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Some Recent Transcendental Techniques 
in Algebraic and Complex Geometry* 

Yum-Töng Siu 

Abstract 

This article discusses the recent transcendental techniques used in the 
proofs of the following three conjectures. (1) The plurigenera of a compact 
projective algebraic manifold are invariant under holomorphic deformation. 
(2) There exists no smooth Leviflat hypersurface in the complex projective 
plane. (3) A generic hypersurface of sufficiently high degree in the complex 
projective space is hyperbolic in the sense that there is no nonconstant holo
morphic map from the complex Euclidean line to it. 
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1. Introduction 
Since the use of function theory in the study of algebraic curves as Riemann 

surfaces about two hundred years ago, transcendental methods such as harmonic 
forms in Hodge theory and curvature in the theory of Chern-Weil have been very-
important tools in complex algebraic geometry. Since the nineteen sixties very-
powerful techniques in the estimates of 3, especially L2 estimates and regular
ity techniques, have been extensively developed by C. B. Morrey, J. J . Kohn, 
L. Hörmander, et al. (To avoid too lengthy a bibliography here, we refer to 
[2],[4],[7],[10],[15],[16],[18] for references not listed here.) During the last two decades 
these new transcendental techniques have been increasingly used in complex alge
braic geometry. The most noteworthy among them is J. J. Kohn's method of mul
tiplier ideals for 3 estimates [7] which holds the promise of applicability to general 
partial differential equations and global geometry. Nadel [11] introduced multiplier 
ideal sheaves dual to Kohn's . A number of longstanding problems in algebraic and 
complex geometry hi therto beyond the reach of known methods have been solved by 
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the new techniques of 3 estimates. On the other hand, demands of geometric appli
cations motivate new approaches to 3 estimates. We will discuss here some recent 
results in the following three topics in algebraic and complex geometry obtained by 
the new transcendental methods. (1) Invariance of plurigenera. (2) Nonexistence 
of smooth Levi-flat hypersurface in P 2 . (3) Hyperbolicity of generic hypersurface 
of high degree in P n . Though topic (3) is only peripherally linked to 3 estimates, a 
long outstanding problem there is solved by some recent transcendental techniques. 

2. Invariance of plurigenera 
Let Ar = {t £ C | \t\ < r} and A = Ai. Denote by Ky the canonical line 

bundle of a complex manifold Y. The m-genus of a compact complex manifold 
X is the complex dimension of Y (X,mKx). By Hodge theory the 1-genus of a 
compact Kahler manifold is a topological invariant and therefore is invariant under 
holomorphic deformation. For the general m-genus there is the following conjecture 
on its invariance under holomorphic deformation for a compact Kahler manifold. 

Conjecture 2.1 (on Deformational Invariance of Plurigenera for Kahler Man
ifolds). Let n : X —t A be a holomorphic family of compact Kahler manifolds with 
fiber Xt. Then for any positive integer m the complex dimension of Y (Xt,mKxt) 
is independent of t for t £ A. 

Conjecture (2.1) has been verified in [20] when X is a family of compact 
projective algebraic manifolds. 

Theorem 2.2 [20]. Let n : X —t A be a holomorphic family of compact 
complex projective algebraic manifolds. Then for any integer m > 1 the complex 
dimension of Y (Xt,m Kxt ) is independent of t for t £ A. 

The main techniques to solve the problem were first introduced in [17] where 
for technical reasons the assumption of each fiber being of general type is added. 
Because of the upper semicontinuity of dime F (Xt, m Kxt ) , the conjecture is equiv
alent to extending every element of F (Xt, m Kxt) to F (X, m Kx). We can assume 
t = 0. The idea of the main techniques stemmed from the following naive motiva
tion. If one could write an element s^ of F (XQ, m Kx0) as a sum of terms, each 
of which is the product of an element «W of Y (XQ,Kx0) and an element s*™-1) 
of F (XQ, (m — 1) Kx0), then one can extend s^ to an element of F (X, m, Kx) by-
induction on TO. Of course, in general it is clearly impossible to so express s^ as a 
sum of such products. However, one could successfully implement a modified form 
of this naive motivation, in which s A is 0nly a local holomorphic section and s*™-1) 
is an element of F (X0, (m — 1) Kx0 + E) instead of F (X0, (m — 1) Kx0), where E 
is a sufficiently ample line bundle on X independent of ro. The implementation of 
the modified form depends on the following two ingredients. 

Proposition 2.3 (Global Generation of Multiplier Ideal Sheaves). Let L be a 
holomorphic line bundle over an n-dimensional compact complex manifold Y with a 
Hermitian metric which is locally of the form e - 5 with £ plurisubharmonic Let 1^ 
be the multiplier ideal sheaf of the Hermitian metric e A (i.e., the sheaf consisting 
of all holomorphic function germs f with \f\" e A locally integrable). Let E be an 
ample holomorphic line bundle over Y such that for every point P of Y there are a 
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finite number of elements ofY(Y,E) which all vanish to order at least n + 1 at P 
and which do not simultaneously vanish outside P. Then Y(Y,1^ ® (L + E + Ay)) 
generates 1^ ® (L + E + Ay) at every point ofY. 

Proposition 2.4 (Extension Theorem of Ohsawa-Takegoshi Type). Let 7 : 
Y —t A be a projective algebraic family of compact complex manifolds. Let Y0 = 
7_ 1(0) and let n be the complex dimension ofY0. Let L be a holomorphic line bundle 
with a Hermitian metric erx with \ plurisubharmonic Then for 0 < r < 1 there 
exists a positive constant Ar with the following property. For any holomorphic 
L-valued n-form f on Y0 with fy | / | 2 e _ x < 00, there exists a holomorphic L-

valued (n + ï)-form f on 7 _ 1 (A r ) such that f\y0 = / A 7*(A) at points of Y0 and 
!Y\f?e-x<Ar.fYQ\f\2e-*. 

Locally expressing an element s^ of F (XQ, m Kx0) as a sum of terms, each 
of which is the product of a local holomorphic function «A a n c[ a n element s*™-1) 
of F (X0, (TO — 1) Kx0 + E) is precisely Proposition 2.3, necessitating the use of E. 

One constructs a metric of (TO — l)Kx + E by using the sum of absolute-
value squares of elements of F (X, (TO — 1) Kx + E) whose restrictions to X0 form 
a basis of F (X0, (TO — 1) Kx0 + E). Proposition 2.4 is now applicable to show the 
surjectivity of F (X, (TO — 1) Kx + E) —t Y (X0, (TO — 1) Kx0 + E) by induction on 
TO. To get rid of E, for a sufficiently large £ one takes the £-th power of an element 
of F (Xo, TO Kx0 ) and multiplies it by an element of F (X, E) and then takes the £-th 
root of the absolute value after its extension. This process, together with Holder's 
inequality, is used to produce a metric of (TO — l)Kx which we can use in the appli
cation of Proposition 2.4 to get the surjectivity of F (X,mKx) —ï Y (X0,mKx0). 
The assumption of general type facilitates the last technical step of getting rid of 
E by writing aKx = E + D for some sufficiently large integer a and an effective 
divisor D. 

Kawamata [6] translated the argument of [17] to a purely algebraic geometric 
setting and Nakayama [12] explored generalizations including results concerning 
uniTO-s-oo ^ log dime F (Xt, m Kxt + A) as a function of t. The case of non general 
type necessitates letting £, which is used in taking the power and the root, go to 
infinity. One has to control the estimates in the limiting process. 

Tsuji put on the web a preprint on the deformational invariance of the pluri
genera for manifolds not necessarily of general type [26], in which, besides the tech
niques of [17], he uses his theory of analytic Zariski decomposition and generalized 
Bergman kernels. Tsuji's approach of generalized Bergman kernels naturally and 
elegantly reduces the problem of the deformational invariance of the plurigenera to 
a growth estimate on the generalized Bergman kernels. Unfortunately this crucial 
estimate is lacking and seems unlikely to be establishable, as explained in [20]. 

In [20] a metric as singular as possible is introduced for the limiting process, 
which, together with an estimation technique using the concavity of the logarithmic 
function, successfully removes the technical assumption of general type in [17]. 

The deformational invariance of the plurigenera for Kahler manifolds is still 
open. Only known results on the Kahler case are due to Levine's [9] with the 
assumption of some pluricanonical section with nonsingular divisor (or only mild 
singularities). To generalize the methods of [17] and [20] to the Kahler case, one 
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possibility is to use the "absolute value" of a holomorphic line bundle constructed 
from the Kahler metric, because in the key argument only the absolute value of the 
constructed holomorphic section is used and not the section itself. There is still no 
method of implementing this possibility. 

3. Nonexistence of smooth Levi-Flat hypersurface 
in P 2 

The problem of the nonexistence of smooth Levi-flat hypersurface in P 2 has its 
origin in dynamical systems in P 2 (see [8]). In terms of 3 estimates, its significance 
is that it gives a natural geometric setting for the understanding of 3 regularity for 
domains with Levi-flat boundary. The 3 regularity problem for a relatively compact 
domain 0 with smooth boundary 90 in a complex manifold is to find a solution u 
on 0, smooth up to 90 , to the equation 3u = g with a given 9-closed (0, l)-form g 
on 0, smooth up to of 90 . Global regularity is said to hold for 0 if regularity holds 
for the particular solution u, known as the Kohn solution, which is orthogonal to 
all the L2 holomorphic functions on 0. The problem of global regularity has been 
very extensively studied in the past couple of decades (see bibliographies in [2],[7]). 
Global regularity holds for strictly pseudoconvex domains and, more generally, for 
weakly pseudoconvex domains whose boundary points are all of finite type. Finite 
type means that local complex-analytic curves touch the boundary only to bounded 
finite (normalized) order. Global regularity holds also for weakly pseudoconvex do
mains defined by global smooth weakly plurisubharmonic functions. On the other 
hand, worm domains are counter-examples for global regularity for general weakly 
pseudoconvex domains [2]. Though the nonexistence of smooth Levi-flat hypersur
face in P 2 is connected with the regularity of any one solution of the 9-equation 
rather than the particular Kohn solution, its proof ushers in a new approach of 
using vector fields to obtain 9 regularity for domains with Levi-flat boundary. The 
following solution of the Levi-flat hypersurface problem was given in [21]. 

Theo rem 3.1 [21]. Let q > 8. Then there exists no Cq Levi-flat real hyper
surface M in P 2 . 

The nonexistence of real-analytic Levi-flat hypersurface in P 3 was proved by 
Lins-Neto [8]. Ohsawa [14] treated the nonexistence of real-analytic Levi-flat hy
persurface in P 2 (some points in the argument there not yet complete). The nonex
istence of smooth Levi-flat hypersurface in P 3 was proved in [19]. The real-analytic 
case is completely different in nature from the smooth case, because the structure is 
automatically extendible to a neighborhood for the real-analytic case. Nonexistence 
in P 2 implies nonexistence in P n (n > 2) by slicing with a generic linear P 2 . 

The following argument reduces the problem to a 9 regularity question. Sup
pose M exists. We seek a contradiction from the positivity of the (l,0)-normal 
bundle NM'-J of the Levi-flat hypersurface M. The curvature 9 of NM'J with the 
metric induced from the Fubini-Study metric is positive, because a quotient bundle 
cannot be less positive. On the other hand, M is the zero-set of a smooth R-valued 
function / M on P 2 with d$M nowhere zero on M. Evaluation by dfM shows that 
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NMp is smoothly trivial and 9 must be d-exact on M, which means that 9 = da 
for some smooth real 1-form a on M. Decompose a = a^1'0^ + a^0'1^ into its (1,0) 
and (0,1) components. If a^0'1^ = 9{A for some smooth function tp on M, then 
9 = \f^ldb3b (2Im^>). At a point of M where Im^> assumes its maximum, the 
positivity of 9 along the holomorphic foliation is contradicted. The problem is thus 
reduced to solving the 9& equation on M with regularity. By applying the Mayer-
Vietoris sequence to P 2 — M = U\ U t/2 and using the vanishing of A 2 ( P 2 , ö p 2 ) , 
the problem is reduced to whether, for any 9-closed (0, l)-form g on Uj smooth up 
to dUj, the equation 3u = g can be solved on Uj with u smooth up to dUj. 

The usual approach to 9 regularity is to use the Bochner-Kodaira formula 
with boundary \\3g\H + \\5*g\\l = / 9 ? (£,§Ag) + \\Vg\\n + (QE,g/\g)n (with g 
being a smooth A-valued (n, l)-form in the domain of 9*), to solve the equation 
with L2 estimates and then apply differential operators, integration by parts, and 
commutation relations to prove regularity. Here n = dime 0, || • \\Q is the L2 

norm over 0, 9* is the adjoint of 9, V means covariant differentiation in the (0,1)-
direction, £ is the Levi form of 90 , and QE is the curvature form of the Hermitian 
holomorphic line bundle E (which is usually chosen to be trivial). 

In our new approach to get 9 regularity for the Levi-flat domain 0 in P 2 

the use of holomorphic vector fields compensates for the complete lack of strict 
positivity for the Levi form of the boundary. We use a new norm to derive the 
Bochner-Kodaira formula with boundary. We choose a vector field £ on P 2 which 
generates biholomorphisms preserving the Fubini-Study metric. The new norm is 
the L2 norm L2

m(Q,t;) for Lie derivatives (£ie^)J g along £ for order j < m on 0 
for (0, l)-form g. Since £ generates metric-preserving biholomorphisms, the formal 
adjoint of 9 with respect to L2

7l(0,£) agrees with the one with respect to usual 
L2. One usual difficulty with regularity is the error terms from the commutation of 
differential operators with 9 and 9*. One advantage of using £ie^ is that there are 
no error terms from its commutation with 9 and 9*. 

There are two technical problems. One is how to establish, for such a norm, the 
Bochner-Kodaira formula with boundary. The other is that appropriate regularity 
for a solution of the 9 equation with finite L2

n(0,£) norm can be obtained only at 
points where the real and imaginary parts of £ are not both tangential to 90 . We 
handle the first problem as follows. We prove that, if g belongs to the domain of 
the adjoint of 9 with respect to L2

m(Q,t;), then (ûie^f g belongs to the domain of 
the adjoint of 9 with respect to the usual L2 norm on 0 for j < TO. The formula 
for the new norm is simply the sum, over 0 < j < TO, of such a formula for the 
usual L2 norm on 0 for (£ie^)J g. The proof for (£ie^)J g to belong to the domain 
of the adjoint of 9 with respect to the usual L2 norm on 0 consists of two steps. 
One shows that this is locally true at points where £ is not tangential to 90 . Then 
one uses a removable singularity argument to handle the other points when £ has 
been chosen generic enough. For the second problem, to handle the other points 
for a generic £, we use the foliation of 9 0 by local complex-analytic curves and the 
generalized Cauchy integral formula along the local complex-analytic curves. 

file:////3g/H
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4. Hyperbolicity of generic hypersurface of high 
degree in Pn 

A complex manifold X is hyperbolic if there exists no nonconstant holomorphic 
map C —¥ X. For the last few decades the study of hyperbolicity has been focussed 
on hypersurfaces and their complements in two important settings: (1) inside an 
abelian variety and (2) inside P n . In the general setting hyperbolicity is conjectured 
to be linked to the positivity of canonical line bundle in the following formulation. 

Conjecture 4.1 (Conjecture of Green-Griffiths). In a compact algebraic man
ifold X of general type (or with positive canonical line bundle) there exists a proper 
subvariety Y containing the images of all nonconstant holomorphic maps C —¥ X. 

The theory for the setting inside an abelian variety is very well developed (see 
[16],[18] for references). The Zariski closure of any holomorphic map from C to 
an abelian variety A is the translate of an abelian subvariety of A. In particular, 
a subvariety of an abelian variety A which does not contain any translate of an 
abelian subvariety of A is hyperbolic. The defect of an ample divisor in an abelian 
variety is zero. In particular, the complement of an ample divisor in an abelian 
variety is hyperbolic. 

Except those motivated by methods of number theory due to McQuillan, prac
tically all the major techniques for problems related to hyperbolicity in the setting 
of abelian varieties are due to Bloch [1] who introduced the use of holomorphic jet 
differentials and differential equations in conjunction with the jet differentials. In
vestigations on problems related to hyperbolicity in the setting of abelian varieties 
have essentially been completed. Only technical details such as getting an optimal 
lower bound for kn in Theorem 4.2 below remain open. Theorem 4.2 (proved in 
Addendum of [24]) was added to [24] in response to a difficulty in the proof of 
Lemma 2 of the original paper [24] pointed out in [13]. The difficulty resulted from 
an attempt to use semi-continuity of cohomology groups in deformations to avoid 
employing Bloch's technique from [1] which involves the uniqueness part of the fun
damental theorem of ordinary differential equations. Putting back Bloch's technique 
removes the difficulty and at the same time improves the zero defect statement in 
[24] to Theorem 4.2 on the second main theorem with truncated multiplicity. 

Theorem 4.2 (Addendum, [24]). Let D be an ample divisor of an abelian 
variety A of complex dimension n and let ko = 0, A = 1, and A+i = A + 
gn-f-i ^ £ _|_ j-jy £ p ( \ < £ <. n). Then for any holomorphic map f : C —¥ A 
whose image is not contained in any translate of D, the following second main the
orem with truncated multiplicity holds: m(r, f, D) + (N(r, f, D) — Nkn (r, f, Dj) = 
0(logT(r,f,D) + logr) for r outside some set whose measure with respect to * 
is finite. Here T(r,f,D), m(r,f,D), N(r,f,D), Nkn(r,f,D) are respectively the 
characteristic, proximity, counting functions, and truncated counting functions. 

For the setting inside P n there is the following outstanding conjecture. 
Conjecture 4.3 (Kobayashi's Conjecture), (a) The complement in P n of a 

generic hypersurface of degree at least 2n + 1 is hyperbolic, (b) A generic hypersur
face of degree at least 2n — 1 in P n is hyperbolic for n > 3. 

For Conjecture 4.3(a) the complement in P 2 of a generic curve of sufficiently 
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high degree is known to be hyperbolic [23]. For Conjecture 4.3(b) a generic surface of 
degree > 36 in P 3 is known to be hyperbolic [10]. The degree bound is lowered to 21 
in [4]. There are some constructions of examples of smooth hyperbolic hypersurfaces 
in P n (see [15]). The hyperbolicity result we want to discuss here is the following. 

Theo rem 4.4 [22]. There exists a positive integer 8n such that a generic 
hypersurface in P n of degree > 8n is hyperbolic. 

We sketch its proof here. A central role will be played by jet differentials which 
we now define. A Ajet differential on a complex manifold X with local coordinates 
#!,••• ,xn is locally a polynomial in dlXj (1 < £ < k, 1 < j < n). 

Lemma 4.5 (Lemma of Jet Differentials). / / a holomorphic jet differential u 
on a compact complex manifold X vanishes on an ample divisor of X andtp : C —¥ X 
is a holomorphic map, then ip*uj is identically zero on C. 

The intuitive reason for Lemma 4.5 is that C does not admit a metric (or not 
even a k-jet metric) with curvature bounded above by negative number. While a 
usual metric assigns a value to a tangent vector (which is a 1-jet), a Ajet metric 
assigns a value to a Ajet. A non identically zero ip*uj defines a Ajet metric |y*w|" 
on C which, even with some degeneracy, still gives a contradiction by its negative 
curvature. A rigorous proof of Lemma 4.5 depends on the logarithmic derivative 
lemma of Nevanlinna theory. A consequence of Lemma 4.5 is that the image of the 
Ajet dktp of any holomorphic map tp : C —¥ X satisfies the differential equation 
UJ = 0 on X. If there exist enough independent such UJ on X, then the system of all 
equations UJ = 0 does not admit any local solution curve and X is hyperbolic. 

In the setting of abelian varieties Bloch constructed jet differentials by com
paring meromorphic functions on the image and the target of a map with finite 
fibers. For a holomorphic map ip from C to an abelian variety A, let X be the 
Zariski closure of the image of ip in A and X be the Zariski closure of (dkip)(C) 
in Jk(A) = A x Cnk. Here Jk() means the space of Ajets. Let ak : X -t Cnk 

be induced by the natural projection Jk(A) = A x Cnk —¥ Cnk which forgets the 
position and keeps the differentials. Let r : Jk(X) —¥ X be the natural projection. 
Let F be a meromorphic function on X whose pole-set is some ample divisor D. 
Suppose ak : X —t Cnk is generically finite. Let xi,--- ,xn be the coordinates of 
C". Then F o r belongs to a finite extension of the rational function field of Cnk and 
there exist polynomials Pj (0 < j < p) with constant coefficients in the variables 
dlxv (1 < £ < k, 1 < v < n) such that Tfj=o(akPj)(T*F)J = ° o n x a n d alpv i s 

not identically zero on X. The equation forces the holomorphic jet differential Pp 

on X to vanish on the ample divisor r - 1 (D). The assumption of generical finiteness 
of ak is tied to the translational invariance of X. 

The idea of our method of construction of holomorphic jet differentials on a 
generic hypersurface X in P n defined of by a polynomial / of degree ö is to use 
the theorem of Riemann-Roch and the lower bound of negativity of jet differential 
bundles of X. The theorem of Riemann-Roch was first used by Green-Griffiths 
to obtain holomorphic jet differentials and is applicable only for surfaces where 
the higher cohomology groups could be easily handled. We can handle the higher 
cohomology groups in our higher dimensional case because of the lower bound of 
negativity of jet differential bundles of X. Since the twisted cohomology groups 
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of P n comes from counting the number of monomials, in the actual proof direct 
counting of monomials is used. Let xi,--- ,xn (respectively ZQ,--- ,zn) be the 
inhomogeneous (respectively homogeneous) coordinates of P n . Let Q be a non 
identically zero polynomial of degree TOO in xi, • • • ,xn and of homogeneous weight 
TO in (Vxt (1 < j < n — 1, 1 < £ < n) with the weight of d?xi equal to j . If 
TOO + 2TO < ö, then Q is not identically zero on J„_i(X). By counting the number 
of coefficients of Q and the number of equations needed for the jet differential on 
X defined by Q to vanish on an ample divisor in X of high degree defined by 
a polynomial g = 0 in P n and using / = df = • • • = dn^1f = 0 to eliminate 
one coordinate and its differentials, we obtain a jet differential — on X which is 

9 

holomorphic and vanishes on an ample divisor of high degree. 
Propos i t ion 4.6 (Existence of Holomorphic Jet Differentials). IfO < 9o, 9, 9' < 

1 — e with n9o + 9 > n + e, then there exists an explicit A = A(n,e) > 0 such that for 
ö > A there exists a non identically zero Opn(-q)-valued holomorphic (n — l)-jet 
differential UJ on X of total weight m with q > öe and m < öe. 

To construct enough independent jet differentials, we use meromorphic vector 
fields of low pole order on the total space X of all hypersurfaces in P n of degree 
ö. The total space X is defined by / = X^eN»-)-1 \v\=s(XvZV °^ bidegree (Ö, 1) in 
P n XPJV, where N = (*+") - 1 , zv = ZQ° • • • ^ " , |I/| = I/0H Yvn, and N is the set 
of all nonnegative integers. Let ei = (0, • • • , 0,1, • • • ,0) £ N " + 1 with 1 in the Ath 
place. The (l,0)-twisted tangent bundle of X is globally generated by holomorphic 
sections of the forms L\z„\ -—-— ) — z„ [ «—-— ) ) and >A B.ijr- + V\, Lu7ß—, 

where À £ N " + 1 with |A| = Ö — 1 and L, Lß (respectively Bj) are homogeneous 
linear functions of {av} (respectively ZQ,--- ,zn) with Lß and Bj suitably chosen. 

We introduce the space JneIt (X) of vertical (n — l)-jets of X which is defined 
by / = df = • • • = dn^1f = 0 in ( Jn-i (Pn)) x Piv with the coefficients cxv of / 
regarded as constants when forming (Vf. By generalizing the above construction of 
vector fields on X to vector fields on J^ef\ (X), one obtains the following. 

Propos i t ion 4.7 (Existence of Low Pole-Order Vector Fields). There exist 
cn, c'n £ N such that the (cn,c'n)-twisted tangent bundle of the projectivization of 
jvert ^ - j j s globally generated. (To avoid considering the singularities of weighted 
projective spaces, one can interpret the statement by using functions which are poly
nomials of homogeneous weight along the fibers of J^eI\ (X).) 

For a generic fiber X of A" the constructed holomorphic (n — l)-jet differential 
UJ on X with vanishing order at least q on the infinity divisor can be extended 
holomorphically to û on all neighboring fibers with vanishing order at least q on 
the infinity divisor. We use vector fields vi,--- ,vp on J^5L (X) with fiber pole 
order low relative to q and take successive Lie derivatives £ieVl • • • £ieVpü whose 
restrictions to X give holomorphic jet differentials on X vanishing on an ample 
divisor of X. Because of the bound on the weight TO in the construction of UJ, 
for ö sufficiently large the jet differentials from the Lie derivatives are independent 
enough to eliminate the derivatives from the differential equations they define. As 
a result, one concludes that for some proper subvariety Y in X the image of any 
nonconstant holomorphic map from C to X is contained in Y. 

To get the full conclusion of hyperbolicity, for the constructed UJ one has to 
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control the vanishing order of the coefficients of the monomials of the differentials. 
For a generic X the construction process enables one to bound the vanishing order 
by ö2^v for some n > 0. For hyperbolicity one needs the better bound of ö1^*1 for 
some n > 0. To achieve it, one uses an appropriate embedding $ : P n —t P n of 
degree öi so that a generic hypersurface X of degree Ö := 5\Ô2 in P n can be extended 
to a hypersurface X of degree 82 in P„ . For this step the method of multiplier ideal 
sheaves from 9 estimates is used. We deform $ slightly and pull back the jet 
differential û constructed on X to get a differential w o n a slight deformation of X. 
When the image of the deformed $ has appropriate transversality to the zero set of 
the coefficients of û, an appropriate choice of öi and 62 gives the required bound on 
the vanishing order of the coefficients of UJ. This is at the expense of increasing the 
order of the jet differential from n — 1 to n — 1, which does not affect the argument. 
For this additional step in the argument the degree Ö must be a product. To remove 
this condition, one uses an embedding P n —t Pni

 x P»2 instead of $. 

The use and the construction of meromorphic vector fields on J%H[ (X) of 
low pole order along the fibers are motivated by Clemens's work [3] (with later 
generalizations and improvements by Ein [5] and Voisin [25]) on the nonexistence 
of regular rational and elliptic curves on generic hypersufaces of sufficiently high 
degree. 

There is no way yet to handle Conjecture 4.1. Additional assumptions such 
as Kx — niL > 0 or (Kx — mL) L" _ 1 > 0 for some large TO and L ample or very-
ample could facilitate the construction of holomorphic jet differentials vanishing on 
an ample divisor. One possibility to handle the question of enough independent jet 
differentials is to deform dkip of ip for each k > 1 separately and use techniques 
analogous to the twisted difference maps in the Vojta-Faltings proof of the Mordell 
conjecture and to McQuillan's separate rescaling of an entire holomorphic curve in 
each factor of a product of several copies of an abelian variety (see pp.504-505,[16]). 
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