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Abstract. In this paper we introduce some basic differential models for the description of
blood flow in the circulatory system. We comment on their mathematical properties, their
meaningfulness and their limitation to yield realistic and accurate numerical simulations, and
their contribution for a better understanding of cardiovascular physio-pathology.
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1. Introduction

The cardiovascular system has the task of supplying the human organs with blood.
Its main components are the heart, the arteries and the veins. The so-called large
(systemic) circulation brings oxygenated blood from the left ventricle via the aorta to
the various organs through the arterial system, then brings it back through the venous
system and the vena cava to the right atrium.

The small circulation is the one between the heart and the lungs. Blood is pumped
from the right ventricle via the pulmonary artery to the lungs at a peak pressure of about
4 kPa. Venous blood enters the pulmonary system, gets oxygenated and returns to the
left heart atrium (see Figure 1). In the past decade, the application of mathematical
models, seconded by the use of efficient and accurate numerical algorithms, has made
impressive progress in the interpretation of the circulatory system functionality, in both
physiological and pathological situations, as well as in the perspective of providing
patient specific design indications to surgical planning.

This has called for the development of a new field of applied mathematics: how-
ever, although many substantial achievements have been made in the field of modeling,
mathematical and numerical analysis, and scientific computation, where a variety of
new concepts and mathematical techniques have been introduced, most of the diffi-
culties are still on the ground and represent major challenges for the years to come.
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Figure 1. The human heart. Courtesy of the Texas Heart®Institute.

The main impulse to develop this field of study is the increasing demand from
the medical community for scientifically rigorous and quantitative investigations of
cardiovascular diseases, which are responsible today for about the 40% od deaths
in industrialized societies. The 3/4 of them are related to atherosclerosis, which
manifests as, e.g., stroke, myocardial infarction or peripheral vascular diseases. For
example, in vascular surgery, arterial bypass grafting is a common practice to treat
coronary artery and peripheral vascular diseases. Nonetheless, over 50% of coronary
artery bypass grafts fail within 10 years and more than 25% of infra-inguinal grafts
within 5 years (see [9], [31], [96]). The principal cause is neo-intimal hyperplasia that
may degenerate in atherosclerosis. A better understanding of local haemodynamics,
like the detection of regions of low wall shear stress and of high residence time for
blood particles, is of utmost importance to assess its correlation with atherogenesis
([11]).

The vascular system is highly complex and able to regulate itself: an excessive
decrease in blood pressure will cause the smaller arteries (the arterioles) to contract
and the heart rate to increase, whereas an excessive blood pressure is counter-reacted
by a relaxation of the arterioles (which causes a reduction of the periphery resistance
to the flow) and a decrease of the heart beat. Yet, it may happen that some patho-
logical conditions develop. For example, the arterial wall may become more rigid,
due to illness or excessive smoking habits, fat may accumulate in the arterial walls
causing a reduction of the vessel section (a stenosis) and eventually an aneurysm
may develop. The consequence of these pathologies on the blood field as well as the
possible outcome of a surgical intervention to cure them may be studied by numerical
simulations, that are less invasive than in-vivo investigation, and far more accurate
and flexible than in-vitro experiments. Numerical models require patient’s data (the
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initial and boundary conditions for the PDE systems, as well as geometrical data to
characterize the shape of the computational domain) that can be generated by radio-
logical acquisition through, e.g., computer tomography, magnetic resonance, doppler
anemometry, etc. Besides their employment in medical research, numerical models
of vascular flows can provide a virtual experimental platform to be used as training
system. For instance, a technique now currently used to cure a stenosis is angioplasty,
which consists of inflating a balloon positioned in the stenotic region by the help of a
catheter. The balloon should squash the stenosis and approximately restore the orig-
inal lumen area. The success of the procedure depends, among other factors, on the
sensitivity of the surgeon and his ability of placing the catheter in the right position.
A training system which couples virtual reality techniques with the simulation of the
flow field around the catheter, the balloon and the vessel walls, employing geome-
tries extracted from real patients, could well serve as training bed for new vascular
surgeons. A similar perspective could provide specific design indications for the re-
alization of surgical operations. For instance, numerical simulations could represent
a tool for the design of new prototypes, or for devising prosthetic devices by the help
of shape optimization theory. In particular, shape optimization has been used for
minimizing the downstream vorticity in coronary by-pass grafts (see [1], [76], [85]).
These numerical investigations can help the surgeon in understanding how the differ-
ent surgical solutions may affect blood circulation and guide the choice of the most
appropriate procedure for a specific patient. In such “virtual surgery” environments,
the outcome of alternative treatment plans for the individual patient can be foreseen
by simulations, yielding a new paradigm of the clinical practice which is referred to
as “predictive medicine” (see [92]).

In this presentation we will address some of the most basic models that are used
to describe blood flow dynamics in local arterial environments (Section 2) and to
predict the vessel wall deformation in compliant arteries (Section 3). Then we will
introduce appropriate geometrical multiscale models that integrate three-dimensional,
one-dimensional and zero-dimensional models for the simulation of blood circulation
in the whole arterial tree (Section 4). Finally, in Section 5 we consider the problem
of modeling biochemical processes occurring across the several layers of the arterial
wall.

2. Mathematical models for local blood flow dynamics

The mathematical equations of fluid dynamics are the key components of haemo-
dynamics modeling. Rigorously speaking, blood is not a fluid but a suspension of
particles in a fluid called plasma, which is made of water for the 90–92%, proteins (like
serum albumin, globulins and fibrinogen) for the 7% and inorganic constituents for the
rest. The most important blood particles are red cells, white cells and platelets. Red
cells (erythrocytes) are responsible for the exchange of oxygen and carbon-dioxide
with the cells. They are about 4–6 · 106 biconcave disks per mm3 and provide the
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45% of blood volume; they are made by the 65% of water, the 3% of membrane
components, and around the 32% by haemoglobin.

White cells (leukocytes), play a major role in the human immune system: they
are (roughly) spherical, and are 4–11 · 103 per mm3. Platelets (thrombocytes) are the
main responsible for blood coagulation: they are rounded or oval disks and there are
3–5 · 105 per mm3.

Rheological models in smaller arterioles and capillaries should account for the
presence of blood cells since their size becomes comparable to that of the vessel. In
this section, however, we will bound our investigation to flow in large and medium
sized vessels.

The principal quantities which describe blood flow are the velocity u and pres-
sure P . Knowing these fields allows the computation of the stresses to which an
arterial wall is subjected due to the blood movement. When addressing fluid-structure
interaction problems (see Section 3), the displacement of the vessel wall due to the
action of the flow field is another quantity of relevance. Pressure, velocity and vessel
wall displacement will be functions of time and the spatial position. Accounting for
temperature variation may be relevant in some particular context, for instance in the
hyperthermia treatment, where some drugs are activated through an artificial localized
increase in temperature (see [47], [28]). Temperature may also have a notable influ-
ence on blood properties, in particular on blood viscosity. Yet, this aspect is relevant
only in the flow through very small arterioles/veins and in the capillaries, a subject
which is covered only partially in these notes. Another aspect related with blood
flow modeling is the chemical interaction with the vessel wall, which is relevant both
for the physiology of the blood vessels and for the development of certain vascular
diseases. Not mentioning the potential relevance of such investigation for the study
of the propagation/absorption of pharmaceutical chemicals. A short account will be
given in Section 5.

A major feature of blood flow is represented by its pulsatility. With some approx-
imation one may think the blood flow to be periodic in time. Yet, this is usually true
only for relatively short periods, since the various human activities require to change
the amount of blood sent to the various organs. The cardiac cycle features two distinct
phases. The systolic phase, when the heart pumps the blood into the arterial system,
is characterized by the highest flow rate. The diastolic phase is when the heart is fill-
ing up with the blood coming from the venous system and the aortic valve is closed.
Figure 2 illustrates a typical flow rate curve of a large artery during the cardiac cycle.
Pulsatility induces flow reversal which manifests near arterial walls, a phenomenon
that can enhance the appearance of stenoses in specific vascular districts, like the
carotid bifurcation (see Figure 3).

To simplify our presentation, in this section we will introduce the flow equations in
a “truncated” blood vessel like the one illustrated in Figure 4, which is representative
of a small portion of the arterial system. We will make the further assumption that
the vessel is rigid, thus the flow domain, denoted by�, is independent of time. (This
unphysical restriction will be removed in next section where we will specifically
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Figure 2. A typical flow rate in an artery during the cardiac cycle.

Figure 3. Recirculation in the carotid bifurcation. On the left we illustrate the location of the
carotid bifurcation. The image on the right shows the particle path during the diastolic period
in a model of the carotid bifurcation. A strong recirculation occurs inside the carotid sinus. The
image on the left is courtesy of vesalius.com.

address the interaction between blood flow and arterial wall deformation.) If we
denote by ρ = ρ(x, t) the blood density and by u = u(x, t) the blood velocity, the
principle of conservation of mass yields the continuity equation

∂tρ + div(ρu) = 0 for x ∈ �, t > 0 (1)

where ∂t is the partial derivative w.r.t. t , while div u = ∑3
i=1 ∂xi ui is the spatial

divergence of the vector field u.
In large and medium size vessels the blood density can be assumed to be constant,

then from (1) we derive the kinematic constraint

div(u) = 0 in �, (2)

which in view of the Euler expansion formula implies flow incompressibility.
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Figure 4. An example of a computational domain made of a section of the vascular system. We
need to provide proper boundary conditions at inflow �in, outflow �out and wall �w.

On the other hand, the principle of conservation of momentum, which states
that body forces, applied surface forces and internal “cohesion” forces must be in
equilibrium, writes

ρ
Du

Dt
− div(T ) = ρf for x ∈ �, t > 0, (3)

where Du
Dt
= ∂tu + (u · ∇)u is the fluid acceleration (∇ is the spatial gradient), f

is the specific body force (e.g., f = −ge3 where e3 represents the unit vector in the
vertical direction and g the gravitational acceleration), while T is the Cauchy stress
tensor (see [3] and [86]). The system (2),(3) can be closed by using a constitutive
law that relates the Cauchy stress to kinematic quantities (velocity and pressure), and
which is peculiar to the specific rheological behavior of the fluid under consideration.
In large and medium size vessel, blood behaves as a Newtonian incompressible fluid,
where we have

T = −P I + 2μD(u); (4)

P is a scalar function (the pressure), I is the identity matrix,μ is the dynamic viscosity,
D(u) = 1

2 (∇u+∇uT ) is the strain rate tensor,Dij = 1
2

(
∂ui
∂xj
+ ∂uj
∂xi

)
, i, j = 1, . . . , 3.

Then (3) becomes

∂tu+ (u · ∇)u+ ∇p − 2 div(νD(u)) = f (5)

where p = P
ρ

is a scaled pressure and ν = μ
ρ

is the kinematic viscosity. More in
general, ν may depend on kinematic quantities. Several models have been proposed
in this respect, as we will see later in this section.
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The Navier–Stokes system of continuity and momentum equations must be closed by
initial conditions on velocity, say u = u0 for x ∈ � and t = 0, and boundary con-
ditions on the domain boundary, for all t > 0. Mathematically admissible boundary
conditions are of either Dirichlet or Neumann type

u = g on �D, T · n = ϕ on �N, (6)

respectively, where n is the unit outward normal vector on ∂�, �D ∪ �N = ∂�,
and either �D or �N may be empty. The conditions to apply are normally driven
by physical considerations. For instance, for a viscous fluid (μ > 0), we have to
impose the homogeneous Dirichlet condition u = 0 at a solid fixed boundary, like the
vessel wall�w in Figure 4. When we will consider the coupled problem between fluid
and vessel wall, �w will deform, hence the homogeneous Dirichlet condition will be
replaced by u = w, where w is the (unknown) wall velocity. When dealing with an
artificial boundary, that is a boundary which truncates the space occupied by the fluid
(for computational reasons) like the sections �in and �out in Figure 4, the choice of
appropriate conditions is often more delicate and should in any case guarantee the
well-posedness of the resulting differential problem.

We anticipate the fact (without providing the proof) that this choice of bound-
ary conditions, with the hypothesis that at �out the velocity satisfies everywhere the
condition u · n > 0, is sufficient to guarantee that the solution of the Navier–Stokes
problem exists and is continuously dependent from the data (initial solution, bound-
ary conditions, forcing terms), provided that the initial data and the forcing term be
sufficiently small.

Unfortunately, the homogeneous Neumann condition is rather unphysical for the
case of a human vessel. As a matter of fact, it completely neglects the presence
of the remaining part of the circulatory system. The issue of devising appropriate
boundary conditions on artificial boundaries of deformable arteries is still open and
is the subject of active research. A possibility is provided by coupling the Navier–
Stokes equations on a specific portion of the artery with reduced models, which are
able to represent, although in a simplified way, the presence of the remaining part
of the circulatory system. Techniques of this type has been used and analyzed in
[32], [33]. An account will be given in Section 4. Normally, on arterial sections like
�in and �out only “averaged” data are available (mean velocity and mean pressure
instead of a vector condition like that in (6)), which are therefore insufficient for a
“standard” treatment of the mathematical problem. One has thus to devise alternative
formulations for the boundary conditions which, on one hand, reflect the physics and
exploit the available data and, on the other hand, permit to formulate a mathematically
well posed problem. In these notes we will not investigate this particular aspect, which
is however illustrated and analyzed in [34], [97], [98].

Now we will make some considerations on the behavior of blood flow. Most often,
it is laminar. Characteristic values of the Reynolds number, Re = ρUL

μ
, where U is

a representative mean flow velocity and L is a linear length of the vessel at hand,
are given in Table 1. In normal physiological situations, the values of the Reynolds
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number reached in the cardiovascular system do not allow the formation of full scale
turbulence. Some flow instabilities may occur only at the exit of the aortic valve and

Table 1. Some representative values of velocity, vessel size, average Reynolds numbers, cross-
sectional area and thickness of blood vessels.

Vessel Number Diameter Area Wall Velocity Average
[cm] [cm2] thickness [cm/s] Reynolds

[cm] number
Aorta 1 2.5 4.5 0.2 48 3400

Arteries 159 0.4 20 0.1 45 500
Arterioles 400 0.005 5.7 · 107 0.002 5 0.7
Capillaries 4500 0.0008 1.6 · 1010 0.0001 0.1 0.002

Venules 4000 0.002 1.3 · 109 0.0002 0.2 0.01
Veins 40 0.5 200 0.05 10 140

Vena cava 18 3 0.15 3300 38 3300

limited to the systolic phase. In this region the Reynolds number may reach the value
of few thousands only for the portion of the cardiac cycle corresponding to the peak
systolic velocity, however, there is not enough time for a full turbulent flow to develop.

When departing from physiological conditions, there are several factors that may
induce transition from laminar to turbulent flows. For instance, the increase of flow
velocity because of physical exercise, or due to the presence of a stenotic artery or a
prosthetic implant such as a shunt, may induce an increase of the Reynolds number and
lead to turbulence. Smaller values of blood viscosity also raise the Reynolds number;
this may happen in the presence of severe anemia, when the hematocrit drops sharply
(and so does the viscosity).

The rheological behavior of blood flow is complex to describe, and is still a subject
of investigation. Nonetheless, a few peculiar phenomena are worth being mentioned.
Red blood cells tend to aggregate by attaching each other side by side (resembling
stacks of coins) forming rouleaux. Under shear stress, red blood cells can deform
into a variety of shapes (for instance they become ellipsoids) without modifying their
volume or surface area. Both aggregation and deformability affect the rheological
properties of blood flow, and, particularly, blood viscosity at low shear rates and its
sedimentation velocity.

In general terms, blood is a non-Newtonian fluid. At low shear rates, viscoelastic
effects become relevant. In small capillaries, at small Reynolds and Womersley num-
ber, viscous effects become predominant, whereas inertial forces become negligible.
The Womersley number is defined as α = R(ω/ν)1/2, where R is the radius, ω is the
angular frequency of the oscillatory motion and ν is the kinematic viscosity. Below a
critical vessel caliber (about 1 mm), blood viscosity becomes dependent on the vessel
radius and decreases very sharply. This is known as Fahraeus–Lindquist effect: red
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blood cells move to the central part of the capillary whereas the plasma stay in contact
with the vessel wall. This layer of plasma facilitates the motion of the red cells, thus
causing a decrease of the apparent viscosity. High shear rate and increased blood cell
deformation are further important factors that explain viscoelastic behavior.

Some blood diseases may severely alter the rheological behavior of blood. For
instance thalassemia causes red blood cells to become less deformable. In leukemia
there is an increased number of poorly deformable white blood cells. In hypertension
the haematocrit increases leading to a significant high blood viscosity with elevated
total plasma protein, albumin, globulin and fibrinogen. See [56].

To account for these phenomena we have to abandon the Newtonian law (4).
In generalized Newtonian fluids, the viscosity μ is assumed to depend on the shear
rate γ̇ , a measure of the rate of shear deformation. For a simple shear flow in a straight
channel (see Figure 5), γ̇ = U/h is just the gradient of velocity. More in general,
γ̇ = √2 tr(D(u))2.

ex

ey
h

U

Figure 5. Schematic example of a simple shear flow in a straight channel.

A simple model is given by the so-called Power-Law where n is named the power-
law index. The flow is shear thinning if n < 1 and shear thickening if n > 1. (Shear
thinning fluids are those for which viscosity decreases as the shear rate increases.) The
Prandtl–Eyring model,μ(γ̇ ) = μ0sinh−1(λγ̇ )/λγ̇ where λ is a material constant, the
Powell–Eyring model, μ(γ̇ ) = μ∞ + (μ0 − μ∞)sinh−1(λγ̇ )/λγ̇ , the Cross-model
μ(γ̇ ) = μ∞ + (μ0 − μ∞)/(1 + (λγ̇ )n)−1, the Carreau model μ(γ̇ ) = μ∞ +
(μ0 − μ∞)/(1 + (λγ̇ )2)(1−n)/2, represent other noticeable examples of generalized
Newtonian models.

Blood is in general modeled as a shear thinning, nonlinear viscoelastic flow.
More complicated models are the shear thinning generalized Oldroyd-B models,

where T = −P I + τ and τ satisfies the differential problem

τ+λ1[τ̇−(∇u)τ−τ (∇uT )] = μ(D(u))D(u)+λ2[Ḋ(u)−(∇u)D(u)−D(u)(∇uT )]
where λ1, λ2 are material constants that characterize the model. For a discussion on
rheological properties of blood flow we refer, e.g., to [12], [38], [39], [94], [57]. For a
more thorough mathematical analysis of Oldroyb-B models see, e.g., [102], [4], [83],
[68], [40], [41], [71].
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Figure 6. Velocity profiles computed in a carotid bifurcation during systole and diastole (courtesy
of M. Prosi).

3. Mathematical models for local blood-flow dynamics in compliant
vessels

In human physiology, the arterial walls deform under the action of the flow field.
This aspect is relevant especially for large or even relatively large vessels, whereas in
arterioles and capillaries the movement of the wall may be considered negligible. In
the aorta, for example, the radius may vary in a range of 5% to 10% between diastole
and systole. This is quite a large displacement, which affects the flow field. The fluid
wall interaction problem is the responsible for the propagation of pulse pressure waves.
Indeed, no propagative phenomena would otherwise occur in an incompressible fluid
like blood. This interaction problem is a particular instance of the more general fluid-
structure interaction (FSI) problem (the solid structure being here the vessel wall).
It is indeed a rather complex one, since the time scales associated to the interaction
phenomena are two orders of magnitude greater than those associated to the bulk flow
field.

The vascular wall has a very complex nature; devising an accurate model for
its mechanical behavior is rather difficult. Its structure is indeed formed by many
layers with different mechanical characteristics [38], [48]. The most important are
the endothelium (of about 2 microns, with anti-adhesive function), the tunica intima
(of 10 microns, made of connective tissue), the internal elastic lamina, of 2 microns,
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the media (of about 300 microns, with structural functions) and the adventitia, where
the vasa vasorum stand (see Figure 7). Unfortunately, experimental results obtained
by specimens are only partially significant. Indeed, the vascular wall is a living tissue
with the presence of muscular cells which contribute to its mechanical behavior. It
may then be expected that the dead tissue used in the laboratory will have different
mechanical characteristics than the living one. Moreover, the arterial mechanics
depends also on the type of the surrounding tissues, an aspect almost impossible to
reproduce in a laboratory. It is the role of mathematical modeling to find reasonable

Internal Elastic
     Lamina

External Elastic
    Lamina

AdventitiaMedia
Basement
Membrane

Endothelium

Figure 7. The vessel wall is formed by many layers made of tissues with different mechanical
characteristics. Image taken from “Life: the Science of Biology” by W.K. Purves et al., fourth
edition, published by Sinauer Associates Inc. and W.H. Freeman and Company.

simplifying assumptions by which major physical characteristics remain present, yet
the problem becomes amenable to numerical analysis and computational solution.

The geometry of a portion of an artery where no branching is present may be
described by using a curvilinear cylindrical coordinate system (r, θ, z) with the cor-
responding base unit vectors er , eθ , and ez, where ez is aligned with the axis of the
artery, as shown in Figure 10. (In this figure, R indicates the radius of the lumen.)
Clearly, the vessel structure may be studied using full three dimensional models,
which may also account for its multilayered nature. However, it is common prac-
tice to resort to simplified 2D or even 1D mechanical models in order to reduce the
overall computational complexity when the final aim is to study the coupled fluid-
structure problem. A 2D model may be obtained by either resorting to a shell-type
description or considering longitudinal sections (θ = const.) of the vessels. In the
first case we exploit the fact that the effective wall thickness is relatively small to
reduce the whole structure to a surface. A rigorous mathematical derivation (for the
linear case) may be found in [15]. In the second case we neglect the variations of
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Figure 8. A model of a “realistic” section of an artery with the principal geometrical parameters.

the stresses in the circumferential direction. In this way we are able to eliminate all
terms containing derivatives with respect to θ in the equations and we may consider
each plane θ = const. independently. The resulting displacement field will depend
only parametrically on θ . If, in addition, we assume that the problem has an axial
symmetry (which implies the further assumption of a straight axis) the dependence
on θ is completely neglected. In this case, also the fluid would be described by a 2D
axi-symmetric model (see [25]).

The simplest models, called 1D models, are derived by making the same assump-
tion on the wall thickness made for the shell model, yet starting from a 2D model. The
structure will then be represented by a line on a generic longitudinal section. Even
with all these simplifying assumptions an accurate model of the vessel wall mechanics
is rather complex.

A three-dimensional model that describes the complete coupled system made of
the equations of blood flow and those for the vessel wall deformation can be derived
by adopting a coupled Eulerian–Lagrangian approach (differently to what done in
Section 2 where the vessel walls were considered as being rigid).

With this purpose, we denote by �̂ a reference domain (corresponding, e.g., to
a specific portion of an arterial vessel at rest, or else at an initial time). We write
¯̂
� = ¯̂�s ∪ ¯̂�f , where �̂

f
is the portion of the domain occupied by the fluid (i.e.

the lumen) while �̂
s

corresponds to the portion of the solid vessel wall (see Figure 9
for a two dimensional representation). In a given time interval [0, T ] the domain
deformation is described through a couple of functions:

Ls : �̂s × [0, T ] → �s(t), Af : �̂f × [0, T ] → �f (t),

where�s(t) denotes the domain occupied by the solid (the vessel wall) and�f (t) that
occupied by the fluid at time t . The computational domain in which we aim at solving
the coupled fluid-wall problem at time t is then�(t) s.t. �̄(t) = �̄s(t)∪�̄f (t). Note
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�̂in �̂out → Af (x̂, t)
�̂f

�̂s

�̂

�̂

�in(t) �out(t)

�s

�(t)

�f (t)

�(t)Ls(x̂, t)

Figure 9. Parametrization of the domain.

that the boundary ∂�(t) of�(t) is made of a physical boundary (the external surface
of the vessel wall, that has deformed) plus a virtual boundary (the vertical walls in the
domain of Figure 9) that has not changed its position from its reference state. In fact,
Ls is the Lagrangian transformation of the solid domain: the domain displacement is
described by the law η(x̂, t) = Ls(x̂, t) − x̂ for all x̂ ∈ �̂s , and the velocity of any
point x̂, given by ∂tLs(x̂, t) = ∂tη(x̂, t), is denoted by η̇(x̂, t).

Within the fluid domain�f (t),Af is a transformation such thatAf |
�̂
= Ls |

�̂
but

which otherwise does not follow the material trajectories. The set of transformation
{Ls,Af } is in fact an Arbitrary Lagrangian Eulerian transformation (ALE) that, at
each time t , is capable to retrieve the actual position of the computational domain
�(t) starting from the reference domain �̂. Let us denote by

F s(x̂, t) = ∇x̂L
s(x̂, t) = I + ∇x̂η(x̂, t) and F f (x̂, t) = ∇x̂A

f (x̂, t)

the gradients of the two maps, called the deformation tensors, and by

J s(x̂, t) = det F s(x̂, t) and J f (x̂, t) = det F f (x̂, t)

their determinants. The fluid domain velocity is denoted by ŵ(x̂, t) = ∂tAf (x̂, t).
Note that, still referring to the case depicted in Figure 9, on the vertical (virtual)
boundaries it is ŵ · n = 0, whereas on �̂ we have ŵ = η̇.

The structural deformation can be modeled in many different ways, as we have
anticipated at the beginning of this section. Here we will consider the following model

ρs
∂2η

∂t2
− divx̂(F

s�s) = 0 in �̂s, t > 0

where �s is the second Piola–Kirchoff stress tensor. It depends on the Green-
St.Venant strain tensor E = 1

2 ((F
s)TF s − I ), according to a constitutive law char-

acteristic of the solid structure at hand. Typically, �s = ∂�
∂E

, where � is the density
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of a given elastic energy. Finally, ρs is the density of the structure in the reference
configuration. By combining this equation with the Navier–Stokes equations (2)–(3)
for the fluid we end up with the following coupled fluid-structure problem, for all
t > 0:

ŵ = H(η̇|
�̂
) in �̂f , w = ŵ � (Af )−1, (7)

ρf
∂u

∂t |x̂ + ρ
f (u− w) · ∇u+ div(T f ) = ρf f in �f (t), (8)

div(u) = 0 in �f (t), (9)

ρs
∂2η

∂t2
− divx̂(F

s�s) = 0 in �̂s, (10)

u = η̇ � (Ls)−1 on �(t), (11)

F s�s · n̂s = J f T f · (F f )−T · n̂s on �̂, (12)

where n̂s denotes the outward unit vector on �̂, ∂
∂t |x̂ represents theALE time derivative

(see [75]) and H(.) denotes any continuous extension operator from �̂ to the fluid
domain �̂f (for instance the harmonic extension, or else the extension by the linear
elasticity operator).

This coupled problem needs to be completed with the initial conditions on u, η

and η̇ as well as by suitable boundary conditions on ∂�s(t)\�(t) and ∂�f (t)\�(t).
At the best of our knowledge, a complete mathematical analysis of the coupled

fluid-structure problem (7)–(12) is not available yet. In the steady case, for small
enough applied forces, existence of regular solutions is proven in [44]. In the unsteady
case, local solvability in time is proven in the simple case where the structure is a
collection of rigid moving bodies in [45]. See also [27]. Formulations based on
optimal control on simpler models have been investigated, e.g., in [55], [72], [66],
[67], [103], [104].

As previously mentioned, simpler models than (10) can be adopted to describe the
vessel deformation. Of special interest are models based on a single spatial coordinate,
the one along the longitudinal axis, which usually describes the radial deformation
of the vessel wall. These models are based on the following further simplifying
assumptions.

Small thickness and plain stresses. The vessel wall thickness h is sufficiently small
to allow a shell-type representation of the vessel geometry. In addition, we will also
suppose that it is constant in the reference configuration. The vessel structure is
subjected to plain stresses.

Cylindrical reference geometry and radial displacements. The reference vessel con-
figuration is described by a circular cylindrical surface with straight axes. Indeed, this
assumption may be partially dispensed with, by assuming that the reference configura-
tion is “close” to that of a circular cylinder. The model here derived may be supposed
valid also in this situation. The displacements are only in the radial direction.
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Small deformation gradients. We assume that the deformation gradients are small, so
that the structure basically behaves like a linear elastic solid and ∂R

∂θ
and ∂R

∂z
remain

uniformly bounded during the motion.

Incompressibility. The vessel wall tissue is incompressible, i.e. it maintains its volume
during the motion. This is a reasonable assumption since biological tissues are indeed
nearly incompressible.

Under the above assumptions we can derive the following one dimensional model
that describes the radial displacement η = ηer of the arterial wall (see [75]):

ρs
∂2η

∂t2
− a ∂

2η

∂z2 + bη − c
∂3η

∂t∂z2 = g, 0 < z < L, t > 0, (13)

where z denotes the longitudinal space coordinate (aligned along the vessel axis), L
the length of the vessel at rest, while a, b and c are suitable coefficients which depend
on material properties. Precisely:

a = σz

h
, b = E

(1− ς2)R2
0

,

while c is a positive coefficient that accounts for viscoelastic effects, R0 is the radius
of the cylindrical vessel at rest and h is the thickness of the vessel wall at rest, ς is the
Poisson ratio, E is the Young modulus, while σz is the magnitude of the longitudinal
stress.

The first term in (13) models the inertia, the second one the shear, the third one the
elasticity, the fourth one the viscoelastic damping. Finally, g accounts for the forcing
terms.

When the one-dimensional wall model (13) is used instead of (10), the coupled
fluid-structure model is made of equations (7)–(9), plus the equilibrium equation (13)
where the source term g is the projection along the radial direction of the normal
stress of the fluid on the right hand side of (12), that is g = J f T f · (F f )−T · n̂s · er ;
the equation (11) now reads u � Af = η̇er on �̂.

When supplemented by suitable boundary and initial conditions, this coupled
system satisfies an a priori estimate stating that the kinematic energy of the fluid plus
the elastic energy of the 1D vessel is controlled by the initial data and the source term
(see [75]). A result of existence of strong solutions in the case of periodic conditions
in space is given in [5].

The numerical solution of a coupled fluid-structure nonlinear problem like (7)–(12)
(or that discussed above based on the one dimensional model (13) for the radial vessel
deformation) poses many challenges. After space discretization (e.g. by the finite
element method, see [77]) one obtains a coupled nonlinear algebraic system.

Since the density of the structure is comparable to that of the fluid, the stability of
numerical simulations of fluid-structure interactions relies heavily on the accuracy in
solving the nonlinear coupled problem at each time step [23], [59], [60], [70], [88].
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Ideally, implicit schemes should be used as they would guarantee energy conservation
(up to the dissipation terms) and therefore numerical stability. This is outlined on a
simplified fluid-structure interaction problem in [13], where implicit and staggered
algorithms are analyzed by taking into account the so-called added-mass effect. In
particular it is shown that numerical instabilities may occur when using loosely cou-
pled time-advancing schemes. To account for the nonlinear coupling between fluid
and structure, common strategies rely on fixed point methods [14]. Several ad-hoc
variants have been proposed, including steepest descent algorithms in [88], Aitken-
like acceleration formulas [63], [64], and transpiration boundary conditions [23] to
avoid the computation of the fluid matrices at each sub-iteration. Yet, in general,
these methods are slow, and in some cases may even fail to converge [70], [13], [25].
A more radical approach consists of using Newton based methods, owing to their
potentially faster convergence [25], [29], [46], [61]. However, since they demand
the evaluation of the Jacobian associated to the fluid-solid coupled state equations, a
critical step is the evaluation of the cross Jacobian [93], which expresses the sensitiv-
ity of the fluid state to solid motions. This evaluation can be made inexactly, either
by resorting to finite difference approximation of derivatives (see, e.g., [93]), or by
barely replacing the tangent operator of the coupled system with a simpler one [42],
[43]. However, either approximation may seriously compromise the convergence rate.
Acceleration techniques using Krylov spaces have been proposed in [26], [46], [62].
A Newton method with exact Jacobian has been investigated both mathematically and
numerically in [29].

Methods based on a fractional-step solution of the coupled system are proposed in
[30]. In this case, the coupling conditions (11) and (12) are not exactly enforced. The
diffusion term of the momentum equations are advanced first from the time step tn

to tn+1 = tn + δt (δt > 0 being the time-step), and the normal component of the
continuity equation (11) is imposed; then the equation for the solid structure (10)
is coupled with the projection step of the Navier–Stokes equations, and the stress
continuity equation (12) is enforced.

Another strategy is mutuated from domain decomposition techniques (see [78])
and is proposed in [24]. The global coupled problem (7)–(12) is reduced to a (gener-
ally nonlinear) interface equation, the so-called pseudo-differential Steklov–Poincaré
equation, where the only unknown is the displacement of the interface separating
the fluid and the structure. At any time-step, after space discretization, the aim is
to exploit the physically decoupled structure of the original problem, in such a way
that the solution is obtained through a sequence of independent solves involving each
subproblem separately.

A preliminary approach in this direction can be found in [88], [65], where the
coupling between Stokes equations and a linearized shell model is considered. The
analysis of the Steklov–Poincaré operators associated to the fluid and shell models is
developed, and a Richardson scheme in which the shell operator acts as preconditioner
is proposed and tested. Another instance is presented by Mok and Wall [63], who
proposed an iterative substructuring method requiring, at each step, the independent
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solution of a fluid and a structure subproblem, supplemented with suitable Dirichlet
or Neumann boundary conditions on the interface.

As it was observed, one of the advantages of the Steklov–Poincaré approach is
that the whole problem is reduced to an equation involving only interface variables.
In this respect, it can be regarded as a special instance of heterogeneous domain
decomposition, arising whenever in the approximation of certain physical phenomena
two (or more) different kinds of boundary value problems hold within two disjoint
subregions of the computational domain (see, e.g., [78]). The key to efficiency is to
set up convenient preconditioners for the discretized Steklov–Poincaré equation, as
done in [24]. In Figure 10 we plot the numerical simulation of the wall deformation
of a straight cylindrical vessel at two different time-instants of the cardiac beat. The
gray scales indicate pressure iso-values. In Figure 11 the same kind of simulation is
reported for a carotid artery. Arrows indicate the blood velocity field.

Figure 10. Pressure wave propagation in a straight vessel (simulation by G. Fourestey).

xy z
x

zy

Figure 11. (From [24]). Structure deformation of a carotid artery and velocity at time t = 10 ms
(left) and t = 20 ms (right).
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4. Modeling the whole circulatory system

So far we have shown how to set-up mathematical models to simulate local phenom-
ena. In fact, a change of perspective is necessary if we want to investigate processes
that occur on the vascular tree at large: instances include the propagation of the
pressure pulse from heart to periphery, the self-regulation process that governs the
dynamics of blood solutes (oxygen, drugs, etc.), the aging effects on the arterial elas-
ticity, the overload on the heart induced by the implant of an endovascular prosthesis,
the regulating processes that the body activates to contrast severe changes in external
conditions, etc.

Modeling these processes requires to integrate multiple scales in space and time,
and to account for the correlation between actions and reactions in different cardio-
vascular compartments.

The simulation of a large part of the circulatory system by solving the three-
dimensional Navier–Stokes equations everywhere would require the availability of a
large set of morphological data (quite difficult to obtain), not to mention the compu-
tational costs that would be out of reach. On the other hand, the richness of detail
intrinsic to a 3D model may not be necessary when one is primarily interested in the
simulation of global flow features. Rather, suitable hierarchies of reduced models,
made of networks of 1D pipes and lumped parameter circuits carrying different level
of detail, can be developed to provide sufficiently reliable answers to our questions.

By exploiting the fact that, at least locally, an artery is a quasi-cylindrical vessel
and that blood flows mainly in the axial direction, we build a simplified model that
neglects the transversal components of the velocity, assumes that the wall deforms
along the radial direction only, and describes the fluid-structure interaction blood
flow problem in terms of two scalar functions: the measure A(z, t) of a generic axial
section A(z) of the vessel and the mean flux Q(z, t) = ∫A(z) uzdσ. Here, z indicates
the axial coordinate (see Figure 12, left). Under simplifying, yet realistic, hypotheses
the following one dimensional (1D) model is obtained [75]:

∂A
∂t
+ ∂Q

∂z
= 0,

∂Q
∂t
+ ∂A

∂ρ
∂p
∂A
− αū2

z
∂A
∂z
+ 2αūz

∂Q
∂z
+KR

(
Q
A

)
Q = 0,

z ∈ (0, L), t > 0 (14)

which describes the flow of a Newtonian fluid in a compliant straight cylindrical
pipe of length L. Here, ūz = A−1

∫
A uzdσ is the mean axial velocity and α =

(Aū2)−1
∫
A u

2
zdσ is the Coriolis coefficient. The pressure is assumed to be function

of A according to a constitutive law that specifies the mechanical behavior of the
vascular tissue. Different models can be obtained by choosing different pressure-area
laws. Finally, KR is a parameter accounting for the viscosity of the fluid. For the
analysis of the hyperbolic system (14) see [75] and [10].

In this simple (and most popular) one dimensional model the vessel mechanics is
overly simplified. In practice, it is reduced to an algebraic relationship between the
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mean axial pressure (more precisely the average intra-mural pressure) and the area
of the lumen. However, one may also account for other mechanical properties such
as viscoelasticity, longitudinal pre-stress, wall inertia. In the latter case, the relation
between pressure and vessel area is governed by a differential equation. Yet, it is still
possible, at a price of some simplifications, to recover again a system of two partial
differential equations [35], [33]. By so doing, the wall inertia introduces an additional
dispersive term, while viscoelasticity contributes with a dissipation term. The treat-
ment of these additional terms is problematic as further boundary conditions would
be required. However, for physiological situations inertia and viscoelastic effects are
not very important. Further improvements account for tapering and curvature (the
latter cannot be neglected in arterial vessels such as the coronaries, the aortic arch,
etc.). The model becomes fairly more involved, an account is given, e.g., in [54],
[84]. At some extent, the arterial system in its entirety can be regarded as a network

A

0

z

L

�1

�3�2

uz

Figure 12. Left: Representation of an arterial cylindrical segment. Right: Sketch of a bifurcation

of 1D pipes, each of these being modeled by the hyperbolic system (14) (or its variants
that account for curved vessels), supplemented by suitable matching conditions at the
branching or bifurcation points (like in Figure 12, right) ensuring mass and energy
conservation (see [75]). Its mathematical investigation would require the analysis of
nonlinear hyperbolic systems on networks (see, e.g., [19], [53]).

The resulting network of one dimensional hyperbolic models are very well suited
to describe the propagation of waves (the pulse), a phenomenon generated by the
interaction between blood flow and compliant vessel wall and intrinsically related
to the elastic properties of the arteries. In Figure 13 we report some snapshots of
the numerical solution obtained by simulating with 1D models the application of
a prosthesis at the abdominal bifurcation to cure an aneurysm. Figures on the top
represents the case of an endo-prosthesis made with material softer that the vascular
tissue. On the bottom the case where the prosthesis is stiffer. The presence of a strong
back-reflection in the latter case is evident. When the reflected wave reaches the
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Figure 13. (from [36]). Snapshots of the simulation of a vascular bifurcation with a prosthesis,
carried out with a 1D model. The three pictures in the top row illustrate the case of a prosthesis
softer than the arterial wall. The most relevant reflection is at the distal interface between the
prosthesis and the vessels (right). At he bottom row the results obtained using the same boundary
data but with a prosthesis stiffer than the vascular wall. The most relevant reflection is at the
proximal interface between the vessel and the prosthesis (left) and it back propagates up to the
heart.

heart it may induce a pressure overload. These results may guide the design of better
prostheses. A more complete 1D network, like the one including the largest 55 arteries
shown in Figure 14, left, may be adopted for a more sound numerical investigation
of the systemic dynamics.

Peripheral circulation in smaller arteries and capillaries may be accounted as well
by lumped parameter models.

Here, a further simplification in the mathematical description of the circulation
relies on the subdivision of the vascular system into compartments, according to
criteria suited for the problem at hand. The blood flow as well as the other quantities of
interest are described in each compartment by a set of parameters, typically the average
flux and pressure in the compartment, depending only on time. The mathematical
model is then made of a system of algebraic and ordinary differential equations in
time that govern the dynamics of each compartment and their mutual coupling. Often,
these models are called (with a little abuse of notation) 0D models (“zero” because
there is no space variability any longer). In this way, large parts of the circulation
system (if not all) can be modeled. The level of detail can be varied according to the
problem needs.

A useful way of representing lumped parameter models of the circulation is based
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Figure 14. Arterial tree composed of a set of 55 straight vessels, described by 1D models
(see [100]). On the right a pathological case, in which some of the vessels are supposed to be
completely occluded.

on the analogy with electric networks, where the flow rate is represented by the electric
current and pressure by the voltage. The equations coupling the different compart-
ments are given by the Kirchhoff balance laws, which derive from the continuity of
mass and pressure. The effects on blood dynamics due to the vascular compliance
is here represented by means of capacitances. Similarly, inductances and resistances
represent the inertial terms and the effect of blood viscosity, respectively (see e.g.
[37] and references therein). Figure 15 illustrates different electrical schemes that
may be used to describe blood flow in a passive compartment. Exploiting the same
analogy, it is also possible to devise a lumped parameter representation of the heart.
Since, as stated in [69], Chapter 13, left ventricle and arterial circulation represent
two mechanical units that are joined together to form a coupled biological system, we
need to couple the 1D model with a model of the heart (or at least of the left ventricle),
for instance a lumped parameter model. The opening of the aortic valve is driven by
the difference between the ventricular and the aortic pressure, Pv and Pa , while the
closing is governed by the flux. The electric analog of each ventricle is given in
Figure 16 where the presence of heart valves has been taken into account by diodes
which allow the current flow in one direction only. A simple ordinary differential
equation that accounts for this dynamics reads d

dt
(C(t)Pv(t)) = −MQ(t), where Q

represents the incoming flow rate, and MQ is the action exerted by the contraction
of the cardiac muscle. Precisely, MQ = dV0

dt
, V0 being the reference volume that

changes in time because of the variation of the length of the muscle fibers. The action
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Figure 15. (From [36]). Four possible lumped parameters representation of a compliant ves-
sel in terms of electrical circuits. The four cases differ for the state variables and the up-
stream/downstream data to be prescribed. The letters R,L,C indicate resistances, inductances
and capacitances, respectively, while Q and p denote flow rate and pressure.
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Figure 16. (From [36]). Network for the lumped parameter model of a ventricle.

of the aortic valve is described by setting Q = 0 when Pa > Pv, Pa = Pv − RQ if
Q > 0. For more details about this model, see [37]. More sophisticated ODE models
are available, such as the visco-elasto-plastic model in [7].

From a mathematical standpoint, a general representation of lumped parameters
models is a Differential-Algebraic-Equations (DAE) system in the form

dy
dt
= B(y, z, t) t ∈ (0, T ]

G(y, z) = 0
(15)

supplemented with the initial condition y|t=t0 = y0. Here, y is the vector of state
variables while z are the other variables of the network which do not appear as time
derivative, G is a set of algebraic equations that derive from Kirchhoff laws. If ∂G

∂z
is nonsingular, then by the implicit function theorem the DAE system (15) can be
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formulated in terms of y solely. By coupling together schemes like those illustrated
in Figure 15 for the different compartments and schemes like that in Figure 16 (or
more sophisticated ones) to model the blood supply from heart it is possible to derive
a lumped parameter model of the whole circulatory system. An example is provided
by the four-compartment model illustrated in Figure 17, which comprises a lumped
description of heart, lungs, arterial and venous circulation. Unfortunately, the param-

Rs

Ca

Ra

Qa

Pa

Ps

Pv

Qv Qs

Cs

Cv

Right Heart

Left Heart
Lungs

Figure 17. (From [36]). A four compartment description of the vascular system with self-
regulating controls.

eters that govern the model, like resistances and compliances, can hardly be obtained
from measurements or other means. In fact the circulatory system ensures a correct
blood supply to organs and tissues in very diverse situations, at rest as well as after a
long run. This is possible thanks to self regulating mechanisms. One of such mech-
anisms ensures that the arterial pressure is maintained within a physiological range
(about 90–100 mmHg). Indeed, if pressure falls below this range, the oxygenation
of the peripheral tissues would be seriously affected; on the other hand, a high ar-
terial pressure would induce vascular diseases and heart overload. This regulation
mechanism is called baroreflex effect and is described, for instance, in [49] and [52].
The elements of the feedback baroreceptor loop are a set of baroreceptors located
in the carotid arteries and the aortic arch, which transmit impulses to the brain at a
rate increasing with the arterial pressure, the parasimpathetic nervous system, which
is excited by the activity of baroreceptors and can slow down the heart rate, and the
simpathetic nervous system, which is inhibited by the baroreceptors and can increase
the heart rate. It controls also the venous pressure and the systemic resistance.

Another ingredient of the self-regulating capabilities of the arterial system is the so
called chemoreflex effect, a mechanism able to induce capillaries dilation and opening
when an increment of oxygen supply is required by the organs, for instance during
heavy exercise.

Chemoreflex and baroreflex effects can be included in the differential models
presented so far through another coupled ODE system that models these feedback
mechanisms (see, e.g., [21], [20] and the references therein).
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Being able to adopt equations in different geometrical dimensions (3D, 1D and 0D,
as we have illustrated thus far) provides tremendous new opportunities for modeling
the circulatory system, but, at the same time, poses severe mathematical challenges.
Multiscale geometrical systems can be set-up using 3D models of the type (7)–(12)
to provide a complete description of the flow-field and 3D vessel deformation in
specific districts (such as, e.g., the carotid bifurcation, the aortic arch, a stenosed
coronary artery) combined with a network of 1D models like (14), one for every
compliant vessel apt at providing average values of flow-rate and pressure on each
vessel axial section. The rest of the system – the heart, the venous system, the capillary
bed, the small circulation – may be accounted for by either prescribing appropriate
“boundary” conditions at the terminal vessels or, more realistically, by adopting 0D
lumped parameter (ODE) models capable of describing the feedback effects due to
peripheral circulation. With this approach, difficulties arising from the treatment of
boundary conditions for 3D model (mentioned in Section 2) are naturally handled.

From a mathematical standpoint, the use of such a geometrical multiscale model
calls for the set up of matching conditions between the various submodels. These
conditions should ensure the conservation of mass and stresses at the interfaces be-
tween heterogeneous submodels. This is not obvious to achieve, since the submodels
live in spaces of different dimensions, are made of equations of different type and
number, and feature different kind of unknown variables. Furthermore, the multi-
ple geometrical models coupled with the continuity conditions at interfaces should
hopefully define a globally well-posed mathematical problem.

The analysis of the complete system is very difficult, though. Partial results are
available on the coupling of 3D and 0D models, and of 1D and 0D, see [33], [32],
[81]. An account is given in [37].

So far, we have described the heart ventricle functionality by a simple 0D model.
Clearly, this is an overly simplified approach. In fact, the development of a math-
ematical model for describing the electrical, mechanical and biochemical function
of the heart and its coupling with the ventricular blood dynamics is tremendously
challenging.

The changes in the electrical potential across the muscle cell outer membrane
triggers the myocardium, whose contraction prompts ejection of blood from the ven-
tricles. Electric current flows into a cell, raises the potential and initiates the wave
propagation along the cells, which are connected by gap junction proteins. The entire
myocardium is activated within 50 ms and the mechanical contraction lasts for about
300 ms.

From a numerical perspective, the difficulty is represented by the need of coupling
efficiently large deformation mechanics, electrical excitation and wave propagation,
turbulent flow fields, which feature different characteristic spatial and temporal scales.
Moreover, the electric activity of the heart influences the activation function of 1D
network models like the one in Figure 13 that could be used for the systemic circula-
tion. Reciprocally, the pressure pulse that is modeled by 1D network interacts with
the cardiac electrodynamics.
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Tremendous progress has been made though in the past two decades. The im-
mersed boundary method was introduced by Charles Peskin in his Ph.D thesis in
1972 in order to study the fluid dynamics of heart valves, and it was then extended
to become a three-dimensional model of the whole heart (see [73] and the refer-
ences therein). According to Peskin, “the philosophy of the immersed boundary
method is to blur the distinction between fluid dynamics and elasticity”. This is
accomplished by inserting in the right hand side of the momentum equation (5) a
forcing term F(x, t) = ∫

�̂s
f (x̂, t)δ(x − X(x̂, t))dx̂ representing the forces act-

ing on the blood flow because of the presence of a solid structure (a valve, or the
cardiac fibers). The vector f denotes the density distribution of forces (whose ex-
pression depends on the mathematical model adopted to describe the structural de-
formation), δ is a Dyrac function, X describes the motion of the solid structure (like
Ls in Section 3), and is related to the fluid velocity u by the Lagrangian relation
∂tX(x̂, t)) = u(X(x̂, t), t), x̂ ∈ �̂s, t > 0. Both the Eulerian and the Lagrangian
variables are employed.

The development of a global cardiac model using finite elements for finite defor-
mation mechanics equations is proposed in [87]. An anatomically based description
using finite element shape functions is given, then governing equations are proposed
to relate material properties to tissue behavior.

Cardiac tissue is made of discrete cells but it can be modeled as a continuum.
For instance, the bidomain model (see, e.g., [17], [16]) consists of two interpene-
trating domains that represent cells (intracellular domain) and the space surrounding
the cells (extracellular domain). These two domains are assumed to co-exist at all
points in the computational domain. The tissue microstructure is accounted for in the
activation model through the extra-and-intra-cellular conductivity tensors. From the
mathematical viewpoint, this macroscopic representation of the cardiac tissue by a
reaction-diffusion system of partial differential equations can be rigorously derived
by a homogeneization procedure [2], [6].

The development of realistic models for heart functioning is however far from
being achieved, due to the tremendous complexity of this physical system and the
induced computational complexity of the associated numerical models.

5. Mathematical models for biochemical processes

Besides the biochemical and electrical processes described so far, mathematical mod-
els can be set up to describe the transport, diffusion and absorption of biomedical
components (such as oxygen, nutrients, drugs, low density lipoproteins (LDL), etc.)
in the blood stream and through the different layers of the arterial wall. Numerical
simulation of biochemical processes can in fact explain biochemical modifications
produced by alterations in blood flow field like those occurring at outer wall of bi-
furcations, inner wall of curved vessels, in anastomotic junctions (as in a coronary
by-pass) and stenotic arteries.
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The dynamics of solutes in arteries, like dissolved gases (such as O2) or macro-
molecules (such as albumin or LDL) is indeed strongly affected by the blood flow
dynamics. The local transfer of mass between blood and arterial walls is functional
to the transport of nutrients to cells and the removal of metabolic wastes, yet it also
affects the accumulation of potentially atherogenic molecules. For instance the accu-
mulation in the intima of LDL occurs at zones of low and oscillating wall shear stress,
which seem to be correlated with the tendency to intima thickening.

The basic step for the modeling of mass transfer is the set up of a mathematical
model which describes the filtration of plasma and the transfer of chemicals from
the lumen to the arterial wall. The blood flow into the arterial lumen is governed
by the Navier–Stokes equations (2), (5), while the filtration across the tissue layers
constituting the wall can be described by a Darcy type model,

ū = −KD
μ
∇P with div(ū) = 0, (16)

where ū is the volume-averaged velocity, P is the pressure, KD is the (Darcy) wall
permeability, μ is the dynamic viscosity. On the other side, the dynamics of chem-
icals is generally governed by a system of advection-diffusion equations. Precisely,
applying the mass conservation principle on a generic control volume, we obtain the
following equation

∂t c̄ + div (−D∇ c̄ + γ ūc̄/ε) = 0, (17)

where c̄ is the volume-averaged concentration, D is the diffusivity of the chemical
species at hand, 0 ≤ ε ≤ 1 is the porosity of the considered medium; the case ε = 1
represents the pure fluid phase. Collisions of large molecules with the structure of
the porous tissue layer result in a reduced convective transport, a phenomenon that is
accounted for by using the hindrance coefficient 0 < γ ≤ 1.

In the simplest wall-free model, the fluid dynamics and the mass transport in the
arterial lumen are described by the Navier–Stokes equations (2), (5) and the advection-
diffusion equation (17). At the interface between the lumen and the arterial wall (the
endothelium) appropriate conditions for the volume flux (Jv) and the mass flux (Js)
are assumed:

ul · nl = Jv on �, (−Dl∇cl + ulcl) · nl = Js on �.

In this case the values of Jv and Js are provided by experimental data ([8], [99], [95],
[91]). More realistic models are the fluid-wall model and the multilayer model, both
requiring suitable matching conditions describing the flux of fluid (Jv) and the flux
of chemicals (Js) between two solutions (denoted by i = 1, 2) separated by a semi-
permeable membrane across which concentrations and fluid pressure are different, see
[51], [50]. In the case of just one solute, denoting with δp = p1−p2 and δc = c1−c2
the driving forces across the membrane, the interface equations originally proposed
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by Kedem–Katchalsky read as follows,

Jv(P1, P2, c1, c2) = LP (δP − δπ) with δπ = σRT δc, (18)

Js(c1, c2, P1, P2) = �δc + sf (c1, c2)Jv, (19)

where T is the absolute temperature, while s (the sieving coefficient), LP (the hy-
draulic conductivity) and� (the permeability), R (the gas constant) are phenomeno-
logical coefficients.

In their original theory Kedem and Katchalsky provide Jv and Js in the case of two
compartments filled with a free fluid. When taking into account two heterogeneous
porous media (like two continuous wall layers) permeated by solutions of different
concentrations and pressures, the driving forces are still δP and δc (where c in the case
of porous media represents the concentration in the fluid phase), however the phe-
nomenological coefficients now depend on the porosity of each medium and we will
call them effective coefficients, denoted with LP,eff(ε1, ε2),�eff(ε1, ε2), seff(ε1, ε2)

respectively. This theoretical characterization is a very challenging task, see e.g.
[18], [89], [90], [22]. An approach that allows a direct estimation of the effective
coefficients is proposed in [74].

To define the mathematical problems describing the mass transfer from the lumen
to the arterial wall, we label with i = 1 the physical quantities associated with the
free fluid and with i = 2 the ones corresponding to the porous medium, and denote
by � the interface between these media. Then, the fluid dynamics is governed by eqs.
(2), (5) in �1, eq. (16) in �2, and the following conditions at the interface:

u1 · n1 = ū2 · n1 and ū2 · n1 = Jv on �. (20)

Finally, we observe that in the free fluid (corresponding to a porosity ε1 = 1) the
velocity of the fluid phase is equivalent to the volume averaged one. Thanks to this
identification the volume averaged velocity can be referred to as ūi in both domains.
The concentration c̄i of a given chemical is governed by the following problem,

∂t c̄i + div (−Di∇ c̄i + γi ūi c̄i/εi)+ ri c̄i = 0, in �i, i = 1, 2,

(−D1∇ c̄1 + γ1ū1c̄1/ε1) · n1

= �eff(c̄1/ε1 − c̄2/ε2)+ f (c̄1/ε1, c̄2/ε2)Jv on �, (21)

(−D2∇ c̄2 + γ2u2c̄2/ε2) · n2

= −[�eff(c̄1/ε1 − c̄2/ε2)+ f (c̄1/ε1, c̄2/ε2)Jv] on �,

where the Kedem–Katchalsky equation (19) has been rewritten in terms of the volume
averaged concentration. Finally, we observe that the multilayer model is described
by a set of equations similar to (20) and (21). Precisely, its fluid dynamics part is
obtained by adding to problem (20) a further domain, describing the intima, that will
be coupled to the lumen and the media prescribing that the normal velocity across
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the interface between these domains is continuous and equal to the flux Jv , defined
in (18). Analogously, the extension of equation (21) to the multilayer case features a
third advection-diffusion equation defined in the intima and coupled to the rest of the
system by imposing that the total flux of chemical (namely (−D∇ c̄+ γ ūc̄/ε) · n) is
continuous across the interfaces and equal to Js , defined in (19).

Besides their interest for bio-medical applications, (20) and (21) represent a diffi-
cult system of nonlinear partial differential equations whose analysis has been specif-
ically addressed in [105], [79], [80]. Irregularities in the flow field across the arterial
wall influence the concentration distribution within the wall. Figure 18 displays the
concentration contours in the wall of the two different wall models at selected loca-
tions in the expanding region of the stenosis. We observe that the perturbations in the
velocity field in the intima and the media affect the concentrations as well. For exam-
ple in the media, the concentration in the region of high filtration velocities is slightly
higher than the average value, while it is lower than the average in correspondence
of low filtration velocities. More analysis and numerical simulations can be found
in [105], [74]. Systems like those introduced in this section can also be applied to
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Figure 18. (From [74]). Concentration contours provided by the fluid-wall model (left) and the
multilayer model (right). In the latter case, the presence of the intima is put into evidence.

the modeling of biochemical processes arising from the control of peritoneal dialysis
[107], drug eluting materials [106], and artificial blood oxygenators [58].
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