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1. Introduction 

Mathematicians have various ways of judging the merits of new theorems and 
constructions. One very important criterion is esthetic — some developments just 
"feel" right, fitting, and beautiful. Just as in other venues where beauty or esthetics 
are discussed, taste plays an important role in this, but I think I am not alone in 
being especially excited when apparently different fields suddenly meet in a new 
concept, a new understanding. It is often of the sparks of such encounters that our 
esthetic enjoyment of mathematics is born. 

Another important criterion for according merit to some particular piece of 
mathematics is the extent to which it can be useful in applications; this is the cri
terion almost exclusively used by nonmathematicians. Mathematicians themselves 
do not discount the importance of mathematics for applications (after all, if we 
were producing only beauty, there wouldn't be as many teaching positions allotted 
to us), but often beauty is considered the real grail, with applicability second-best. 
Although we have come some way since Hardy's A Mathematician's Apology, we 
often still believe, maybe subliminally, that the two criteria are exclusive — that 
mathematics, when really close to applications, cannot be beautiful and is often 
even "dirty." 

I believe that this does not have to be so; a wish for beauty and simplicity, 
and a desire to bring different fields together, can equally well drive developments 
in "applicable" mathematics. 

When mapping out this presentation, I initially thought that I wanted to 
speak about wavelets, but I soon realized that other developments, aside from or 
beyond wavelets, should have their place here as well, and the scope was enlarged 
to add the "other phase space localization methods." Let me start by explaining 
what I mean by this. 

I shall use the term "phase space" when a special type of description is meant, 
involving several complementary variables. It is really a term that is appropriated 
here from physics. Imagine that you want to describe the motion of a planet in 
the solar system. A simple way to do this is to give, as a function of time, its posi
tion in space as well as its momentum. This is a phase space description: the two 
complementary variables are position and momentum, and you are describing the 
motion by a curve in phase space. "Phase space localization" is no problem here: 
both position and momentum can be measured, with arbitrarily high precision. 
("Phase space" is also used in a more general sense for other dynamical systems, 
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but that is a different story.) The situation is different if we look at a quantum 
system, say an electron in a solid state crystal, where measuring position and 
momentum both, simultaneously, with arbitrarily high precision, cannot be done: 
the uncertainty principle forbids it. Nevertheless, it is still very useful to think 
in terms of phase space, or momentum and position, when comparing a quantum 
system with its classical analog, for instance. This poses a problem to the theo
retical physicist: How to give a description, localized in phase space, despite the 
uncertainty principle? The mathematical model for a quantum mechanical particle 
assigns to a physical state a wave function ijj(x), where x is the position variable; 
an equivalent description is given by the Fourier transform V>(p), where p is in
terpreted as the momentum variable. Trying to "localize in phase space" amounts 
therefore to pinning down, as well as possible, a function's local properties and 
the local properties of its Fourier transform simultaneously — something analysts 
have been doing for decades under the name microlocalization. 

The same problem also crops up in electrical engineering, or in statistics: for 
instance, when trying to understand signals depending on time, such as a recorded 
audio signal, it is often useful to gauge its spectrum or frequency content, again 
modeled naturally by the Fourier transform of the data. But the make-up of such 
signals, in terms of their different frequency characteristics, seems to change with 
time. This is immediately clear when you think of a music score which, after all, 
tells the musician to play different notes (= frequencies) at different times. Once 
again, the intuitive notion of the mathematical tool needed involves localization in 
phase space, with the two complementary variables now in the form of time and 
frequency. 

Similarly, the computer scientist or engineer working with images (such as 
any image on your television screen) finds it helpful to break it up in smaller pieces 
(localization in space) and to look at the different spatial frequencies present in 
those pieces: again a phase space localization, now in two dimensions. 

Because similar problems occur in different disciplines, it is not surprising 
that the answers developed, often independently, have some similarity as well. 
What I want to describe here is how the synthesis of different points of view and 
different approaches has led in some cases to new developments, making the whole 
much more than the sum of its parts. 

Before embarking on a more detailed discussion, I would like to point out that 
this presentation will summarize essential contributions by many people besides 
myself. At the ICM '90 in Kyoto, both R. Coifman and Y. Meyer gave talks related 
to this one; at this ICM, related talks include those by W. Dahmen, D. Donoho, 
and V. Rokhlin. For a more complete list of important contributors, I refer the 
reader to the references and their references. I would like to take this opportunity 
to thank especially R. Coifman, A. Cohen, A. Grossmann, S. MaUat, and Y. Meyer, 
from all of whom I learned a lot. 
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2. Wavelets 

Most of this presentation will concern the development of wavelets, in particular 
of orthonormal wavelet bases, our growing understanding of their mathematical 
properties, and the waĵ s in which they can be applied. 

What are wavelets? To keep things simple, I shall restrict myself mostly to 
one dimension; with slight modifications, everything here can be generalized to 
higher dimensions (the few exceptions will be pointed out explicitly). I shall also 
almost systematically not try to give the most general conditions under which my 
statements hold, preferring to strip down the technicalities so as to lay bare the 
essential ideas. 

A typical example of a family of wavelets ißj^x) is given by 

i>Jik(x) = 2- 'Vty(2-4 - A) = 2 - " V ( ^ ^ ) , j , k £ Z , (1) 

where iß is a function with reasonable decay (say, |0>(œ)| < C(l + \x\)_^1+^)> 
with some smoothness (as measured by the decaj' of the Fourier transform iß, say 
1-0(01 < C(l + |£ |)" ( 1 + e )) , and such that J iß(x) = 0. For particular choices of 
iß, the ißj^ constitute a basis often orthonormal for L2(R); I shall mainly restrict 
myself to this case (although there are many interesting applications that use 
wavelets that are not linearly independent, which fall outside this framework). 
The first known example of a function iß for which the ißj^ give an orthonormal 
basis is the Haar wavelet, known since 1910, 

iß(x) 

(2) 

this does not satisfy the smoothness requirement above. Much smoother construc
tions were found only in the 1980s: Stromberg (1982), Meyer (1985), Battle (1987), 
Lemarié (1988), and Daubechies (1988) are some examples. The first construction, 
by Stromberg, did not attract a lot of attention at the time, although it later turned 
out to be very useful, not only for the harmonic analyst, but also computationally 
Meyer rediscovered that dilations and translations of a single smooth and decaying 
function, as in (1) above, could give rise to orthonormal bases for L2(M); in his 
example both iß and iß are C°° and iß has compact support. The constructions 
by Battle and Lemarié use iß E Cm, where m can be arbitrarily large but finite; 
moreover iß has exponential decay. (Stromberg's iß has similar properties.) These 
first ad hoc constructions became much more transparent with the development 
by Mallat (1989) and Meyer of multiresolution analysis, a framework that linked 
wavelets with approximation theory. Interestingly, this construction was triggered 
by analogies with tools in vision theory, with which Mallat was familiar. Multires
olution analysis was then used in Daubechies (1988) to construct a basis of type 
(1) where iß is still in Cm but compactly supported. 

1 if 
1 if 
0 otherwise 

0 < x < 1/2 
1/2 < x < 1 
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3. Mult ir esolution Analysis 

The multiresolution analysis framework views the expansion of / in L2(R) with 
respect to an orthonormal wavelet basis, 

as a decomposition of / into successive layers, each more detailed than the previous 
one. That is, we write 

where the spaces Vj constitute a nested sequence of approximation spaces, 

••• C V2 C Vi C Vo C Vii C V-2 C ••• 

n ^ = { o } • 
jez 

For fixed j , summing the terms in (3) over k gives exactly the layer to be peeled 
away from Pj-if := Projy._ l / to reach the coarser approximation Pjf := 

Pj-if = Pjf + E < ^ ' ^ > ^ • W 
k 

For the Haar basis, the corresponding spaces Vj are given by 

Vj = {/ G L2(M) ; /|[2ifc,22(/c+i)[ = constant for each k G Z}. 

For the constructions of Stromberg, Battle, and Lemarié, the multiresolution hi
erarchy consists of spaces of spline functions, 

Vj = {feL2(R);feCmand , 
/|[2J"fc,22(fc+i)[ — polynomial of degree m + 1, for each feGZ}. ^ ' 

Additional requirements are that the spaces Vj are all scaled versions of each other, 

feVj^f(y-)ev0 

(as is obviously the case in the examples above) and that the central space Vb 
is invariant under integer translation. This invariance follows automatically from 
the final requirement, that there exists a function 0 in Vb, commonly called the 
scaling function, such that the 0(. — k) = 2 -J/20(2 --7a; — k), k G Z, constitute an 
orthonormal basis for Vj. In the Haar basis case, cß(x) is taken to be X[oli[(^)5 ^n e 

characteristic function of [0,1[; in the spline examples, 0 is a spline function of the 
appropriate order and with exponential decay. The work of Lemarié (1993) and 
Auscher (1992) proves that any wavelet basis of type (1) is associated with such a 
multiresolution analysis, provided that iß has some smoothness and decay. (Note 
that this result does not completely translate to higher dimensions.) 
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These formulas consist of a convolution of the sequence Sj_i with h = (h*_n)ne% or 
g = (<7-n)nE2o followed by retaining only the even entries of the result. Schemati
cally, this is represented by 

(n) 
where the symbol [ö] stands for convolution with the sequence a, and 2 j is "dec
imation by a factor 2." 

The transition from the sequence (sj-ijTi)riez to the two sequences (sjtk)keZi 
(djtk)kez corresponds to a change of basis in V^-i, from {0j_i,n G Z} to 
{0i7,/c3'0j,A:; k G Z}. The inverse operation corresponds to the adjoint unitary oper
ator, and we have 

°j—l,n 2_^[hn-2kSjtk + 9n-2kdjik] (12) 

Each of the two terms in the right-hand side of (12) can be viewed as the result 
of first "upsampling by 2," i.e. taking the given sequence as the even entries of 
a new sequence in which all the odd entries are zero, followed by a convolution. 
Schematically, this becomes 

For the Haar basis one finds HQ l 
V2 

(13) 

hi, #o = -4= = —gi, with all other 
hni9n = 0 - The decomposition steps (9) and (10) then correspond to breaking up 
the sequence Sj_i into pairs, and replacing every pair of numbers by its average (a 
coarser level approximation, giving Sj) and the difference between the two numbers 
(the detail dj). The reconstruction (12) then adds the sum and difference to recover 
the first number, whereas a subtraction gives the second number in every pair. The 
resulting algorithm is fast: starting from a sequence SQ with N entries, we compute 
sums and differences for y pairs to obtain s\ and d±. The y entries in si give ^ 
pairs, for each of which we have another sum and difference to compute, and so 
on. The total number of computations is therefore 2~ + 2 ^ + • • • ~ 2N (where 
we have swept edge effect terms under the rug if N is not a power of 2, but they 
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don't matter here: their contribution to the complexity is 0(log N)). If we have 
K nonvanishing hn,gn instead of only 2, then the total number of computations 
is KN, still linear in N. This type of wavelet transform has therefore a lower 
complexity than the FFT, which uses O(NlogN) computations. 

5. What Do Wavelets Buy You? 

So we have a fast algorithm for a neat kind of basis, in which all basis functions 
are shifted and dilated versions of just one template (or a few templates, in some 
generalizations or in higher dimensions). Why should anyone care? In fact, sur
prisingly many people do care, and many fields have something to tell us about 
these wavelet bases. 

To harmonic analysts, wavelet bases are a convenient way to carry out a 
Littlewood-Paley (LP) decomposition. In a traditional LP decomposition of a func
tion / , one writes 

oo oo 

/ = £ Ajf = f0 +
 y£*jf , 

where the Fourier transform (Aj/)~(£) of each Ajf is nonvanishing only for, 
say, 23~l < |£| < 23+1. One way of obtaining such Ajf is to construct a smooth 
function w, supported on ^ < |£| < 2, such that, for 1 < |£| < 2, w(£t)-\-w(£>/2) = 1, 
and to define (Aj-/)~(£) = f(£)w{2~j€). T h e different Ajf decouple different 
frequency ranges of / ; yet, unlike the Fourier transform itself, they retain some 
spatial information. This information is sufficient, for instance, to characterize the 
Holder spaces Cs: even though it is impossible to characterize (i.e. give an "if and 
only if" condition) the Holder exponent of / by the decay of its Fourier transform, 
nevertheless decay conditions on the Ajf, as a function of their frequency range 
label j , permit such a characterization. More precisely, for any / G L°°, we have 

f eCs & sup 2js || Adf ||Lcc < oo . (14) 
j en 

Similarly, LP decompositions can be used for much more sophisticated estimates 
(Stein (1993), Frazier et al. (1990)). A wavelet decomposition carves up / likewise 
in dyadic frequency blocks, with Q-jf '.= ̂ f c < f,iß-jtk > iß-jtk corresponding to 
Ajf. This means that many achievements of LP decompositions have their mirror 
image in wavelet terms. For instance, if the wavelet iß and the scaling function 
0 are in Cr and have sufficiently rapid decay, then we have, for all s < r, a 
characterization of the Holder spaces similar to (14). Specifically, for / G L°°, 

f eCs & s u p 2 ^ s + ^ sup | < f,iß-jik > | < oo . (15) 
jGN fcez 

The similarity with (14) is obvious (the extra \ in the exponent is due to the 
normalization we chose for the ißjtk in (1)); more sophisticated estimates using LP-
type decompositions translate into wavelet estimates analogously. Wavelets then 
provide a way to write powerful techniques in harmonic analysis in a language 
that can also be read as an algorithm. On the other hand, their very convenient 
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orthogonality properties in L2 also lead to shortcuts in proofs in harmonic analysis 
(see e.g. Meyer (1990)). 

To electrical engineers, wavelet bases are a mathematical framework that 
links up with a filtering technique developed earlier, called subband filtering. Di
agram (11) is in fact the electrical engineering notation for a filter bank with two 
channels, one low pass (the transition Sj-i —> Sj) and one high pass ( S J - I —» dj); 
the downsampling makes this a critically downsampled filtering procedure, mean
ing that after the operation we end up with exactly as many entries as before. 
Diagram (13) then means that we have in fact a perfect reconstruction, critically 
downsampled 2-channel filter bank. The standard reference in electrical engineer
ing for such filter banks is Smith and Barnwell (1986); similar constructions also 
appear in Mintzer (1985) and Vetterli (1986). Before these perfect reconstruction 
filter banks, electrical engineers had constructed similar filter banks that were al
most perfect, in the sense that the reconstructed sequence is very close to the 
original. Such near-perfect filter banks are still designed and used for many appli
cations; giving up perfect reconstruction leads to more degrees of freedom in the 
design and, if things are clone right, to perceptually equally good results. 

All this was developed without any input from mathematicians, with the 
result that electrical engineers sometimes and understandably feel that the present 
popularity of wavelets gives a lot of "undeserved" credit to mathematicians for re
inventing the wheel while engineers were already driving cars. This view would be 
correct if there were nothing more to wavelets than the algorithm. The realization 
that the perfect reconstruction banks are linked to a rich underlying mathematical 
structure, associated with powerful and deep mathematical theorems is a different 
matter, however. Even for applications of interest to electrical engineering, this link 
has led to new applications that use the mathematical insights, and that would 
not have been developed from only the subbancl filtering concept (examples are 
Mallat and Hwang (1992), Wornell and Oppenheim (1992)). 

To the computer scientist or engineer interested in studying vision, the mul
tiresolution analysis framework, with its different levels of detail, is very remi
niscent of multiscale models in vision analysis, such as Witkin (1983), or in a 
more algorithmic version, the pyramids of Burt and Adelson (1983). (As men
tioned above, it was Mallat's background in vision theory that inspired him to 
re-interpret wavelet bases via the mathematical concept of multiresolution analy
sis.) Independently of and in parallel with the wavelet development, Adelson had in 
fact already switched from the (redundant) pyramid schemes to cascaded subband 
filtering for image analysis (see Adelson et al. (1987)). 

Approximation theorists also recognized familiar concepts in wavelet the
ory: the space Vj, with their varying degrees of resolution, are basic standard 
fare in approximation theory. The example in (5) of spline spaces Vj really stems 
from approximation theory (de Boor (1978)). Similarly, formulas (10) and (12) 
are reminiscent of subdivision schemes, a technique developed to generate smooth 
curves and surfaces (Cavaretta et al. (1991)), Dyn et al. (1987)). There is a "philo
sophical" difference between many theorems in approximation theory and, for in
stance, the way function spaces are characterized via wavelets. Wavelet coefficients 
< f^j.k > capture the difference between the successive approximations Pj-if 
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and Pjf, rather than studying / via the Pjf. Similarly, subdivision schemes typi
cally contain in their coarse-to-fine-formulas, only the first term in the right hand 
side of (12). Nevertheless, approximation theorists immediately recognized the 
kinship of wavelets, and are very active in the field now. 

Wavelet techniques have some similarity as well with the multipole algorithms 
developed by Rokhlin (1985) for fast numerical computations. (See also Rokhlin's 
presentation in this ICM.) In a multipole expansion, the quantity to be computed 
(such as, e.g., the total gravitational potential energy of a completely arbitrary 
distribution of a large number of particles) is taken apart into many contributions 
living on different scales; for many of them, a coarse scale description suffices. 
Moreover, the taking apart is done in a hierarchical way. All this results in a fast 
algorithm. The wavelet algorithms in Beylkin et al (1991) and subsequent work 
(e.g. Beylkin (1993)) work on the same principle as these fast multipole expansion 
techniques. 

Finally, and as promised, wavelets buy yuu a time-frequency decomposition: 
once a function / is decomposed as in (3), it is written as a superposition of 
building blocks, the wavelets 0j,/c, each of which is well localized in frequency (in 
a frequency band of width proportional to 2~3, i.e. 2~3a < |£| < 2~3 ß) and in 
time (around the position 23k, with a resolution proportional to k). Note that this 
means that high-frequency wavelets have very sharp time resolution, whereas low-
frequency wavelets are much more spread out in time but have sharp frequency 
resolution. A decomposition of this type is well suited to signals / that consist of 
short-lived high-frequency transients superposed on more placid longer-lived low-
frequency components. Many signals are of this type. But many more are realty 
more complicated, and require a battery of tools of which wavelets are only one; 
we shall come back to this later. 

6. Back to the Algorithm 

For many applications, the powerful mathematical properties of wavelets can be 
exploited only if the associated algorithm is truly efficient. We saw earlier that 
the total complexity of a decomposition into orthonormal wavelets is KN, if there 
are K nonvanishing hn,gn in the associated filters. However, many "natural" or
thonormal wavelet bases correspond to filters with infinitely many nonvanishing 
hn, ruining the complexity estimate. This is the case, for instance, if the Vj are 
taken to be spline spaces of higher order than 1. In this case, the most natural 
choice for the function 0, the translates (ß(x — n) of which should span all of Vb, 
would seem to be the B-spline function, obtained by convolving X[o,i] with itself 
fc — 1 times (for splines of order k). For this choice, the 0(z —??,) are not orthogonal, 
so that 0 needs to be replaced by an "orthogonalized" version, which is however 
now supported on all of M (with exponential decay), leading to infinitely many 
K £ 0. 

So how does one get MRA with finitely many nonvanishing hnl The answer 
lies in the filtering approach from electrical engineering. If one takes (9), (10), and 
(12) as the point of departure, rather than as a corollary of the MRA structure, 
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then one finds easily that the hn should satisfy 

X)hnhn+2k =ak,0 , (16) 
n 

while the gn can be chosen as 

9n = {-l)nh*_n+1 . 

Smith and Barnwell (1986) had found ways to construct finite sequences h that 
satisfy (16). Such sequences do not necessarily correspond to an L2-function 0 
such that (6) holds, however; necessary and sufficient conditions for this corre
spondence were found by Cohen (1990) and by Lawton (1991). If these conditions 
are satisfied, then there always exists an MRA associated with h. To obtain high 
approximation order for the MRA-ladder and smoothness, one needs to impose 
additional conditions on the sequence h, of the form 

^ ( - l ) n h n n z = 0 Z = 0 , . . . , L - 1 . (17) 
n 

Daubechies (1988) constructs such finite sequences h and proves that by this 
method one can obtain compactly supported 0, iß that are Ck, where k is ar
bitrarily large (but finite). These functions <fr(x), iß(x) are not given by an explicit 
analytic expression, although the Fourier transform of 0 can be written as an 
infinite product, 

oo 

kO=mI[rnQ(2-3t) , (18) 
j = i 

withmo(0 = 2 - V 2 5 ^ n h n e - ^ . 
One can use (6) to make a detailed study of their different, sometimes in

triguing, properties. For instance, it turns out that the Holder exponent of 0 in a 
point x in its support depends on the frequency of the digits 1 and 0 in the binary 
expansion of z, as shown in Daubechies and Lagarias (1992); this means that these 
0 have multifractal properties (Daubechies and Lagarias (1994); see also Jaffard 
(1994)). 

Although the wavelet bases constructed in Daubechies (1988) have been used 
in various applications, they are by no means ideal for all circumstances, and 
many other constructions have been carried out that improve on them in some 
respects, while giving up on other properties. For instance, one can give up some 
of the orthogonality in the constructions above, and construct a Riesz basis rather 
than an orthonormal basis of wavelets (together with the dual Riesz basis), as in 
Chui and Wang (1991), Chui and Wang (1992), Auscher (1989), or Cohen et al. 
(1992); this relaxing of orthonormality buys more smoothness and/or symmetry 
for the wavelets. Another useful construction restricts these wavelet bases to an 
interval while retaining their powerful mathematical properties (see e.g. Cohen et 
al. (1993), and Andersson et al. (1994)). Not all applications require absolutely 
that the filter h be finite; if rao, defined as in (18), can be written as the quotient of 
two trigonometric polynomials, then there still exist fast algorithms to implement 
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convolution with h, and such filters and wavelet bases have been proposed as well 
(Lemarié and Malgouyres (1989), Evangelista (1992), Herley and Vetterli (1993)) 
— in fact, the original construction by Stromberg (1982) falls into this class. 

7. Higher Dimensions 

So far, we have been working in one dimension only. There exist several pos
sible generalizations to higher dimensions. Usually they involve several wavelets 
0 1 , . . . ,ißK, and the wavelet basis is then given by the collection ißV,

k(x)2~3d/2ißn 

(2~3x — k), j G Z, k G Zd, n = 1, . . . ,K. The easiest construction starts from 
a one-dimensional multiresolution analysis, with scaling function 0 and wavelet 
iß, and uses these to build one scaling function $ and 2d — 1 wavelets \E/fc in d-
dimensions, by taking products of (ß(xk) and iß(xm). For d = 2, for instance, one 
takes $(x1,x2) = (ß(xx)cß(x2), ^1(x1,x2) = iß(x1)^(x2), ^2(x1,x2) = (ß(x1)iß(x2), 
\[ /3(x\,x2) = iß(xi)iß(x2). This corresponds to a two-dimensional multiresolution 
where the spaces Vj are tensor products Vj ® Vj, and the ^ ? £, k G Z2, n = 1,2,3, 
then exactly span Wj, the orthogonal complement of Vj on Vj_i. The higher-
dimensional \[/fc and $ inherit, of course, recursion relations similar to (6) and (7) 
from their one-dimensional progenitors, so that the algorithms remain basically 
as simple as in one dimension. There exist other, fancier constructions as well, 
with "nonseparable" higher-dimensional wavelets, possibly with a dilation matrix 
A replacing the simple scaling by 2, but the simple tensor product multiresolution 
analysis above is the most used. One can also introduce special bases of multidi
mensional wavelets, such as the divergence-free wavelet bases of Battle and Feder-
bush (1993) or Lemarié-Rieusset (1992), useful for decomposing divergence-free 
vector fields. 

In most of what follows, I will stick to the one-dimensional notation, but all 
statements (unless qualified) will be true for these d-dimensional wavelets as well. 

8. Mathematical Properties 

A first important property of wavelet bases is that they provide unconditional 
bases for many classical function spaces. A family of functions {ga',ct G A} is 
an unconditional basis for a Banach space B C 5" if it is a Schauder basis and 
there exists a criterion to decide whether / G B by using only the absolute values 
| < fi9a >\ia G A. Equivalently, the ga constitute an unconditional basis if, 
whenever YlaeA ccc9a G B, multiplying the coefficients ca with arbitrarily chosen 
ea = i l always leads to another element of B, i.e. J2aeA eaca9a G B. It turns out 
that the orthonormal wavelet bases (or more generally, Riesz bases of wavelets) 
give such unconditional bases for Lp (1 < p < 00), the Sobolev spaces Ws, the 
Besov spaces B^,s, the Holder spaces Cs, as well as for the Hardy space H1 and 
its dual BMO (see Meyer (1990)). For instance, (15) gives a characterization of 
/ G Cs, using only the |< f,ißj,k >\, if we know a priori that / G L°°. This last 
requirement can be dropped if we also impose that supfcGZ |< / , 00^ >| < 00; this 
then means that {00,/c", k G Z j u j ^ - j ^ ; k G Z, j G N} is an unconditional basis for 
the (inhomogeneous) Holder space Cs (provided 0 G Cr with r > s). 
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Intuitively speaking, wavelet expansions do so well, in such a variety of frame
works, because their smoothness allows them to adjust well to smooth functions 
(or to smooth portions of functions), their scaling properties allow them to "zoom 
in" on singularities, and their good spatial concentration allows them to handle 
decay well. 

It follows that wavelet expansions for a function / can converge in many 
different topologies (depending on which spaces / belongs to). They can converge 
in even other ways as well. For instance, if we restrict ourselves to an interval, 
and order the wavelet basis properly (exhausting every scale first before moving 
on to the next finer scale), then the truncated sums of the correspondingly or
dered wavelet expansions will converge in L1 on the interval. (L1 does not have 
unconditional bases, so some ordering is necessary.) When looking at pointwise 
convergence, one finds easily (provided 0 and iß satisfy a minimum of decay and 
smoothness conditions, as always) that the wavelet expansion of / converges in all 
points of continuity of / . It is also true that for L2-functions / , the wavelet expan
sion of / converges pointwise almost everywhere (more precisely: in every Lebesgue 
point of / ) . For compactly supported 0, this last point follows from standard har
monic analysis arguments once one realizes that supj £]fc |< fi<ßj,k >\\^jtk{^)\ is 
essentially a maximal function for / , bounded above (up to a constant factor) by 
the standard Hardy-Littlewood maximal function. The result is also true for less 
constrained 0 (Auscher (1989), Kelly et al. (1994)), and it carries over (as usual) 
to other Lp-spaces as well. 

9. Applications 

Among the many successful applications of wavelets, only a few can be presented 
here. Particularly attractive (at least to me) are those where the mathematical 
properties of wavelets play an essential role in their effectiveness. A first example 
was the matrix or operator compression in Beylkin et al. (1991). The matrices 
Aij they consider are finely sampled versions, Aij = K(ia,ja) of an integral 
kernel K(x,y) corresponding to a Calderón-Zygmund operator, i.e. K satisfies 
bounds of the type \K(x,y)\ < C\x - y\-\ \dxK(x,y) | + \dyK(x,y)\ < C\x-y\~2 

(with often similar bounds for higher order derivatives). For the matrix Aj j , this 
means that the matrix elements vary smoothly with i,j as long as (i,j) stays away 
from a region around the diagonal; near the diagonal wilder behavior is allowed. 
Replacing the sequence Aij by its wavelet coefficients (obtained by "filtering" in 
both horizontal and vertical directions, with the fast algorithms explained above) 
results in a new matrix in which the majority of entries are exceedingly small. 
Thresholding them by e (i.e. the entries smaller than e are replaced by 0) gives 
a sparse matrix, so that computing (a truncated version of) the action of A on 
a vector can be clone much faster. The beauty is that one can actually control 
the damage done by thresholding — not a trivial matter, since a large number of 
small errors can still add up to a sizeable total error. If the tresholding is done 
a little bit more carefully than by simple truncation (some sum rules need to be 
respected), then Beylkin, Coifman, and Rokhlin proved that the truncated matrix 
^tmnc obtained by thresholding and then returning, via the inverse algorithm, to 
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the "real world" from the "wavelet coefficient world," satisfies || A — A[runc ||< Ce1 

in L2-operator norm, with C, 7 independent of e and also independent of the size 
of the matrix. The proof essentially repeats the argument of the "T(l) theorem" 
by David and Journé (1984). 

The ort honor mality of wavelet bases, as well as their different scales, are 
exploited by Elliott and Majda (1994) in an application closer to physics. They 
use wavelets as a tool to generate random velocity fields that accurately model 
fractal, self-similar fields, important in turbulent diffusion. 

Applications to a very different field (although, strictly speaking, not of 
wavelet bases but of another type of wavelet representation) can be found in the 
work by Mallat and Hwang (1992). In one application, they seek to remove noise 
from very noisy images. This noise has particularly large effects on the fine scale 
wavelet coefficients, which also contain the information necessary to keep "sharp" 
edges in the image — discarding these corrupted fine scale coefficients altogether 
would result in a less noisy image, but it would also look blurred. Mallat and 
Hwang exploit the characterization of singularities given by the rate at which lo
cal wavelet coefficients decay as a function of scale, to sort out the chaff from the 
grain in the fine scale coefficients, leading to a restored denoised image with sharp 
edges. 

Yet a different set of applications is in the work of Donoho (1993). He also 
discusses denoising. The starting point is a function / , supposed to belong to a 
Banach space B (which describes the class of problems of interest in a particular 
application); / is known only through noisy samples or estimations. Suppose that 
(9a)aeA is an unconditional basis for B. Then the data for / can be translated 
into noisy estimates for the coefficients of the expansion of / into the ga. The 
denoising consists in a thresholded shrinking of these coefficients (all the ones 
below a threshold are set to zero, the ones above the threshold are multiplied with 
a nonzero coefficient < 1 depending on their size) and reconstruction. Donoho 
proves that if the ga constitute an unconditional basis for B, then the worst-case 
error for this method cannot be significantly larger than the worst-case error for 
any other method, however fancy. Because wavelet bases are unconditional bases 
for many function spaces, they provide therefore a near-optimal method for a large 
variety of frameworks. 

Wavelet bases are also, because of their adaptivity, a good tool to use in 
nonlinear approximation of e.g. piecewise smooth functions; see e.g. DeVore et al. 
(1992), Donoho (1993). Linear approximation theory discusses how well successive 
truncations of an expansion approach the desired function. For instance, if (gn)n^ 
is a basis for B, then linear approximation is concerned with the behavior, as a 
function of N, of distjg(/, E^r), where T.^ is the linear subspace Ejy = {/ = 
Yln=i cn9n\ cn G C}. In nonlinear approximation, the N-ih approximation of/ still 
involves N terms, but they need not correspond to the first N basis functions. That 
is, one studies distjg(/, SN), where SN = {/ = J2neifìN

 cn9n\ cn E C, #// ,TV = N}; 
SN is no longer a linear subspace of B. An example of how this affects things: if / 
is a piecewise Cs function with good decay, and possibly discontinuities between 
the pieces, and if we choose a wavelet basis (with (ß,iß G CT with r > s), then 
dist/,2 (/, EJV) ~ CN~X/2, but distL2 (/, SN) ~ CN~S: the nonlinear approximation 
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does not suffer from the presence of the discontinuities. In contrast, if one chooses 
a Fourier basis, one finds that both dist^2(/, £;v) and dist^2(/, Sjy) decay like 
TV-i/2. 

10. Shortcomings of Wavelets 

In spite of all their good qualities, wavelets are, of course, not the universal 
panacea. They are markedly inefficient for coherently oscillating components. 
Wavelet bases also suffer from being very translationally noninvariant, and no en
tirely satisfactory solution has been found, so far, to deal with boundary problems 
in higher dimensions for nonrectangular domains. Other recently developed har
monic analysis tools are much better at dealing with oscillations: wavelet packets 
and localized trigonometric bases. 

11. Wavelet Packets 

The algorithm that we sketched above for a decomposition into wavelets consists 
of concatenating diagram (11) several times, starting a new stage from the pre
ceding uSj" output. The "dj"-branches are left untouched. We could also choose 
to attach another splitting diagram (11) to the "dj"-branches; this still results in 
fast algorithms, corresponding to a decomposition into different functions, called 
wavelet packets. The wavelet bases we saw before are just one (extreme) example 
of wavelet packet bases. As explained before, the wavelet bases correspond to a 
Littlewoocl-Paley decomposition: in the frequency domain, V>j,fc(£) is essentially 
concentrated in and near the region 23-K < |£| < 2J+17r. When the extra splittings 
are introduced that lead to wavelet packets, they correspond to further splits of 
these frequency blocks. One can, for instance, choose to keep splitting the branch 
of the wavelet algorithm diagram that would normally have ended in the "rfj"; 
if we split j times, at every intermediate step splitting all the subbranches that 
have been sprouted from the dj-branch, then we will have subdivided the region 
237T < |£| < 2J+17T into 23 subregions. If we do this for all j > 0, we end up with 
wavelet packets that aU have the same "width," for their Fourier transforms as 
well as in "physical" space; these are therefore much closer to a standard win
dowed Fourier type basis than to the dyadic frequency decomposition given by 
wavelets. By choosing to split fewer times, one can generate a wide variety of 
wavelet packet bases that are intermediary between the "pure" wavelet bases and 
these Fourier-type wavelet packet bases. 

Among all these bases, one can adaptively choose the one that is most "effi
cient" for a given function / (meaning, coarsely speaking, that the decomposition 
into this basis is achieved by a few large coefficients that represent most of the 
L2-norm of / , with a small "tail" in the other coefficients) by basing the decision 
whether or not to split, at every step in the algorithm, on the results obtained 
for / . Detailed descriptions of these wavelet packet bases, first constructed by 
Coifman and Meyer, and of their mathematical properties and the associated al
gorithms can be found in Coifman et al. (1992), Coifman and Wickerhauser (1993), 
Wickerhauser (1994), and references therein. Note that when many splittings are 
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carried out, the carving up of the frequency domain is not really as "clean" as the 
description above indicates; see Coifman et al. (1992). 

12. Localized Trigonometric Bases 

Wavelet packet bases are already much better at dealing with oscillations than 
wavelets. Even better are the localized cosine or sine bases constructed by Coifman 
and Meyer (1991), related to the independently constructed overlapped cosine 
transforms of Malvar (1990). These are orthogonal bases of the type 

fKi(t) =wk(t)sm(nkjt) , 

where the functions wk are window functions, well localized in space (e.g., with 
compact support) but with possibly varying widths Wk, and the O^j arc a cor
responding discrete sequence of frequencies; in first approximation, the $1^,1 be
have like nl/Wk- More precisely, every wk(t) is supported on an interval [a*. — 
Éfc,a/c+i + efc+i], and is = 1 on the smaller interval [ak + Cfc,afc+i - Cfc+i]; bere 
Ave assume ••• < ak-i < ak < a/c+i < •••, with the 6j chosen so that, for 
all k, ak + ek < afc+i - efc+1. In the transition regions [ak - ekìak + e*.], the 
window functions Wk and wk-i must satisfy the complementarity requirement 
w2_1(x)-{-w2(x) = 1 as well as the symmetry condition Wk-i(ak — t) = iJük(ak + 0 
(for |t| < Ek). The width Wk is then defined as Wk = a^+i — a^, and the fkii are 
given by 

/*,!(*) = {2/Wkf'
2
Wk{t)sm[^{l + \){t - ak)} . 

It is quite surprising that the functions wkl and the frequencies £lk,l c a n be chosen 
in such a way that the fk,i are all smooth (even C°°) and nevertheless provide 
an orthonormal basis for L2(M). The construction is ingenious, but it doesn't use 
any modern techniques — this construction could have been carried out in the 
eighteenth century, and maybe the biggest surprise is that it wasn't. A remarkable 
feature of the construction is that neighboring window functions can be "merged," 
leading to the replacement of the fk}i and fk+1,1' by different functions fk,i"'-> 
together with the remaining (and untouched!) fUii(n < k or n > k +1) these then 
provide a different orthonormal basis. As in the case of wavelet packets, this choice 
between two options (to merge or not) can be exploited to construct a whole family 
of different bases, all "living" within one fast algorithm, so that the "best basis" 
can be chosen adaptively. See Coifman and Wickerhauser (1993), or Wicker hauser 
(1994). 

13. Libraries of Bases 

In practice, functions are usually quite complicated, and even these "best basis" 
algorithms do not necessarily give the most efficient decomposition. A simple exam
ple is a nicely oscillating function with just one superposed spike — the oscillations 
are best represented with a localized trigonometric basis or a wavelet packet basis, 
whereas the spike is "asking for" a wavelet representation. To address this, Mallat 
proposed a "pursuit" algorithm (Mallat and Zhang (1993)), adapted by Coifman 
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and Meyer into an algorithm using libraries of bases. Based on the function to 
be decomposed, one first selects the best basis from a library, which can contain 
wavelet packets, various localized trigonometric bases, and other possible bases 
as well (as long as they are associated with fast algorithms). One monitors the 
coefficients computed for a decomposition in this basis, ranked by decreasing size. 
Beyond a certain threshold (which can depend on the total norm of the remaining 
tail, or the slowing down of the decay rate of the coefficients in this tail), one calls 
it quits — the selected basis was good for the first components but may not be 
optimal now. Reconstructing the first components and subtracting from the origi
nal leads to a remainder, for which one star ts anew: again a best basis is selected, 
and one sticks to this basis until it becomes less satisfactory, etc This pro
cess can be repeated several times (see Coifman and Wicker hauser (1993)). This 
type of approach leads to very flexible and efficient time-frequency, or phase space 
decompositions. 

14. Conclusion 

In the last ten years, mathematical tools have emerged tha t combine insights from 
harmonic analysis with fast algorithms. They turn out to be very powerful for 
many applications, especially when used in conjunction with each other, and in 
combination with many existing tools. Not surprisingly, they can be linked with 
many other earlier insights in a variety of fields; one way of viewing them is as the 
synthesis of these varied strands. The result of this synthesis is more than just the 
sum of its parts , and as these new tools are becoming a familiar part of many a 
researcher's toolbox, they will turn up in many applications. 
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