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From Shuffling Cardsto Walking Around the Building:An Introdution to Modern Markov Chain Theory
Persi Diaconis

Abstract. This paper surveys recent progress in the classical subject of
Markov chains. Sharp rates of convergence are available for many chains.
Examples include shuffling cards, a variety of simulation procedures used
in physics and statistical work, and random walk on the chambers of a
building. The techniques used are a combination of tools from geometry,
PDE, group theory and probability.

0 Introduction

The classical subject of Markov chains has seen spectacular progress in the past
ten years. Progress is seen through theoretical advances and practical applications.
These may be roughly depicted as the interactions between:

SCIENCE

STATISTICAL

MECHANICS

MATHEMATICS

COMPUTER

COMPUTING

STATISTICAL

Briefly, Markov chain Monte Carlo is a mainstay of the computational side of
statistical mechanics. There, one wants to draw samples from probability mea-
sures on high dimensional state spaces (e.g., the Ising model). One practical way
to proceed is to run a fancy kind of random walk (the Metropolis algorithm or
Glauber dynamics) [50] which reaches equilibrium at the desired measure. Similar
procedures have created a revolution in the computational side of statistics (the
Gibbs sampler)[22], [40]. In theoretical computer science, a slew of intractable
problems (#-p–complete) problems like computing the permanent of a matrix or
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188 Persi Diaconis

the volume of a convex polyhedron) have provably accurate approximations in
polynomial time because simple Markov chains can be constructed and proved to
converge rapidly [58]. All of this rests on new mathematical developments.

The new mathematics uses ideas from diverse areas.

PDE

PROBABILITYGROUP

THEORY

GEOMETRY

Probabilistically, new ideas like coupling [48] and stopping time techniques [3],
[19] give ‘pure thought’ solutions to previously intractable problems. Techniques
from PDE and spectral geometry allow bounds on the eigenvalues of the basic
operators in terms of the geometry of the underlying chain (bottleneck measures,
discrete curvatures, and volume growth). Comparison techniques allow study of a
chain of interst by comparison with a neat chain which can be analyzed through
group representations. The various areas interact so there are probabilistic proofs
of results in classical geometry and group theory and vice versa.

The present paper offers a thread through this maze by following the devel-
opment of a single example: mixing n cards by repeatedly removing the top card
and inserting it at random.

The example is studied in Section 1 which introduces basic notation, shows
what a theorem in the subject looks like, and proves that n logn shuffles suffice to
mix up n cards. Thus, when n = 52, about 200 shuffles are necessary and suffice.
The argument introduces coupling arguments and shows that the underlying non
self adjoint operators are explicitly diagonalizable. Section 2 offers a variety of
extensions where a similar analysis obtains. These include the usual method of
shuffling cards. Section 3 extends things to random walk on the chambers of a
hyperplane arrangement and then to walks on the chambers of a building. These
examples show an intimate connection between probability, algebra, and geometry.

Section 4 gives pointers to many topics not covered, a brief example of the
geometric theory of Markov chains (again applied to shuffling cards), some open
problems, and a beginner’s guide to the literature.

1 Some Markov chains on permutations.

1.1 The Tsetlin library.

Picture a pile of file-folders which are used from time to time. The ith folder
is used with weight wi with wi > 0, w1 + · · · + wn = 1. It is natural to want
frequently used folders near the top. A scheme which achieves this, even if the
wi are unknown, is simply to replace the most recently used folder on top. To
put this into a mathematical framework, label the folders 1, 2, · · · , n and let an
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From Shuffling Cards to Walking Around the Building 189

arrangement of these labels be denoted by a permutation σ say with σ(i) the label
at position i. Moving folder i to the top changes σ by a cycle

(

1, 2 · · ·σ−1(i)
)

. The
chance of moving from σ to ζ in one step is

K(σ, ζ) =

{

wi if ζ =
(

1, 2 · · ·σ−1(i)
)

σ

0 otherwise.
(1.1)

It helps some of us to think of K(σ, ζ) as the (σ, ζ) entry of an n! by n! matrix.
Then, making repeated moves is represented by matrix multiplication. Thus, the
chance of going from σ to ζ in two steps is

K2(σ, ζ) =
∑

η

K(σ, η) K(η, ζ)

After all, to get from σ to ζ, one must go to some possible η and then from η to
ζ. Similarly, K l(σ, ζ) is defined.

A matrix of form (1.1) with K(σ, ζ) ≥ 0,
∑

ζ

K(σ, ζ) = 1 is called a stochastic

matrix and the process of successive arrangements is called a Markov chain. The
Peron-Frobenious theorem implies that under mild regularity conditions (connect-
edness and aperiodicity, satisfied in all examples here), such a Markov chain has a

unique stationary distribution π(σ) > 0,
∑

σεSn

π(σ) = 1. This is characterized as

the unique left eigenvector of K with eigenvalue 1 (so
∑

σεSn

π(σ)K(σ, ζ) = π(ζ)).

It is also characterized by the limiting result as l tends to infinity

limK l(σ, ζ) = π(ζ) for all σ (1.2)

Algebraically, this says that if the matrix K is raised to a high power, all the rows
are approximately equal to π. Probabilistically, this says that for any starting
state σ, after many steps, the chance that the chain is in state ζ is approximately
equal to π(ζ), no matter what the starting state is.

For the Tsetlin Library (1.1), the stationary distribution π is easy to describe.
One description is “sample from the weights {wi} without replacement.” That is,
form a random permutation σ by choosing σ(1) = j with probability wj . This first
choice being made, delete weight wσ(1), renormalize the remaining weights to sum
to one, and sample from these to determine σ(2). Continuing in this way gives σ.
Formally:

π(σ) =
wσ1

1− wσ1

wσ2

1− wσ1
− wσ2

· · · wσn−1

1− wσ1
− · · · − wσn−2

. (1.3)

This natural probability measure arises in dozens of applied contexts from psycho-
physical experiments (as the Luce model) to oil and gas exploration [17].
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The standard way of quantifying the rate of convergence of K l to π is to use

the total variation distance; let K l
σ(A) =

∑

ζεA

K l(σ, ζ),

||K l
σ − π|| = max

A∈Sn

|K l
σ(A)− π(A)| = 1

2

∑

ζεSn

|K l(σ, ζ) − π(ζ)|

These equalities are easily proved.
As an example of the kind of theorem that emerges, we show

Theorem 1.1. For the Tsetlin library chain (1.1)

||K l
σ − π|| ≤

n
∑

i=1

(1 − wi)
l (1.4)

Remark 1. Consider the simple case where all wi =
1
n . This gives a simple shuffling

scheme: Cards are repeatedly removed at random and placed on top. This is the
inverse of top to random described before (the rates are the same). The bound
on the right side of (1.4) becomes n(1 − 1

n )
l. Using 1 − x ≤ e−x, we see that

when l = n(logn + c) with c > 0, ||K l
σ − π|| ≤ e−c. It is not hard to see this is

sharp: If l = n(log n− c) with c > 0 the distance to stationarity is essentially at
its maximum value of 1. A graph of the distance to stationarity versus l appears
in Figure 1. The limiting shape of this graph is derived in [19]. This shows an
example of the cutoff phenomenon [17]. While the distance ||K l−π|| is monotone
decreasing in l, the transition from one to zero happens in a short interval centered
at n logn. In [17] similar cutoffs are proved for many other choices of weights, e.g.,
wi =

c
(i+1)s .

||P
k x
−
π
||

 k

0.5

0.7

0.9

n log n

Figure 1: Distance to stationarity for top to random shuffle

Proof of Theorem 1.1 The proof uses a coupling argument. Picture two decks
of cards. The first starts in order 1, 2, · · · , n. The second starts in random order
drawn from the stationary distribution (1.2). At each time t = 1, 2, 3 · · · choose a
label i with probability wi and move card i to the top of both decks. Note that
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From Shuffling Cards to Walking Around the Building 191

this forces the two decks to be in the same order in the top positions. Once cards
labeled i are in the same position in the two decks, they stay that way under
further moves. It follows that the first time T that all indices have been chosen
at least once, the two decks are in the same order. The second deck began in
stationarity, and repeated moves preserve stationarity. Thus at time T the first
deck is distributed in the stationary distribution.

The time T is called a coupling time [48]. It is easy to prove the formal bound

||K l
σ − π|| ≤ P{T > l}.

A further simple argument shows P{T > l} ≤ ∑

(1− wi)
l.

Remark 2. There is a large literature on the move to front scheme as a method of
dynamic storage allocation. See [36].

Remark 3. The Markov chain (1.1) is not self-adjoint. Nonetheless, Phaterfod

[52] shows that the matrix K has real eigenvalues βs =
∑

iεs

wi with multiplicity

the number of permutations with fixed-point set S. Here S runs over subsets
of [n] = {1, 2, · · · , n}. It is curious that we have no analytic tools to use these
eigenvalues for deriving bounds such as (1.3).

2 More vigorous shuffles.

The Tsetlin library scheme can be varied by choosing a subset S ⊂ [N ] with weight
ws and moving the folders with labels in S to the top, keeping them in the same
relative order.

Theorem 2.1. Suppose the weights ws separate in the sense that for every i and
j, ws > 0 for some s with i ∈ S, j /∈ S or i /∈ S, j ∈ S. Then the subset to top
chain has a unique stationary distribution π and

||K l
σ − π|| ≤

∑

i∈s,j /∈s
j∈s,i/∈s

(1− ws)
l

Proof. Theorem 2.1 is proved by the following coupling: Let T be the first time
every pair of labels, i, j have been separated at least once. This is a coupling time
and theorem 1.2 follows.

Remark 4. Again, all the eigenvalues are real, known, and useless [9].

There is a special case of Theorem (2.1) that is of general interest. Suppose
that all the weights {ws}s are equal to 1

2n . The shuffling scheme amounts to choos-
ing a random subset and moving these labels to the top. The inverse process is
the Gilbert-Shannon-Reeds (G-S-R) distribution for riffle shuffling ordinary play-
ing cards. Here, one cuts off the top j cards with probability

(

n
j

)

/2n. The top and
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l 1 2 3 4 5 6 7 8 9 10

||K l − π|| 1.000 1.000 1.000 1.000 .924 .614 .334 .167 .085 .043

Table 1: Total variation distance after riffling 52 cards l times

bottom halves are riffled together according to the following scheme: At a given
time, if one half has A cards, the second half has B cards, drop the next card
from the first half with probability A

A+B . It is not hard to see these are inverse
descriptions. The G-S-R distribution is quite a realistic description of the way
real people shuffle real cards. Of course, in this case π(σ) = 1/n! is the uniform
distribution.

The chance of separating i and j in one shuffle is evidently 1/2. Thus the
bound of theorem (1.2) is

||K l
σ − π|| ≤

(

n

2

)

(
1

2
)l

The right side of this bound is small when l is larger than 2 log2 n.
In joint work with David Bayer [8], more accurate estimates of the distance

are derived. We prove the sharp result that 3
2 log2 n shuffles are necessary and

suffice:

Theorem 2.2. For the G-S-R model of riffle shuffles, let l =
3

2
log2 n+ c. Then

||K l
σ − π|| = 1− 2Φ

(−2−c

4
√
3

)

+ 0

(

1√
n

)

.

with Φ(x) = 1√
2π

∫ x

−∞ e−x2/2 dt.

When n = 52 we derive the following exact result shown in Table 1 above.
Theory shows that the total variation distance continues to decrease by a power
of 2 for larger l. Evidently, there is a sharp threshold centered at about seven
shuffles. Theorem 2.2 says that for large n, a graph of total variation versus l
looks like Figure 1 with a cutoff at 3/2 log2 n.
Table 1 is derived from a simple closed form expression: The chance that the

deck is in position σ after l shuffles equals

(

2l + n− d

n

)

/2nl with d the number

of descents in σ−1. This close connection between descents and shuffling lends
to new formulae in combinatorics—enumeration of permutations by descents and
cycle structure [40], [23]. It is also closely connected to Hodge type decompositions
for Hochschild homology [42]. This rich circle of interconnections feeds back into
probability: While it takes 3

2 log2 n shuffles to make all aspects of a permutation
match the uniform distribution, features depending on long cycles are essentially
random after one shuffle.

As a final generalization, consider shuffling driven by a block ordered partition
[B1, B2, · · · , Bk]. To shuffle, remove cards with labels in B1, and place them on
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From Shuffling Cards to Walking Around the Building 193

top, keeping them in their same relative order. These are followed by cards with
labels in B2, and so on. Choosing weights for each block ordered partition leads
to a shuffling scheme that includes the Tsetlin library (weight wi on [i, [n]\i])
and the G-S-R model (weight 1/2n on [s, [n]\s]). These general shuffling schemes
were suggested by Bidigare, Hanlon and Rockmore [9]. They permit an essentially
complete analysis [12], [13]. As will be seen next, these shuffles too are a very
special case of random walk on a hyperplane arrangement.

3 Random walks on the chambers of a hyperplane arrangement.

We work in R
d. Let A = {H1, · · · , Hk} be a finite collection of affine hyperplanes.

These divide space into chambers C and faces F . For example, Fig. 2 shows three
hyperplanes in R

2.

F

CFC

Figure 2: 3 lines in the plane

There are seven chambers, nine half-line faces (one labeled F ), and three point
faces. There is a natural action of faces on chambers denoted F ∗ C: This is the
unique chamber adjacent to F and closest to C (in the sense of crossing the fewest
number of hyperplanes). For example, in Figure 2 the product of the chamber C,
with the face F is the chamber F ∗ C. This has distance two from C, while the
other chamber adjacent to F is at distance three.

Bidigare, Hanlon, and Rockmore (B-H-R) [9] suggested choosing weights
{wF } and defining a random walk defined on C by repeatedly multiplying by
faces drawn from these weights. They found the eigenvalues of these chains were
positive sums of the weights. Brown and Diaconis [13] showed the chains are di-
agonalizable, determined the stationary distribution, and gave reasonably sharp
coupling bounds for convergence to stationarity.

The B-H-R results extend the shuffling results of Section 2 above: In R
n, the

braid arrangement has hyperplanes {Hij}i<j with Hij = {(x1 · · ·xn) : xi = xj}.
The chambers of the braid arrangement are naturally labeled by the n! permuta-
tions (the relative order of the coordinates inside the chamber). The faces of the
braid arrangements are determined by various equalities among coordinates. They
are easily seen to be labeled by block ordered partitions discussed in Section 2.
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194 Persi Diaconis

Moreover, the action of faces on chambers is just the shuffling scheme described
in Section 2.

There are many hyperplane arrangements where the chambers can be labeled
with natural combinatorial objects such as trees or tilings of various regions [13]
[59]. The face walks give natural Markov chains on these spaces which permit a
complete analysis. There is a useful description of the stationary distribution, the
operators are diagonalizable with positive eigenvalues which are partial sums of the
weights. Finally, there are good rates of convergence using a coupling argument.

For this expository account, I content myself with a single geometric example
drawn from joint work with Louis Billera and Ken Brown [11]. Consider n planes
(through zero) in R

3. These are most easily pictured by their intersection with
the unit sphere. For example, Figure 2 shows the northern hemisphere cut into
chambers or regions by 4 planes—one being the plane of the picture.

C’

V

C

The projection of C on v.

Figure 3: 4 planes in R
3.

The chambers are the open regions shown together with a matching set “under”
the sphere. There are 14 chambers altogether (

(

n
2

)

+ 2 for n planes in general
position). Consider the random walk on chambers generated by picking a random
vertex of the arrangement uniformly. The walk moves from its current chamber to
the chamber adjacent to the chosen vertex. It is intuitively clear that the chance
of winding up in a given region c depends on the number i(c) of sides of the re-
gion, regions with large values of i(c) being more likely. In [11] we showed that
π(c) = (i(c)−2)/2(f0−2) with f0 the total number of vertices in the arrangement.
Thus in Fig. 2 f0 = 14 and the 8 triangular regions have π = 1/14 while the 6
quadrilaterals have π = 1/7. We have no intuitive explanation for this; we just
observed it was true in small cases and proved it beginning with a rather indi-
rect description of the stationary distribution given by sampling from the vertices
without replacement. We find the result surprising; for example, there are four
essentially different configurations of six planes in R

3. These are shown in Table 2
together with their vital statistics. In all cases, the stationary distribution for
an i-gon is proportional to i − 2. Note that some configurations don’t have any
i-gons. The eigenvalues and coupling for this example show that the walk reaches
stationarity after two steps!

These examples show that hyperplane walks have some remarkable properties.
They do not yet explain what makes things tick. The next two sections give

Documenta Mathematica · Extra Volume ICM 1998 · I · 187–204



From Shuffling Cards to Walking Around the Building 195

D

Six great circles in general position.

A B C

i A B C D
3 20 14 12 12
4 0 12 16 18
5 12 6 4 0
6 0 0 0 2

Figure 4: Table 2: Six great circles in general position with number of i-gons

random walks on buildings where things start to break and random walks on
semi-groups, the current ultimate generalization.

4 Random walks on the chambers of a building.

There is a natural extension of the walks of a hyperplane arrangement generated
by a reflexion group such as the braid arrangement. This gives random walks on
the chambers of a building; we will work with finite objects (spherical buildings).
This section reports work of Ken Brown.

A building is a simplicial complex given with a set of subcomplexes called
apartments. These apartments must be (isomorphic to) the chambers of a eu-
clidean hyperplane arrangement generated by a finite reflexion group. The top
dimensional cells of the complex are called chambers. As an example, the follow-
ing complex is a building.

Figure 5: An A2 building

b

a

d

x

y

F

c
e
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The vertices (one-cells) are numbered a, b, c, d, e, f, x, y. The two-cells are the edges
shown; these are the chambers. There are three apartments

x

y

a

d

x

c

b

a

d

F

c
e

b

y

a

d

F

e

Each of these may be identified with the braid arrangement in R
3.

There is a natural action of a face of a building on the chambers. One of
the building axioms says that any two faces are in an apartment. Thus any face
and chamber are in an apartment and it makes sense to multiply them using the
procedure described in Section 3. In the A2 building pictured in Fig. 5, consider
the chamber {a, b} and the vertex d; d∗{a, b} = {d, c} because {c, d} is the closest
chamber to {a, b} adjacent to d (distance 2). Any finite tree is a building, and the
product of an edge with a vertex may be similarly defined.

A Markov chain on the chambers of a building may be defined by choosing
an arbitrary system of weights on the lower dimensional simplicies. This gener-
alizes the shuffling scheme of Section B but does not include general hyperplane
arrangements.

For the A2 building pictured in Figure 5, the walk may be pictured as a
service discipline where a single server occupies an edge. Customers arrive at
vertices with given propensities and the server slides over to the edge closest to
the next customer. One may ask how much time the server spends on a given edge
in the long run.

This class of examples introduces some new behavior: It is no longer true that
the eigenvalues are positive or even sums of the weights. As an example, consider
Figure 5 with equal weights on b, f, x. The eigenvalues are real and the matrix
is diagonalizable, but the eigenvalues are algebraic numbers which are no longer
linear in the weights. It is an open problem to find examples of random walks
on buildings where the eigenvalues are complex. Despite all this, the following
example shows that these walks have some elegant special cases where everything
works out neatly:

Consider a vector space V which is n-dimensional over a finite field Fq with
q = pa elements for some prime p. A flag is a maximal increasing sequence of
subspaces. Thus it consists of a line in a plane in a three-space and so on up to an
n−1 space. We will describe a simple random walk on the space of flags which is a
direct analog of the random to top chains in Section 1 above. The walk is driven by

a system of weights for each line l : {wl}l ∈ Pn−1. Here wl ≥ 0,
∑

l

wl = 1. The
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walk proceeds as follows: Suppose it is currently at the flag v1 ⊂ v2 · · · ⊂ vn−1.
Choose a line with probability wl. Modify the flag to begin with l:

l ⊂ l + v1 ⊂ l + v2 · · · ⊂ l + vn

If l /∈ vi−1 but l ∈ vi, the chain of subspaces repeats since l+ vi−1 = l+ vi. Strike
out this repetition to get a new maximal flag. This defines a random walk in
maximal flags which “moves a random vector to the front.” As q → 1; a subspace
becomes a subset and a flag becomes a permutation; the walk becomes move to
front.

Brown [12] gives an elegant analysis of these chains which perfectly parallels
the analysis of Section 3.

Theorem 4.1. [Brown] For the random line to front with weights {wl}, there is
an eigenvalue for each subspace x (including φ,Pn)

λx =
∑

lεx

wl.

This has multiplicity mj(q) =
∑

qMAJ(π) = [j]!

j
∑

k=0

(−1)kq(
k

2)

[k]!
, with j =

codim(x), and the first sum over derangements π in Sj. If wj is uniform

‖Km
x − π‖ ≤ (qn − 1)(qn−1 − 1)

(q2 + 1)(q − 1)

(

qn−2 − 1

qn − 1

)m

.

Remark 5. The last bound shows that m = n− 1 steps suffice to achieve random-
ness when n is large and q is fixed. This is clearly the minimum by dimension
arguments so the bound is sharp in this case.

4.1 What is the ultimate generalization?

The results in Sections 1–4 have a marked similarity; it is natural to try to derive a
common generalization. In all cases one is “multiplying something” by an associa-
tive product (the one case where things went wrong for the A2 building of Fig. 5,
it turns out the product isn’t associative). This suggests random walk on a semi-
group as a possible general setting. Let X be a semigroup and wx a probability on
X . Let ρ be an ideal in X (so xc ∈ ρ for all x ∈ X , cερ). Then generate a random
walk by repeatedly choosing elements from {wx} and multiplying. While there is
some general theory for these random walks [53] [20], they are too general to hope
that results such as real eigenvalues go through. Indeed, any Markov chain on a
set S can be represented as a random walk on the set of all functions from S to S.

Ken Brown [12] has shown that results of Sections 1–4 above and many others
are captured by semigroups which have all elements idempotent (x2 = x) and
further satisfy the cancellation property xyx = xy for all x, y. These are called

Documenta Mathematica · Extra Volume ICM 1998 · I · 187–204



198 Persi Diaconis

“left regular bands” in the semigroup business. Brown’s proof introduces the
semigroup algebra and studies its representations. The irreducible representations
of a left regular band turn out to be one-dimensional, and this leads to a complete
description of the eigenvalues and multiplicities. The coupling bound had been
carried out earlier. [13]

Are these semigroup walks the ultimate generalization? It seems too early to
tell. Further, the tools available for hyperplane, building, and semigroup walks
are still not sharp enough to prove the cutoff phenomenon as in Theorems 1.1 and
2.2. These seem to need the more refined setting of the descent algebra. There is
much yet to understand, but the above developments give a flavor of some exciting
mathematics in progress.

5 Topics not covered

The results in Sections 1–5 show the developments of a single theme. There
are many other themes that have led to exciting developments. This
brief section gives pointers to the literature. It may be supplemented
by browsing through the preprint service for Monte Carlo Markov chains:
http://www.stats.bris.ac.uk/˜maspb/mcmc. Throughout, X is a finite set,
K(x, y) is a stochastic matrix, and π is the stationary distribution.

5.1 Coupling

Coupling techniques are available in some generality. In principle there is a maxi-
mal couping which is sharp in the sense the ‖K l−π‖ = P{T > l} for l = 1, 2, 3, · · · .
These are usually impossible to find. At present, finding useful couplings is an art.
Lindvall [48] is a book-length introduction to coupling. Examples can be found
in Aldous [1] and in [16]. Recently, couplings have been used to solve extremely
tough problems. Finally, the coupling from the past method of Propp-Wilson [60]
has been used to allow exact generation for several distributions of interest. There
is a useful bound on the spectral gap given a coupling bound [43], [2]. All of this
said, it is still quite difficult to generate useful bounds for many chains of inter-
est using coupling. This is why the geometric theory of Markov chains has been
actively developed.

5.2 The geometric theory of Markov chains

Suppose that the underlying chain is reversible: π(x)K(x, y) = π(y)K(y, x) for
all x, y. Form a graph with vertex set X and an undirected edge from x to y if
K(x, y) > 0. The geometric theory relates geometric properties of this graph such
as diameter, volume growth and various measures of bottlenecks (curvature) to
the convergence rates of the chain. This borrows tools from spectral geometry and
PDE such as the following inequalities

Poincaré, Cheeger, Nash, Sobolev, Log Sobolev.
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Useful introductions to these ideas with many examples may be found in [5], [56],
[58]. Along with others, I have written about these things in [35], [27], [29], [30].
Expositions in graph theoretic language appear in [10][15]. The computer science
community has also written about such geometric bounds with [49], [46] being
surveys with extensive references.

The theory has been adapted to nonreversible chains [38][29]. Here is a simple
example which illustrates the geometric tools. Consider X = Sn all permutations.
Let n be odd. Let S = {(1, 2), (1, 2, · · · , n)}: A transposition and an n- cycle.

DefineK(σ, η) =

{

1
2 if ησ−1 ∈ S

0
. This is the Markov chain described informally

as “either transpose the top two cards or move the top card to the bottom.” This
simple chain should be easy to analyze , but no coupling bound is known. The
results show that there are universal constants A1, A,B such that

Ae−Bl/n3 logn ≤ ‖K l − π‖ ≤ Ae−Bl/n3 log n

Roughly, this says order n3 logn shuffles suffice. When n = 52, n3 logn is more
than half a million. Thus, this shuffling scheme is much slower than “top to
random.” Here is a brief outline of the argument:

Let L2 = {f : X → R with (f, g) =
∑

x f(x)g(x)π(x)}. For this example

π(x) = 1
n! . Let K operate linearly on L2 by Kf(x) =

∑

y

K(x, y)f(y). If K,π were

reversible, K would be self-adjoint. In the present example, K is not self-adjoint.
We first symmetrize K, forming K̃ = KK∗. This is a self-adjoint operator with
a simple description: Set T = {(1, 2)(1 · · ·n)−1, (1 · · ·n)(1, 2)}. Then K̃(σ, σ) =
1
2 , K̃(σ, ζ) = 1

4 if ζσ−1εT, K̂(σ, ζ) = 0 otherwise.

The eigenvalues β̃i of K̃ can be characterized through the quadratic form
Ẽ(f, g) =< (I − K̃)f, g >. As shown in [29], Section 2, convergence rates for the
original chain K can be expressed in terms of β̃.

‖K l − π‖2 ≤ 1

4

n!−1
∑

β=1

β̃2l

Here β̃0 = 1 does not appear in the sum.

Finally, one can get good bounds on the eigenvalues β̃i by comparison with

a third chain: random transpositions. ˜̃K(σ, ζ) =
1

n
if σ = ζ, 2/n2 if σζ−1 is a

transposition and zero otherwise.

For this third chain, a formula for the eigenvalues and their multiplicities is avail-

able using character theory [33]. To compare K̃ and ˜̃K one shows ˜̃E ≤ An2Ẽ
for universal A. This in turn is accomplished by writing (1, 2)(1, · · · , n)−1 and
(1 · · ·n)(1, 2) in terms of transpositions. Many examples of this sort appear in
[25]. Details for the present example can be found in [29], Section 2.
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The argument sketched above shows the interactions between probability,
geometry, group theory, and PDE. More sophisticated examples appear in [37],
[47], [55].

5.3 General state spaces

I have principally been involved with bounding Markov chains on finite state
spaces. There has also been much work on general state spaces. At present
writing very little of this is quantitative and what is available is often too crude to
be useful to practitioners. Meyn and Tweedie [51] is a book-length development of
the asymptotic theory, and Rosenthal [54] is a recent example of the quantitative
theory with references to related work.

5.4 Some open problems

The present article does not do justice to perhaps the most exciting develop-
ment; the infinite variety of tricks and techniques that practitioners develop to
give believable answers in practical problems. Even the most basic techniques in
widespread use—the Metropolis algorithm [32] and the Gibbs sampler are beyond
current theoretical understanding. There has been spectacular progress in special
cases such as the Ising model (work of Stroock-Zegarlinski, Martinelli, Schoneman,
and others). However, the following kind of problem is completely open: On the
symmetric group consider π(σ) = Z(θ)θd(σ,σ0). Here 0 < θ ≤ 1, d is a metric on
permutations such as

∑

|σ0(i)− σ(i)|, σ0 is a fixed, known permutation, and Z is
a normalization factor. The problem is to generate from π. One simple method:
Use the Metropolis algorithm with base chain random transpositions. Analysis of
the time to stationarity is beyond theory at present writing. It seems natural to
conjecture that order n logn steps are necessary and suffice to reach stationarity.
See [21] for such a result for a special choice of metric.

In a similar vein; trying to make mathematical sense out of any widely used
Monte Carlo Markov chain procedure from umbrella sampling to hybrid Monte
Carlo offers very challenging mathematics problems.

5.5 More open problems.

Section 5.2 showed how to bound the rate of convergence of a non-reversible chain
in terms of the eigenvalues of its multiplicative reversibalization. These in turn
were bounded by comparison with a random transpositions chain. Comparison
only works for reversible chains. The problem is, find a way of using the explicit
eigenvalues of the chains in Sections 2-4 above. Here are three explicit questions.
First, is there any way of using the eigenvalues to derive explicit bounds on total
variation. There are useful bounds for reversible chains [35]. Second, can one relate
the eigenvalues of a non-reversible chain K to the eigenvalues of its multiplicative
reversibilitization? For example, for random to top, the reversibilization becomes
random to random. For riffle shuffles, the reversibilization becomes ’remove a
random subset and shuffle it back at random.’ This is a natural model of traffic
where two lanes merge into one and then split into two. Third, in the hyperplane
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setting of Section 3 a local walk can be defined on the chambers. Choose a weight
wi for each hyperplane. From a region C choose one of its bounding hyperplanes
with probability proportional to its weight and reflect to the adjacent chamber.
This gives a reversible Markov chain with stationary distribution proportional to
the sum of the weights of hyperplanes bounding a chamber. Such walks are used
to generate random tilings and elsewhere. Is there any way to use the known
eigenvalues of the chamber walks of Section 3 to analyze the local walks? These
questions go through as stated for buildings.
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