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Cohomology of Moduli Spaces 

Frances Kirwan* 

Abstract 

Some recent progress towards understanding the cohomology of moduli 
spaces of curves is described. Madsen and Weiss have announced a proof of 
a generalisation of Mumford's conjecture on the stable cohomology of these 
moduli spaces Mg, and other contributors have made advances related to 
Faber's conjectures concerning the tautological ring of Mg. 
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Moduli spaces arise in classification problems in algebraic geometry (and other 
areas of geometry) when, as is typically the case, there are not enough discrete in­
variants to classify objects up to isomorphism. In the case of nonsingular complex 
projective curves (or compact Riemann surfaces) the genus g is a discrete invariant 
which classifies the curve regarded as a topological surface, but does not determine 
its complex structure when g > 0. For each g > 0 there is a moduli space Mg 

whose points correspond bijectively to isomorphism classes of nonsingular complex 
projective curves of genus g, and whose geometric structure reflects the way such 
curves can vary in families depending on parameters. The topology of these mod­
uli spaces Mg and their compactifications has been studied for several decades, 
and important progress has been made recently on some long-standing questions 
concerning their cohomology. 

In his fundamental paper [93] Mumford considered some tautological coho-
mological classes Kj £ H2J(Mg) for j = 1,2,... which extend naturally to the 
Deligne-Mumford compactification Mg. Much work on the cohomology of Mg has 
concentrated on its tautological ring, which is the subalgebra of its rational coho­
mology ring (or of its Chow ring) generated by these tautological classes. 

One reason for the importance of the tautological ring of Mg is its relationship 
with the stable cohomology ring H*(M00; Q). It was proved by Harer [47] that the 
cohomology Hk(Mg;Q) of Mg in degree k is independent of the genus g when 
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g >• k, making it possible to define Hk(M00;Q) as Hk(Mg;Q) for suitably large 
g. Mumford conjectured that the stable cohomology ring H*(M00;Q) is freely-
generated by the tautological classes K\,K,2,... and Miller [83] and Morita [85] 
proved part of this conjecture by showing that the natural map 

Q[Ki,K2,...]^H*(Mœ;Q) 

is injective. The remainder of Mumford's conjecture, that this map is surjective, 
remained unproved for nearly two decades. However Madsen and Tillmann [80] 
found an interpretation of Mumford's map on the level of homotopy, which they 
conjectured should be a homotopy equivalence. Very recently a proof of their con­
jecture, using h-principle arguments combined with Harer stabilisation, has been 
announced by Madsen and Weiss [81, 103], and from this Mumford's conjecture 
follows. 

The tautological ring of Mg for finite g has many beautiful properties. Faber 
[26] conjectured that when g > 2 the tautological ring of Mg looks like the algebraic 
cohomology ring of a nonsingular complex projective variety of dimension g — 2, and 
that it is generated by the tautological classes KI,K2,..., K[S/3] with no relations in 
degrees at most [g/3]. He also provided an explicit conjecture for a complete set of 
relations among these generators. Progress has been made by many contributors 
towards Faber's conjectures, and also related problems on moduli spaces linked to 
Mg. In particular Morita [90, 91] has recently proved that the rational cohomolog-
ical version of the tautological ring of Mg is indeed generated by KI,K2,..., A S / A 

The definition of the tautological ring has also been extended to the compactifi­
cation Mg,n of the moduli space Mg,„, of nonsingular curves of genus g with n 
marked points (motivated by Witten's conjectures [107], proved by Kontsevich [71], 
on intersection pairings on Mg,n). 

The moduli spaces Mg and Mg,„, have other younger and more sophisticated 
relatives, such as the moduli spaces Mg,„,(X,ß) which parametrise holomomor-
phic maps / : S —t X from a nonsingular complex projective curve S of genus g 
with n marked points satisfying /»[S] = ß £ H2(X), and their compactifications 
Mg,„,(X,ß) which parametrise 'stable' maps. Intersection theory on Mg,„,(X, ß) is 
fundamental to Gromov-Witten theory and quantum cohomology for X, with nu­
merous applications in the last decade to enumerative geometry. The Virasoro con­
jecture of Eguchi, Hori and Xiong provides relations among the descendent Gromov-
Witten invariants of X, and its recent proof by Gi ventai [39] for X = Wn implies 
part of Faber's conjecture by [37]. 

Other relatives of Mg include the moduli spaces of pairs (£, A) where S is a 
nonsingular curve and A is a stable vector bundle over S, and their compactifica­
tions; intersection theory on these relates intersection theory on Mg and intersection 
theory on moduli spaces of bundles over a fixed curve, which is by now quite well 
understood. 

1. Moduli spaces of curves 
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The study of algebraic curves, and how they vary in families, has been fun­
damental to algebraic geometry since the beginning of the subject, and has made 
huge advances in the last few decades [3, 52]. The concept of moduli as parameters 
describing as efficiently as possible the variation of geometric objects was initiated 
in Riemann's famous paper [99] of 1857, in which he observed that an isomor­
phism class of compact Riemann surfaces of genus g > 2 'hängt ... von 3g — 3 
stetig veränderlichen Grössen ab, welche die Moduln dieser Klasse genannt werden 
sollen'. In modern terminology, Riemann's observation is the statement that the 
dimension of Mg is 3g — 3 if g > 2. It was not until the 1960s that precise defi­
nitions and methods of constructing moduli spaces were given by Mumford in [92] 
following ideas of Grothendieck. Roughly speaking, the moduli space Mg is the 
set of isomorphism classes of nonsingular complex projective curves1 of genus g, 
endowed with the structure of a complex variety in such a way that any family of 
nonsingular complex projective curves parametrised by a base space S induces a 
morphism from S to Mg which associates to each s £ S the isomorphism class of 
the curve parametrised by s. The moduli spaces Mg can be constructed in several 
different ways, including 

• as orbit spaces for group actions, 
• via period maps and Torelli's theorem, and 
• using Teichmüller theory. 

The first of these is a standard method for constructing many different moduli 
spaces, using Mumford's geometric invariant theory [92, 95,105] or more recent ideas 
due to Kollâr [70] and to Mori and Keel [64]. Geometric invariant theory provides a 
beautiful compactification of Mg known as the Deligne-Mumford compactification 
Mg [15]. This compactification is itself modular: it is the moduli space of (Deligne-
Mumford) stable curves (i.e. complex projective curves with only nodal singularities 
and finitely many automorphisms). Mg is singular but in a relatively mild way; it 
is the quotient of a nonsingular variety by a finite group action [77]. 

The moduli space Mg,„, of nonsingular complex projective curves of genus 
g with n marked points has a similar compactification Mg,„, which is the moduli 
space of complex projective curves with n marked nonsingular points and with only-
nodal singularities and finitely many automorphisms. Finiteness of the automor­
phism group of such a curve S is equivalent to the requirement that any irreducible 
component of genus 0 (respectively 1) has at least 3 (respectively 1) special points, 
where 'special' means either marked or singular in S (and the condition on genus 1 
components here is redundant when g > 2). 

The second method of construction using the period matrices of curves leads 
to a different compactification Mg of Mg known as the Satake (or Satake-Baily-
Borel) compactification. Like the Deligne-Mumford compactification, Mg is a com­
plex projective variety, but the boundary Mg \ Mg of Mg in Mg has (complex) 
codimension 2 for g > 3 whereas the boundary A = Mg \ Mg of Mg in Mg has 
codimension 1. Each of the irreducible components A 0 , . . . , A[g/2] °f A is the clo­
sure of a locus of curves with exactly one node (irreducible curves with one node 

A l l complex curves and real surfaces will be assumed to be connected. 
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in the case of A0 , and in the case of any other Aj the union of two nonsingular 
curves of genus i and g — i meeting at a single point). The divisors Aj meet trans­
versely in Mg, and their intersections define a natural decomposition of A into 
connected strata which parametrise stable curves of a fixed topological type. The 
boundary of Mg,„, in Mg,„, has a similar description, but now as well as the genus 
of each irreducible component it is necessary to keep track of which marked points 
it contains. 

The third method of constructing Mg, via Teichmüller theory, leaves algebraic 
geometry altogether. 

iehmüller theory and mapping class groups 
Important recent advances concerning the cohomology of the moduli spaces 

Mg (in particular [80, 81, 90, 91, 103]) have been proved by topologists via the link 
between these moduli spaces and mapping class groups of compact surfaces. 

Let us fix a compact oriented smooth surface S s of genus g > 2, and let 
Diff+Ss be the group of orientation preserving diffeomorphisms of £ s . Then the 
mapping class group Tg of S s is the group 

F g = 7To(Diff+£s) 

of connected components of Diff+Ss. It acts properly and discontinuously on the 
Teichmüller space Tg of S s , which is the space of conformai structures on S s up to 
isotopy. The Teichmüller space Tg is homeomorphic to R6 s _ 6 , and its quotient by 
the action of the mapping class group Tg can be identified naturally with the moduli 
space Mg. This means that there is a natural isomorphism of rational cohomology 

H*(Mg;Q) ^ H*(Tg;Q). (2.1) 

The corresponding integral cohomology groups are not in general isomorphic be­
cause of the existence of nonsingular complex projective curves with nontrivial au­
tomorphisms. If, however, we work with the moduli spaces Mg,„, of nonsingular 
complex projective curves of genus g with n marked points, then when n is large 
enough such marked curves have no nontrivial automorphisms (cf. [52] p 37) and 

A*(,Ms,„;Z)-A*(rS;„;Z) 

where FSj„ is the group of connected components of the group Diff+SSj„ of orien­
tation preserving diffeomorphisms of £ s which fix n chosen points on S s . 

In fact [20] the components of Diff+£s are contractible when g > 2, so there 
is also a natural isomorphism 

H*(Tg; Z) =* A*(ßDiff+Ss; Z) 

where _BDiff+Ss is the universal classifying space for Diff+Ss. This means that any 
cohomology class of the mapping class group Tg can be regarded as a characteristic 
class of oriented surface bundles, while any rational cohomology class of Tg can be 
regarded as a rational cohomology class of the moduli space Mg. 
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The mapping class group Tg can be described in a group theoretical way. Tg 

acts faithfully by outer automorphisms (that is, the action is defined modulo inner 
automorphisms) on the fundamental group TTI(SS) of S s , which is generated by 
2g elements a\,... ,ag,b\,...,bg subject to one relation JT. ajbjaj^bj1 = 1, and 
the image of Tg in Out(7Ti(Ss)) is the group of outer automorphisms of TTI(SS) 

which act trivially on A2(7Ti(Ss);Z) [110]. Tg has a finite presentation [106] with 
generators represented by Dehn twists (diffeomorphisms of S s obtained by cutting 
S s along a regularly embedded circle, twisting one of the resulting boundary circles 
through 2n and reglueing). There are similar descriptions of FSj„ [110, 33]. 

3. Stable cohomology 
Harer [47] proved in the 1980s that Hk(Tg; Z) and Hk(Tg+i; Z) are isomorphic 

when g > 3k — 1, and the same is true for FSj„ and r s + i : „ . This bound was improved 
by Ivanov [55] and Harer [50] made a further improvement. Since H*(Tg;<Q) is iso­
morphic to H*(Mg; Q), this means that the rational cohomology group Hk(Mg;

<Q) 
is independent of g for g >• k, and we can define the stable cohomology ring 

HAM^Q) 

so that Hk(Moo; Q) =* Hk(Mg;Q) for g > k. 
Harer's stabilisation map can be defined as follows. We choose a smooth 

identification of X s+i with a connected sum of a smooth surface S s of genus g 
and a surface Si of genus 1 (and if we have marked points we make sure they all 
correspond to points in S s ) . Let F ^ + i ^ be the subgroup of F s + i consisting of 
mapping classes represented by diffeomorphisms from S s+i to itself which fix all 
the points coming from Si . The result of collapsing all such points in S s + i together 
is diffeomorphic to S s , so there is a homomorphism from Tg+i:j:1 to Tg as well as an 
inclusion of Tg+i:j:1 in F s + i . Harer showed that both of these induce isomorphisms 

H (Vg',Z) — H (Vg-^i^1 ; Z) and H (Fs_|_i;Z)— H ( F g ^ i ^ j Z ) 

when g ^> k, and likewise we have 

H (FSj„;Z) = A (Tg+i^lin;Z) and H ( r s + i : „ ; Z ) = A (Tg+i^lin;Z) (3.1) 

when g >• k. 
A similar construction can be made to describe the stabilisation isomorphism 

Hk(Mg,n;Q)=Hk(Mg+i,n;Q) 

for the moduli spaces Mg,„, (cf. [28, p.31]). Identifying the last marked point of 
a smooth nonsingular complex projective curve of genus g with a marked point on 
a curve of genus 1 gives a stable curve of genus g + 1 with n marked points. This 
defines for us a morphism 

<j> : Mg,n+i X Mi,i - • Mg+l,n 
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whose image is an open subset of an irreducible component of the boundary of 
Mg+i,„, in Mg+i,n, and there is a normal bundle j\f<p which is a complex line 
bundle (in the sense of orbifolds) over Mg,n+i x Mi,i- Using A' | to denote the 
complement of the zero section of j\f<p we can compose projection maps with the 
forgetful map from Mg,n+i to Mg,„, to get 

Af£ - • Mg,n+i X Mi,i - • Mg,n+i - • Mg,„, 

which induces 
Hk(Mg,n;Q)^Hk(tf;;Q). (3.2) 

On the other hand, using a tubular neighbourhood of the image of <j> in Mg+i,„, we 
obtain a natural homotopy class of maps from A' | to Mg+i,„, which induces 

Hk(Mg+i,n;Q) ^ Hk(M;;Q). (3.3) 

Here (3.2) and (3.3) represent Harer's maps (3.1) and hence they are isomorphisms 
if g > k. 

4. Tautological classes 
When g > 2 Mumford [93] and Morita [84] independently defined tautological 

classes 
Ki £ H2i(Mg;Q) and eH £ H2i(Tg;Z) 

which correspond up to a sign ( —1)*+1 in H*(Mg;Q) under the isomorphism (2.1). 
The subalgebra R*(Mg) of H*(Mg;Q) generated by the KJ, or equivalently by the 
di, is called its tautological ring. 

The classes KJ are defined using the natural forgetful map n : Mg,i —¥ Mg 

which takes an element [S,p] of Mg,i represented by a nonsingular complex pro­
jective curve S with one marked point p to the element [S] of Mg represented by 
S. This is often called the universal curve over Mg, since for generic choices of S 
the fibre 7r_1([S]) is a copy of S. However if S has nontrivial automorphisms then 
7T_1([S]) is not a copy of S but is instead the quotient of S by its automorphism 
group Aut(S) (which has size at most 84(# — 1) when g > 2). 

From the topologists' viewpoint the rôle of n : Mg,i —¥ Mg is played by the 
universal oriented Ss-bundle 

II : ADiff+Ss - • BDiS+Eg. 

Its relative tangent bundle is an oriented real vector bundle of rank 2 on ADiff+Ss 

(whose fibre at a; G ADiff+Ss is the tangent space at x to the oriented surface 
n_1(a;)), so it has an Euler class e £ A2(ADiff+S s ;Z). Morita defined his tauto­
logical classes 

(Ü £ H2i(Tg;Z) ^ A2 i(BDiff+S s ;Z) 

by setting e» to be the pushforward (or integral over the fibres) ni(e*+1) of et+1. 
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To define his tautological classes KJ Mumford used essentially the same proce­
dure with the forgetful map n : Mg,i —¥ Mg, except that he used cotangent spaces 
instead of tangent spaces (which is the reason that KJ and e» only correspond up 
to a sign ( —1)*+1) and the relative cotangent bundle (or relative dualising sheaf) 
for n : Mg,i —¥ M g exists as a complex line bundle over Mg,i only in the sense 
of orbifold line bundles (or line bundles over stacks) because of the existence of 
nontrivial automorphism groups Aut(S). 

The forgetful map n : Mg,i —¥ Mg can be generalised to n : Mg,n+i —¥ Mg,„, 
for any n > 0 by forgetting the last marked point of an n+ 1-pointed curve, and this 
can be extended to n : Mg,n+i —¥ Mg,„,. Care is needed here when the last marked 
point lies on an irreducible component with genus 0 and only two other special 
points; such an irreducible component needs to be collapsed in order to produce a 
stable n-pointed curve of genus g. This collapsing procedure gives us a forgetful 
map n : Mg,n+i —¥ Mg,„, whose fibre at [S ,p i , . . . ,pn] £ Mg,„, can be identified 
with the quotient of S by the automorphism group of (S,pi , . . . ,pn) . Mumford's 
tautological classes can be extended to classes KJ £ H2t(Mg,„;, Q) (in fact to classes 
in the rational Chow ring of Mg,n) defined by 

Ki = TT](Cl(u}g:nY
+1) 

where u;Sj„ is the relative dualising sheaf of IT : Mg,n+i —* Mg,„, and ci(ojg^n) £ 
A2(A(Si„;Q) is its first Chern class. 

When n > 0 there are other interesting tautological classes on Mg,„, and 
Als,» exploited by Witten. The forgetful map n : Mg,„,+i —¥ Mg,„, has tautological 
sections Sj : Mg,„, —¥ Mg,„,+i for 1 < j < n such that Sj([£,pi,... ,pn]) is the 
element of 7r_ 1([S,pi , . . . ,p„]) = S/Aut(S) represented by pj. The Witten classes 
'<pj £ H2(Mg,„;, Q) for j = 1,... ,n can then be defined by 

Ipj = Ci(s*(Ug,n))-

Roughly speaking, ipj is the first Chern class of the (orbifold) line bundle on Mg,„, 
whose fibre at [S ,p i , . . . ,pn] is the cotangent space T*.~£ to S at pj. 

The boundary A = Mg,„,\Mg,„, of Mg,„, in Mg,„, is the union of finitely many-
divisors which meet transversely in Mg,„,. The intersection of any nonempty set 
of these divisors is the closure of a subset of Mg,„, parametrising stable n-pointed 
curves of some fixed topological type, and is the image of a finite-to-one map to 
Als,» from a product of moduli spaces f\k Mgk,„,k which glues together stable curves 
of genus gk with nk marked points at certain of the marked points. These glueing 
maps induce pushforward maps on cohomology 

HAl[Mgk,nk;Q)^H*(Mg,n;Q) (4.1) 
k 

and the tautological ring R*(Mg,„;, Q) is defined inductively to be the subalgebra of 
H*(Mg,„;, Q) generated by the Mumford classes, the Witten classes and the images 
of the tautological classes in H*([\kMgk,„,k;Q) under the pushforward maps (4.1) 
from the boundary of Mg,„,. Its restriction to H*(Mg,„;, Q) is the tautological ring 
of Mg,„, and is generated by the Mumford and Witten classes. 
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5. Mumford's conjecture 
Mumford's tautological classes KJ £ H2t(Mg;Q) are preserved by Harer sta­

bilisation when g is sufficiently large, and so they define elements of the stable 
cohomology H*(Moo;Q). Mumford conjectured in [93] that H*(M00;

<Q) is freely-
generated by Ki,K2,..., or in other words that the obvious map 

Q[Ki,K2,...]^H*(Mœ;Q) (5.1) 

is an isomorphism. Miller [83] and Morita [85] soon proved that this map is injective, 
so it remained to prove surjectivity. Not long ago Madsen and Tillmann [80] found a 
homotopy version of Mumford's map (5.1) which they conjectured to be a homotopy 
equivalence, and very recently Madsen and Weiss [81] have announced a proof of 
their conjecture, from which Mumford's conjecture follows. 

The Madsen-Tillmann map involves the stable mapping class group F ^ rather 
than the moduli spaces Mg. From the description of Mg as the quotient of the Tg 

action on Teichmüller space Tg it follows that when g > 2 there is a continuous map 

BTg -+ Mg (5.2) 

uniquely determined up to homotopy. It is known that Tg is a perfect group when 
g > 3 [46], so we can apply Quillen's plus construction to BTg to obtain a simply-
connected space -BF+ with the same homology as BTg. The moduli space Mg is also 
simply connected, so (5.2) factors through a map -BF+ —t Mg which induces the 
isomorphism H*(Tg;Q) —t H*(Mg;Q) discussed above at (2.1). Moreover Harer 
stabilisation gives us maps -BF+ —t -BF^+1 between simply connected spaces which 
are homology equivalences (and hence also homotopy equivalences) in a range up 
to some degree which tends to infinity with g. If -BF+ denotes the homotopy direct 
limit of these maps as g —¥ oo, then Mumford's conjecture becomes the statement 
that 

A * ( O T + ; Q ) - Q [ K i , K 2 , . . . ] . 

The conjecture of Madsen and Tillmann [80] describes the homotopy type of -BF+ 
(or rather Z x -BF+), giving Mumford's conjecture as a corollary. 

Tillmann [103] had already shown that Z x -BF+ is an infinite loop space, 
in the sense that there exists a sequence of spaces En with En = (ÌEn+i and 
Z x -BF+ = E0. This was an encouraging result because infinite loop spaces have 
many good properties. Subsequently Madsen and Tillmann [80] found an Q°° map 
«oo from Z x -BF+ to an infinite loop space which they denoted by Q°°CP™i and 
whose connected component has rational cohomology isomorphic to Q[KI , K2, . . . ] . 

The infinite loop space Q^CP™ is related to the limit CP°° of the complex 
projective spaces CP* as k —¥ oo. Over CP* there is a tautological complex line bun­
dle Lk, whose fibre at a; G CP* is the one-dimensional subspace of Ck+1 represented 
by x, and a complex vector bundle Lk of rank k which is its complement in the triv­
ial bundle of rank k+1 over CP*. The restriction of Lk+1 to CP* is the direct sum of 
Lk and a trivial complex line bundle, giving us maps Tli(Lk) —t Q2Th(L^-+1) and 
Q2fc+2Th(L_L) _^ n2fc+4Th(L^+1) where Th(L^) is the Thom space (or one-point 
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compactification) of the bundle Lk. Madsen and Tillmann define Q°°CP™i to be 
the direct limit of the spaces (i2k+2Tli(Lk) as k —¥ oo. 

Homotopy classes of maps from an n-dimensional manifold X to Q^CP™ are 
represented by proper maps <j> : M —t X from an (n + 2)-dimensional manifold M 
together with an 'artificial differential' $ : TM —t <j>*TX and an orientation of ker$. 
Here $ is a stable vector bundle surjection; that is, it may be that $ is defined and 
becomes a surjective bundle map only once a trivial bundle of sufficiently large rank 
has been added to TM and cjfTX. Any smooth oriented surface bundle <j> : E —t X 
induces a homotopy class of maps from X to Q^CP™ represented by <j> together 
with its differential $ = d<p : TE —t <p*TX, and this effectively defines the Madsen-
Tillmann map aœ : Z x OT+ - • Q°°CP^i. 

Submersion theory suggests a way to tackle the problem of showing that «oo is 
a homotopy equivalence, but compactness of X creates a difficulty for this. There­
fore Madsen and Weiss replace X with l x l They study a commutative diagram 

V 
I 

hV 

->• 

->• 

W 

I 
hW 

->• 

->• 

W loc 
I 

hWl0C 

of contravariant functors from smooth manifolds to sets with the sheaf property for 
open coverings, and the induced diagram 

|V| -+ \w\ -+ \wloc\ 

\hV\ - • \hW\ - • I^Wioel 

of the associated spaces, where homotopy classes of maps from X to \!F\ correspond 
naturally to concordance classes in T(X), and «oAi € PF(X) are concordant if 
so = t\xx.{o} a n d «1 = *|vx{i} for some t £ T(X x R). 

If X is any smooth manifold then elements of V(X) are given by smooth 
oriented surface bundles E (that is, proper submersions whose fibres are connected 
oriented surfaces) over X x R, together with identifications dE = d(S1 x [0,1] x 
X x R) compatible with the maps to X x R. These identifications on the boundary-
are crucial, because they give V and the other functors involved the structure of 
monoids, and thus the associated spaces become topological monoids. 

In one version of the bottom row hV —¥ hW —¥ ^Wj o c of the commutative 
diagram, elements of hV(X) are given by (n + 3)-dimensional manifolds E, where 
n = dimX, and smooth maps IT : E —t X and f,g : E —t R such that (n,f) : 
E —t X x R is a submersion and (n, g) : E —t X x R is proper, together with an 
identification dE = d(S1 x [0,1] x X x R) compatible with the maps to X and R. 
If (n, f) : E —t X x R represents an element of V(X) then we get an element of 
hV(X) by setting g = f. The functors VV and hW are defined similarly, except that 
the requirement that (n, f) : E —t X x R should be a submersion is weakened to 
the requirements that n : E —t X should be a submersion and that the restriction 
of / : E —t R to any fibre of n should be a Morse function. For Wj o c and ^Wj o c 

the requirements are weakened again, so that 'proper' is replaced by 'proper when 
restricted to the set of singularities of / on fibres of A. 
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The strategy of Madsen and Weiss is to deduce that «oo is a homotopy equiv­
alence from the following properties of the commutative diagram above: 

(i) the first vertical map represents the Madsen-Tillmann map «oo! 
(ii) the second vertical map is a homotopy equivalence (by a corollary to Vassiliev's 

h-principle [104]); 
(iii) the third vertical map is also a homotopy equivalence (by a much easier ar­

gument); 
(iv) the bottom row is a homotopy fibre sequence; 
(v) the top row becomes a homotopy fibre sequence after group completion (using 

stratifications of |VV| and |Wj0C | and a subtle application of Harer stabilisa­
tion). 

6. Faber's conjectures 
Although Mumford's conjecture tells us that the tautological classes KJ gener­

ate the stable cohomology ring H*(M00;
<Q), they do not generate H*(Mg;Q) for 

finite g, and in fact H*(Mg; Q) has lots of unstable cohomology (at least when g is 
large enough). This follows from the calculation of Euler characteristics by Harer 
and Zagier [51] (see also [71]). They show that the orbifold Euler characteristic of 
Mg,„, is 

where ( denotes the Riemann (-function, and their work implies that when g > 15 
the Euler characteristic of Mg is too large in absolute value for H*(Mg; Q) to be 
generated by Ki, K2, . . . (cf. also [41, 76]). Nonetheless the tautological ring R*(Mg) 
generated by Ki, K2, . . . has many beautiful properties. 

Faber [26] has conjectured that R*(Mg) has the structure of the algebraic 
cohomology ring of a nonsingular complex projective variety of dimension g — 2. 
More precisely, he conjectured that 

(i) Rk(Mg) is zero when k > g — 2 and is one-dimensional when k = g — 2, 
and the natural pairing Rk(Mg) x R9^2^k(Mg) -ï R9^2(Mg) is perfect. In 
addition Rk(Mg) satisfies the Hard Lefschetz property and the Hodge index 
theorem with respect to the class Ki. 

(ii) The classes KI, . . . , K[s/3] generate R*(Mg) with no relations in degrees up to 
and including [g/3]. 

(iii) Faber also gave an explicit conjecture for a complete set of relations be­
tween these generators (in terms of the proportionalities between monomials 
in Rs-2(Mg)). 

When g < 15 Faber [26] has proved all these conjectures concerning R*(M 
a) 

and for general g Looijenga [78] and Faber [27] have shown that Rk(Mg) is zero 
when k > g — 2 and is one-dimensional when k = g — 2. Their proofs apply to both 
the cohomological version and the Chow ring version of R*(Mg). Using topological 
methods, Morita [90, 91] has recently proved that the classes KI, . . . , K[s/3] generate 
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the cohomological version of R*(Mg) (and the rest of (ii) then follows essentially 
from [50]). 

The mapping class group Tg acts naturally on Ai (S s ;Z ) in a way which pre­
serves the intersection pairing. This representation gives us an exact sequence of 
groups 

l^lg^Tg^Sp(2g;Z)^l 

where lg denotes the subgroup of Tg which acts trivially on Ai (S s ; Z) and which 
is called the Torelli group. In [58, 59, 60, 61, 62] Johnson showed that lg is finitely-
generated for g > 3 (in contrast with the case g = 2 [82]), introduced a surjective 
homomorphism 

r : 2 s ^ A 3 A i ( S s ; Z ) / A i ( S s ; Z ) 

whose kernel is the subgroup of Tg generated by all Dehn twists along separating 
embedded circles, and used r to determine the abelianisation of lg. Morita [88] 
extended the Johnson homomorphism r to a representation 

pi : F s ^ ( |A 3 Ai(S s ;Z ) /Ai (S s ;Z ) ) x Sp(2«?;Z) 

of the mapping class group Tg. Via the cohomology of semi-direct products this 
induces 

p\ : Hom(A*AQ)Sp(2s ;Z ) -+ H*(Tg;Q) *É H*(Mg;Q) 

where U = A 3 Ai(S s ;Q) /Ai (S s ;Q) , and the image of pj is the tautological ring 
R*(Mg) [63, 79]. By finding suitable relations in Hom(A*AQ)Sp(^2s;Z) and exploit­
ing the map Hi (S s ; Q) —t Hi (S s_i ; Q) induced by collapsing a handle of S s , Morita 
[90, 91] is able to prove that the classes KI, . . . , K[s/3] generate the cohomological 
version of R*(Mg). 

Faber, Getzler, Hain, Looijenga, Pandharipande, Vakil and others (cf. [23, 24, 
25, 31, 42, 44, 78]) have also made conjectures about the structure of the tauto­
logical rings of the compact moduli spaces Mg,n, which are generated not just by 
the Mumford classes KJ but also by the Witten classes ipj and the pushforwards of 
tautological classes from the boundary of Mg,„,. For example, it is expected that 
R*(Mg,n) looks like the algebraic cohomology ring of a nonsingular complex pro­
jective variety of dimension 3g — 3 + n, while Getzler has conjectured that if g > 0 
then the monomials of degree g or higher in the Witten classes ipj should all come 
from the boundary of Mg,„, (a cohomological version of this has been proved by 
Ionel [54]), and Vakil has made a closely related conjecture that any tautological 
class in Rk(Mg,n) with k > g should come from classes supported on boundary-
strata corresponding to stable curves with at least k — g + 1 components of genus 0. 

7. The Virasoro conjecture 
The geometry of a nonsingular complex projective variety X can be studied 

by examining curves in X. Intersection theory on moduli spaces of curves in X, or 
more precisely moduli spaces of maps from curves to X, leads to Gromov-Witten 
theory and the quantum cohomology of X, with numerous applications in the last 
decade to enumerative geometry (cf. [14, 32, 71, 72, 73]). 
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Let us assume for simplicity that 2g — 2 + n > 0. For any ß £ H2(X;Z) there 
is a moduli space Mg,„,(X, ß) of n-pointed nonsingular complex projective curves S 
of genus g equipped with maps / : S —t X satisfying /*[S] = ß. This moduli space 
has a compactification Mg,„,(X,ß) which classifies 'stable maps' of type ß from 
n-pointed curves of genus g into X [32]. Here a map / : S —t X from an n-pointed 
complex projective curve S satisfying /» [S] = ß is called stable if S has only nodal 
singularities and / : S —t X has only finitely many automorphisms, or equivalently 
every irreducible component of S of genus 0 (respectively genus 1) which is mapped 
to a single point in X by / contains at least 3 (respectively 1) special points. The 
forgetful map from Mg,„,(X, ß) to Mg,„, which sends [S ,p i , . . . ,pn, f '• S —t X] to 
[S ,p i , . . . ,p„] extends to a forgetful map n : Mg,„,(X,fi) —t Mg,„, which collapses 
components of S with genus 0 and at most two special points. 

Of course, when X is itself a single point, Mg,„,(X,ß) and Mg,„,(X,ß) are 
simply the moduli spaces Mg,„, and Mg,n. In general Mg,„,(X, ß) has more serious 
singularities than Mg,„, and may indeed have many different irreducible components 
with different dimensions (cf. [66]). Nonetheless, it is a remarkable fact [7, 8, 
75] that Mg,„,(X,ß) has a 'virtual fundamental class' [Mg,„,(X,ß)]vlT lying in the 
expected dimension 

3g - 3 + n + (1 - g) dimX + / ci(TX) 
Jß 

of Mg,n(X,ß). Gromov-Witten invariants (originally developed mainly in the case 
g = 0 when Mg,n(X,ß) is more tractable, but now also studied when g > 0) 
are obtained by evaluating cohomology classes on Mg,n(X,ß) against this virtual 
fundamental class. 

The cohomology classes used are of two types. Recall that if 1 < j < n the 
Witten class ipj £ H2(Mg,„;, Q) is the first Chern class of sJ(u;Sj„), where Sj is the 
j th tautological section of the forgetful map from Mg,n+i to Mg,n and ojg,n is the 
relative dualising sheaf of this forgetful map. In a similar way, using the forgetful 
map from Mg,n+i(X,ß) to Mg,n(X,ß), we can define \I/j £ H2(Mg,n(X,ß);Q) 
(and \I/j is not quite the pullback of ipj via the forgetful map n : Mg,n(X, ß) —t Mg,n 

because of the collapsing process in the definition of n). We can also pull back 
cohomology classes on X via the evaluation maps evj : Mg,n(X,ß) —t X which 
send a stable map / : S —t X to the image f(pj) of the j th marked point pj of S 
for 1 < j < n. 

Gromov-Witten invariants for X are given by integrals 

_ . evl(ai) • • • ev*n(an) 
[Mg.AXMYlï 

of classes of the second type ev| (aj), where « i , . . . , cxn £ H*(X;Q), against the vir­
tual fundamental class of Mg,n(X, ß), while descendent Gromov-Witten invariants 
are of the form 

^ .. .**"ewï(a i ) . . . ev*n(an) 
Mg.n(X,ß) ivir 
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for nonnegative integers k\,...,kn, not all zero. More generally, instead of integrat­
ing against [Mg,„,(X,ß)]vlT to get rational numbers one can consider the image in 
H*(Mg,n',Q) of the product ^ i 1 .. .^knevl(ai).. .ev*(a„) under the virtual push-
forward map associated to IT : Mg,„,(X,ß) —¥ Mg,n. 

When X is a single point, the descendent Gromov-Witten invariants reduce 
to the integrals 

JMg.n 

Witten [107] conjectured relations between these integrals (later proved by Kont-
sevich [71] via a combinatorial description of Mg,n) which enable them to be cal­
culated recursively. Witten's conjecture can be formulated in terms of the formal 
power series 

p
a = Y.h E L ^•••^"A1...A„ 

n! 
n>0 ki,...,kn>0 

M„ 

in Q[[ioAi, • • •]]: it says that exp(^„> 0 Fg) satisfies a system of differential equa­
tions called the Virasoro relations. 

Witten's conjecture has been generalised by Eguchi, Hori and Xiong (with an 
extension by Katz) [14, 22, 34, 37] to provide relations between Gromov-Witten in­
variants and their descendents for general nonsingular projective varieties X. Their 
generalisation is called the Virasoro conjecture for X, since it says that a certain 
formal expression (the 'total Gromov-Witten potential') Zx in the Gromov-Witten 
invariants and their descendents satisfies a system of differential equations 

CkZ
x = 0 for jfc > - 1 

where the differential operators £k satisfy the commutation relations [£k,£f\ = 
(k — i)£k+e and hence span a Lie subalgebra of the Virasoro algebra isomorphic to 
the Lie algebra of polynomial vector fields in one variable (with £k corresponding 
to — xk+1d/dx). Dubrovin and Zhang [18] have proved that the Virasoro conjecture 
determines the Gromov-Witten invariants of X when X is homogeneous. 

Getzler and Pandharipande [37] showed that part of Faber's conjectures on the 
structure of the tautological ring of Mg (the proportionality formulas) would follow 
from the Virasoro conjecture for X = CP2, and Givental [39] has recently found a 
proof of the Virasoro conjecture for a class of varieties which includes all complex 
projective spaces, thus completing the proof of the proportionality formulas. 

Other methods for finding relations between Gromov-Witten invariants include 
the Toda conjecture [35, 36, 96, 97] and exploitation of intersection theory on Mg,n 

and localisation methods [9, 10, 14, 21, 29, 30, 40, 43, 72], which have been very-
powerful in enumerative geometry. 

8. Moduli spaces of bundles over curves 
Another very well studied family of moduli spaces is given by the moduli 

spaces BY, (r, d) of stable holomorphic vector bundles E of rank r and degree d over 
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a fixed nonsingular complex projective curve S of genus g > 2. When r and d 
are coprirne BY('I', d) is a nonsingular complex projective variety; when r and d 
have a common factor then Bj:(r,d) is nonsingular but not projective, and it has 
a natural compactification B-£(r,d) which is projective but singular (except when 
g = r = 2) [38, 95]. If the curve S is allowed to vary as well as the bundle E 
over S then we obtain a 'universal' moduli space of bundles Bg(r, d), which maps to 
the moduli space Mg of nonsingular curves of genus g with fibre BY('I', d) over [S]. 
Pandharipande [98] has shown that Bg (r, d) has a compactification Bg (r, d) which 
maps to M g with the fibre over [S] £ Mg given by BY('I', d). 

In the case when r and d are coprirne we have a good understanding of the 
structure of the cohomology ring H*(Bj:(r, d);Z), and this understanding is partic­
ularly thorough when r = 2 [6, 67, 100, 109]. For arbitrary r it is known that the 
cohomology has no torsion [4] and inductive formulas [4, 16, 45] as well as explicit 
formulas [5, 74] for computing the Betti numbers are available. There is a simple 
set of generators for the cohomology ring [4] and there are explicit formulas for the 
intersection pairings between polynomial expressions in these generators, which in 
principle determine all the relations by Poincaré duality [17, 56, 101]. There is also 
an elegant description of a complete set of relations among the generators when 
r = 2 [6, 67, 100, 109], partially motivated by a conjecture of Mumford [69], and 
there is a generalisation when r > 2 which is somewhat less elegant [19]. 

When r and d are not coprirne the structure of the cohomology ring 
H*(Bj:(r, d); Z) is a little more difficult to describe; for example, the induced Torelli 
group action on H* (BY (r, d) ; Q) is nontrivial [13], whereas when r and d are coprirne 
the Torelli action is trivial and the mapping class group acts via representations of 
Sp(2g; Z) which are easy to determine. However even in this case information is 
available on the intersection cohomology of the compactification BY, (r, d) of BY (r, d) 
and the cohomology of another compactification BY (r, d) of BY (r, d) with only orb­
ifold singularities: for example, there are formulas for the Betti numbers in both 
cases [68] and their intersection pairings [57, 65], and the mapping class group again 
acts via representations of Sp(2g; Z) [94]. 

One of the main reasons for our good understanding of the moduli spaces 
Bs(r, d) (and their compactifications BY('I',d) and BY('I',d) when r and d have a 
common factor) is that they can be constructed as quotients, in the sense of geo­
metric invariant theory [92], of well behaved spaces whose properties are relatively-
easy to understand. Similar techniques could in principle be used to study the 
moduli spaces of stable curves Mg and Mg,n, as well as Pandharipande's compact­
ification Bg (r, d) of the universal moduli space of bundles Bg (r,d), since they too can 
be constructed using geometric invariant theory. In practice this has not succeeded 
except in very special cases because, in contrast to the case of BY('I',d), we do not 
have quotients of well behaved spaces which are easy to analyse. However as our 
understanding of the moduli spaces Mg,n(X, ß) of stable maps becomes increas­
ingly well developed, and in particular localisation techniques are used with greater 
and greater effect, perhaps the techniques available for studying the cohomology of 
geometric invariant theoretic quotients will provide an additional approach to the 
cohomology of the moduli spaces Mg and Mg,n which can be added to the plethora 
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of methods already available. 
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