*. The total amount of interaction between fast and slow waves can 
now be estimated as 

OO f. /»OC 

/ \z(t,x)\ \z*(t,x)\ dxdt < — j 
0 J R Jo 

lQ(z(t),z*(t)) (It 

<Q(z(0),z*(0)) < - [ \z(0,x)\dx- [ \z*(0,x)\dx. 
c JR JR 

By means of Lyapunov functionals of this type one can control all source terms in 
(5.12) due to the interaction of waves of different families. 

2. To control the interactions between waves of the same family, we seek functionals 
which are decreasing along every solution of a scalar viscous conservation law 

ut + g(u)x = uxx . (5.20) 

For this purpose, to a scalar function x >-¥ u(x) we associate the curve in the plane 

. / u \ / conserved quantity \ ,_ „ , . 

7 = U ) - « J = l A - ) • ( 5 - 2 1 ) 

In connection with a solution u = u(t,x) of (5.20), the curve 7 evolves according to 

It +g'(uhx =1xx- (5.22) 
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Notice that the vector g'(u)^x is parallel to 7, hence the presence of this term in 
(5.22) only amounts to a reparametrization of the curve, and does not affect its 
shape. The curve thus evolves in the direction of curvature. An obvious Lyapunov 
functional is the length of the curve. In terms of the variables 

ux 
—Ut 

this length is given by 

E(l) — I Yix\dx = j yv2 + w2 dx. 

We can estimate the rate of decrease in the length as 

M [iwlv)x 

(5.23) 

(5.24) 

-s1«""«) ,3 /2 dx > 
1 M [(w/v)xy dx, 

Il + (W/V)2Y>* (1 + S2)3/2 J\w/v\<6 
(5.25) 

for any given constant Ö > 0. This yields a useful a priori estimate on the integral 
on the right hand side of (5.25). 
3. In connection with the same curve 7 in (5.21), we now introduce another func­
tional, defined in terms of a wedge product. 

Q(i) = 
1 

\lx (x) A 7a- (a;') I dx dx'. (5.26) 
x<x' 

For any curve that moves in the plane in the direction of curvature, one can show 
that this functional is monotone decreasing and its decrease bounds the area swept 
by the curve: |cL4| < —dQ. 

Using (5.22)^(5.23) we now compute 

dQ 
' dt 

> 
dA 

dt 
htA<yx\dx-- \lxx A 7a, I da: \vxw — vwx\ dx. 

Integrating w.r.t. time, we thus obtain another useful a priori bound: 

dQ(l(t)) 
\vTw — vuiridxdt < 

dt 
dt < Q (7(0)) . 

Together, the functionals in (5.24) and (5.26) allow us to estimate all source terms 
in (5.12) due to the interaction of waves of the same family. 

This yields the L1 estimates on the source terms fa, in (5.12), proving the 
uniform bounds on the total variation of a solution u of (5.10). See [BB] for details. 

Next, to prove the uniform stability of all solutions of the parabolic system 
(5.10) having small total variation, we consider the linearized system describing the 
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evolution of a first order variation. Inserting the formal expansion « = Uo+ez+0(e2) 
in (5.10), we obtain 

zt + [DA(u) -z]ux + A(u)zx = zxx . (5.27) 

Our basic goal is to prove the bound 

||*(t)||L1 < L | | z ( 0 ) | | L 1 , (5.28) 

for some constant L and all £ > 0 and every solution z of (5.27). By a standard 
homotopy argument, from (5.28) one easily deduces the Lipschitz continuity of the 
solution of (5.8) on the initial data. Namely, for every couple of solutions u, ü with 
small total variation one has 

\\u(t) - M(*)| |L 1 < L \\u(0) - M(0) | | L 1 . (5.29) 

To prove (5.28) we decompose the vector z as a sum of scalar components: z = 
Y^i hifi, write an evolution equation for these components: 

hi,t + (XiJii)x — hi}XX = fa , 

and show that the source terms fa are integrable on the domain {t > 0 ,x G R). 

For every initial data «(0, •) = « with small total variation, the previous argu­
ments yield the existence of a unique global solution to the parabolic system (5.8), 
depending Lipschitz continuously on the initial data, in the L1 norm. Perform­
ing the rescaling t H> t/e, x >-¥ x/e, we immediately obtain the same results for 
the Cauchy problem (5.2). Adopting a semigroup notation, this solution can be 
written as u6(t, •) = Sfu. Thanks to the uniform bounds on the total variation, a 
compactness argument yields the existence of a strong limit in ~L\0C 

u = lim u6m (5.30) 
em->0 

at least for some subsequence em —¥ 0. Since the u6 depend continuously on the 
initial data, with a uniform Lipschitz constant, the same is true of the limit solution 
u(t,-) = S tu. In the conservative case where A(u) = Df(u), it is not difficult to 
show that this limit u actually provides a weak solution to the Cauchy problem 
(1.1H1.2). 

The only remaining issue is to show that the limit in (5.30) is unique, i.e. it 
does not depend on the subsequence {eTO}. In the standard conservative case, this 
fact can already be deduced from the uniqueness result in [BG]. In the general case, 
uniqueness is proved in two steps. First we show that, in the special case of a 
Riemann problem, the solution obtained as vanishing viscosity limit is unique and 
can be completely characterized. To conclude the proof, we then rely on the same 
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general argument as in [B2] : if two Lipschitz semigroups S, S' provide the same 
solutions to all Riemann problems, then they must coincide. See [BB] for details. 

6. Concluding remarks 
1. A classical tool in the analysis of first order hyperbolic systems is the method of 
characteristics. To study the system 

ut + A(u)ux = 0, 

one decomposes the solution along the eigenspaces of the matrix A(u). The evo­
lution of these components is then described by a family of O.D.E's along the 
characteristic curves. In the t-x plane, these are the curves which satisfy dxjdt = 
Xi(u(t,x)). The local decomposition (5.16)^(5.17) in terms of viscous travelling 
waves makes it possible to implement this "hyperbolic" approach also in connection 
with the parabolic system (5.10). In this case, the projections are taken along the 
vectors fi, while the characteristic curves are defined as dxjdt = CTJ, where CT, is the 
speed of the t'-th travelling wave. Notice that in the hyperbolic case the projections 
and the wave speeds depend only on the state u, through the eigenvectors t*j(ti) and 
the eigenvalues A,(«) of the matrix A(u). On the other hand, in the parabolic case 
the construction involves the derivatives ux, uxx as well. 

2. In nearly all previous works on BV solutions for systems of conservation laws, 
following [G] the basic estimates on the total variation were obtained by a careful 
study of the Riemann problem and of elementary wave interactions. The Riemann 
problem also takes the center stage in all earlier proofs of the stability of solutions 
[BC1], [BCP], [BLY]. In this connection, the hypothesis (H) introduced by Lax [Lxl] 
is widely adopted in the literature. It guarantees that solutions of the Riemann 
problem have a simple structure, consisting of at most n elementary waves (shocks, 
centered rarefactions or contact discontinuities). If the assumption (H) is dropped, 
some results on global existence [L3], and continuous dependence [AM] are still 
available, but their proofs become far more technical. On the other hand, the 
approach introduced in [BB] marks the first time where uniform BV estimates are 
obtained without any reference to Riemann problems. Global existence and stability 
of weak solutions are obtained for the whole class of strictly hyperbolic systems, 
regardless of the hypothesis (H). 

3. For the viscous system of conservation laws 

«t + f(u)x = « i i , 

previous results in [L4], [SX], [SZ], [Yu] have established the stability of special types 
of solutions, for example travelling viscous shocks or viscous rarefactions. Taking 
e = 1 in (5.2), from Theorem 5 we obtain the uniform Lipschitz stability (w..r.t. the 
L1 distance) of ALL viscous solutions with sufficiently small total variation. An 
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interesting alternative technique for proving stability of viscous solutions, based on 
spectral methods, was recently developed in [HZ]. 

4. In the present survey we only considered initial data with small total variation. 
This is a convenient setting, adopted in much of the current literature, which guar­
antees the global existence of BV solutions of (1.1) and captures the main features 
of the problem. A recent example constructed by Jenssen [J] shows that, for initial 
data with large total variation, the L°° norm of the solution can blow up in finite 
time. In this more general setting, one expects that the existence and uniqueness 
of weak solutions, together with the convergence of vanishing viscosity approxima­
tions, should hold locally in time as long as the total variation remains bounded. 
For the hyperbolic system (1.1), results on the local existence and stability of solu­
tions with large BV data can be found in [Sc] and [BC2], respectively. Because of 
the counterexample in [BS], on the other hand, similar well posedness results are 
not expected in the general L°° case. 
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