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Abstract

The transition from a non-chaotic state to a chaotic state is an important issue in the study of coupled dynamical
networks. In this paper, by using the theoretical analysis and numerical simulation, we study the dynamical behaviors
of the NW small-world dynamical network consisting of nodes that are in non-chaotic states before they are coupled
together. It is found that, for any given coupling strength and a sufficiently large number of nodes, the small-world
dynamical network can be chaotic, even if the nearest-neighbor coupled network cannot be chaotic under the same con-
dition. More interesting, the numerical results show that the measurement 1

R of the transition ability from non-chaos to
chaos approximately obeys power-law forms as 1

R � p�r1 and 1
R � N�r2 . Furthermore, based on dissipative system crite-

ria, we obtain the relationship between the network topology parameters and the coupling strength when the network is
stable in the sense of Lyapunov (i. s. L.).
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Much research interest has been directed recently towards the theory and applications of complex networks. In par-
ticular, collective motions of coupled dynamical networks have received a great deal of attention towards subjects, such
as stabilization, synchronization, epidemic of disease, and transition from non-chaos to chaos [1–14]. Since we are now
confronting not a single complex system, but a network of complex systems connected to form a large-scale ensemble,
we should consider the collective emergence properties of a network. In the collective motions, chaos, as a very inter-
esting nonlinear phenomenon, has been intensively studied in recent years [4–14]. It has been found that there are many
useful and potential applications in many fields, such as in chaotic neural networks, collapse prevention of power sys-
tems, and secure communication technology.
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As to most existing literature about chaos in complex dynamical networks, the research works have been concern-
ing with the transition from chaos to hyper-chaos [5,6] and chaos synchronization [7–11]. In recent two years, there
are also reports of the transition from non-chaos to chaos (i.e., all the nodes are non-chaotic before they are coupled
together, however, these nodes will be chaotic if they are connected through a certain type of network). For example,
Ref. [12] found that the required coupling strength for achieving chaos can be decreased if the topology is more het-
erogenous; Ref. [13] introduced the emergence of chaos in several simple types of small-scale networks; and Ref. [14]
studied evolvement from collective order to collective chaos by mapping a complex network of N coupled identical
oscillators to a quantum system. However, in these references, the effect of small-world property (a small average
distance as well as a high degree of local clustering) on the transition from non-chaos to chaos has not been dis-
cussed. A great deal of research interest in the theory and applications of small-world networks has arisen
[4,11,15–17] since the pioneering work of Watts and Strogatz [18]. In this paper, we investigate the transition from
non-chaos to chaos in a small-world dynamical network. Furthermore, we study the condition of stability of the
small-world dynamical network in the sense of Lyapunov (i. s. L.), which has never been investigated in complex
dynamical networks.
2. The theoretical analysis of the transition from non-chaos to chaos in complex dynamical networks

2.1. Condition of the transition from non-chaos to chaos

Here, we consider an isolated node being an n-dimensional nonlinear dynamical system, which is described by
_X ðtÞ ¼ f ðX ðtÞÞ; ð1Þ
where X(t) = [x1(t),x2(t), . . . ,xn(t)]T 2 Rn are the state variables of the node, and f(Æ) is a given nonlinear vector-valued
function describing the dynamics of the node. According to the theory of coupled dynamical networks, we consider a
general complex dynamical network consisting of such N linearly coupled identical nodes. The network is specified by
_X iðtÞ ¼ f ðX iðtÞÞ � c
XN

j¼1

aijX jðtÞ; i ¼ 1; 2; . . . ;N ; ð2Þ
where Xi(t) = [xi1(t),xi2(t), . . . ,xin(t)]T 2 Rn are the state variables of node i, and c is the coupling strength. Let
A = (aij)N·N 2 RN·N represents the coupling configuration of the network, where aij = aji = 1 if there is a connection
between node i and node j (i 5 j); otherwise, aij = aji = 0 (i 5 j) and
aii ¼ �
XN

j¼1;j 6¼i

aij ¼ �
XN

j¼1;j 6¼i

aji; i ¼ 1; 2; . . . ;N : ð3Þ
We assume that the parameters of node (1) are not located in chaotic regions and a solution of the isolated node (1) is
s(t), which satisfies
_sðtÞ ¼ f ðsðtÞÞ; ð4Þ
where s(t) = [s1(t), s2(t), . . . sn(t)]T 2 Rn can be an equilibrium point or a periodic orbit. Hence, all the Lyapunov expo-
nents hi (i = 1,2, . . . ,n) of node (1) are non-positive. We let
0 P hmax ¼ h1 > h2 P � � �P hn; ð5Þ
where hmax is the largest Lyapunov exponent.
In the following, the transversal Lyapunov exponents [7] are calculated for studying the dynamical behavior of net-

work (2). Let
X iðtÞ ¼ sðtÞ þ niðtÞ; i ¼ 1; 2; . . . ;N ; ð6Þ
linearize Eq. (2) at the solution s(t) of the isolated node (1). This leads to
_nðtÞ ¼ nðtÞ½Df ðsðtÞÞ� � cAnðtÞ; ð7Þ
where n(t) = [n1(t),n2(t), . . . ,nN(t)]T 2 RN·n is a matrix, and Df(s(t)) 2 Rn·n is the Jacobian matrix of f(Æ) on s(t). Using
the method presented in Refs. [8,9], we get
_xðtÞ ¼ ½Df ðsðtÞÞ � ckkI�x; k ¼ 1; 2; . . . ;N ; ð8Þ
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where x 2 Rn·N is a matrix, I 2 Rn·n is diag[1,1, . . . , 1], and all the kk are the eigenvalues of the coupling matrix A. Since
A = (aij)N·N is a real symmetric and irreducible matrix, we have [19]
0 ¼ k1 > k2 P � � �P kN : ð9Þ
According to Refs. [8,13], for any given kk, the corresponding transversal Lyapunov exponents li(kk) in Eq. (8) are gi-
ven by
liðkkÞ ¼ hi � ckk ; i ¼ 1; 2; . . . ; n: ð10Þ
Generally, if network (2) is chaotic, then there is at least one positive transversal Lyapunov exponent in Eq. (10), so the
maximum of li(kk) is l1(kN) = hmax � ckN > 0. That is, the dynamical network (2) will be chaotic if
c >
jhmaxj
jkN j

: ð11Þ
From condition (11), we can conclude that

(1) for any given eigenvalue kN of a network coupling matrix A, there exists a critical coupling strength c� ¼ jhmaxj
jkN j so

that if c > c*, then the network is chaotic, even if such isolated nodes of the network are non-chaotic;
(2) for any given coupling strength c, there exists a critical eigenvalue k�N ¼ hmax

c so that if kN < k�N , then the network is
chaotic, even if such isolated nodes of the network are non-chaotic.

2.2. The transition ability from non-chaos to chaos

From above analysis, we know that the topology of a network has some effects on the state transition of the net-
work. Using Eq. (10), we can get N · n transversal Lyapunov exponents of network (2) and order the corresponding
N transversal Lyapunov exponents with hmax as follows:
l1ðkN Þ ¼ hmax � ckN P l1ðkN�1Þ ¼ hmax � ckN�1 P � � � > l1ðk1Þ ¼ hmax 6 0: ð12Þ
Here, we suppose that network (2) is chaotic and the above N transversal Lyapunov exponents satisfy
l1ðkN ÞP l1ðkN�1ÞP � � �P l1ðkMþ1Þ > 0 > l1ðkM ÞP � � �P l1ðk2Þ > l1ðk1Þ ¼ hmax; ð13Þ
where M (1 6M 6 N � 1) is a positive integer. Substituting (10) into (13), we have
c1 ¼
jhmaxj
jkN j

< c <
jhmaxj
jkM j

¼ c2: ð14Þ
We introduce a measurement [12]
1

R
¼ c2 � c1

c1

¼ jkN j � jkM j
jkM j

: ð15Þ
Obviously, 1
R measures the relative region size of the required coupling strength c for generating chaos satisfying (13),

which can describe the transition ability from non-chaos to chaos in network (2). Since the measurement 1
R dependents

on the eigenvalues of network coupling matrix A, the different network topologies have different transition abilities
from non-chaos to chaos.
3. The emergence of chaos in small-world dynamical network

In this section, we investigate the effect of a small-world dynamical network on the transition from non-chaos to
chaos. Hear, we adopt the NW small-world coupled network [20]. In the NW model, we add with probability p a
connection between each unconnected pair of nodes in a nearest-neighbor coupled network. For p = 0, it reduces
to the originally nearest-neighbor coupled network; and for 0 < p < 1, it is the NW small-world coupled
network.

For the nearest-neighbor coupled network with 2-neighbors, there are N eigenvalues kðkÞ ¼ �4 sin2 kp
N

� �
,

(k = 0,1, . . . ,N � 1) [11]. We get kN = �4 shown in inequality (9), when N is an even number; otherwise,
kN ¼ �4 sin2 N�1

2N p
� �

. Obviously, we have �4 6 kN < 0. Thus, for any given coupling strength c with c < jhmax j
4

, the near-
est-neighbor coupled network cannot be chaotic no matter what the network size is, because condition (11) cannot hold
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for sufficiently large N. In the following, we study the emergence of chaos in the NW small-world dynamical network
starting from the nearest-neighbor coupled network with 2-neighbors.

Figs. 1 and 2 show the numerical values of k2(p,N) and kN(p,N) as functions of the connection-adding probability p

and the number of nodes N. In these figures, for each pair of p and N, k2(p,N) and kN(p,N) are obtained by averaging
the results of 20 runs. Here, we concern more the eigenvalue kN(p,N), because it reflects the coupling strength threshold
c� ¼ c1 ¼ jhmaxj

jkN ðp;NÞj required to generate the first positive transversal Lyapunov exponent in network (2). From Figs. 1 and
2, we can see that

(1) for any given N P 3, kN(p,N) decreases almost linearly from about �4 to �N as p increases from 0 to 1;
(2) for any given 0 < p 6 1, kN(p,N) decreases almost linearly to �1 as N increases to +1.

Combining condition (11), we know that, for any given p and N, there exists a critical value c* such that if c > c*, then
the small-world dynamical network will be chaotic (in the sense of statistical average).

Next, we study the transition ability from non-chaos to chaos in the small-world dynamical network. We assume
M = 2 in inequalities (13) and (14), then equality (15) becomes
1

R
¼ c2 � c1

c1

¼ jkN j � jk2j
jk2j

; ð16Þ
which can be regarded as the measurement of the transition ability from non-chaos to chaos with M = 2. From Figs. 3
and 4, we can see clearly that the measurement 1

R decreases sharply as the increase of p and N. More interesting, as
shown in the insets of Figs. 3 and 4, the measurement 1

R approximately obeys power-law forms as 1
R � p�r1 and

1
R � N�r2 in wide intervals of p and N, respectively, where r1 and r2 are two positive constants. This implies that the
transition ability from non-chaos to chaos in the small-world dynamical network becomes weak as the increase of p.
Fig. 1. Numerical values of k2 and kN versus the connection-adding probability p: (a) N = 100; (b) N = 200.

Fig. 2. Numerical values of k2 and kN versus the number of nodes N: (a) p = 0.05; (b) p = 0.1.



Fig. 3. Numerical value of 1/R versus the connection-adding probability P. The inset shows the same data in log–log plot, indicating
that 1/R approximately obeys a power-law form.

Fig. 4. Numerical value of 1/R versus the number of nodes N. The inset shows the same data in log–log plot, indicating that 1/R
approximately obeys a power-law form.
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4. A numerical example

As an example, we now study the transition from non-chaos to chaos in a network of small-world connected Lorenz
systems. In the network, every node is a Lorenz system [21], which is described by
_x ¼ rðy � xÞ;
_y ¼ cx� y � xz;

_z ¼ xy � bz;

8><
>:

ð17Þ
where the system parameters are chosen to be r = 10, c = 0.5, and b = 8/3. For these parameters, Lorenz system (17)
has a stable equilibrium (0,0,0) with the largest Lyapunov exponent hmax � �0.69. According to condition (11), the
small-world connected network will be chaotic if
c >
0:69

jkN j
: ð18Þ
Fig. 5(a) and (b) shows the Poincare section diagrams and chaotic attractors (see the insets of Fig. 5) of a ran-
dom-chosen node in the small-world dynamical network with p = 0.05 and p = 0.1, respectively. Clearly, for p = 0.05
and p = 0.1, the small-world dynamical network can achieve chaos, for c > 0.14 and c > 0.09, respectively. From



Fig. 5. The Poincare section diagrams of a random-chosen node i in the 100-node network of small-world connected Lorenz systems
with (a) p = 0.05; and (b) p = 0.1. The insets give chaotic attractors of the corresponding node i (a) at p = 0.05, for c = 0.3; and (b) at
p = 0.1, for c = 0.15.
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comparison between Fig. 5(a) and (b), it is found that, the larger the connection-adding probability p is, the narrower
the region of the required coupling strength c for achieving chaos is. This indicates that the transition ability from
non-chaos to chaos in the small-world dynamical network becomes weak as the increase of p, as consisting with the
result in Section 3. Furthermore, as the increase of c (see the right blank regions of Fig. 5(a) and (b)), these nodes are
in unstable states i. s. L. (i.e., limt!1yiðtÞ ¼ 1). These unstable states should be avoided in the applications of com-
plex dynamical networks. In the following section, we study the condition of stability i. s. L. in the small-world
dynamical network.
5. The condition of stability i. s. L. in small-world dynamical network

For the study on the theory and applications of complex dynamical networks, the stability i. s. L. in these networks
plays a key role and is a precondition to construct a complex dynamical network. So, it has important significance to
obtain the relationship between the network topology parameters and the coupling strength c when the complex
dynamical network is stable i. s. L. In the following, from aspect of phase space volume, we study the stability i. s.
L. in the foregoing small-world dynamical network based on dissipative system criteria. Phase space volume contraction
rate RV i of node i in network (2) is calculated by
RV i ¼
1

DV i
� dðDV iÞ

dt
¼
Xn

j¼1

o

oxij
� dxij

dt
¼
Xn

j¼1

o fj � c
PN

k¼1aikxkj

� �
oxij

¼
Xn

j¼1

ofj

oxij
� ncaii ¼

Xn

j¼1

ofj

oxij
þ ncki;

i ¼ 1; 2; . . . ;N ; ð19Þ
where DVi is cell of phase space volume of node i, and ki is degree of node i. Based on dissipative system criteria, node i

will be stable i. s. L. when
RV i ¼
Xn

j¼1

ofj

oxij
þ ncki < 0: ð20Þ
For above stability condition, we need calculate the phase space volume contraction rate RV i of node i. Firstly, it is
easy to calculate that the mathematical expectation of degree ki of node i is 2 + p(N � 3), where N P 3. Then, we can
calculate the mathematical expectation EðRV iÞ of phase space volume contraction rate of node i, which is
EðRV iÞ ¼
Xn

j¼1

ofj

oxij
þ ncð2þ pðN � 3ÞÞ; i ¼ 1; 2; . . . N ; ð21Þ
where 2 + p(N � 3) is also the average connectivity hki of the small-world network. Substituting (21) into (20), we get
the condition of stability i. s. L. in the small-world dynamical network, which is described by
Xn

j¼1

ofj

oxij
þ ncð2þ pðN � 3ÞÞ < 0; i ¼ 1; 2; . . . N : ð22Þ



Fig. 6. Unstable phase of a random-chosen node i at the coupling strength, c = 0.7, in the 100-node network of small-world connected
Lorenz systems with p = 0.05.
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The stability condition implies that, there exists a coupling strength threshold ce such that if c > ce, then the network will
be unstable i. s. L. (i.e., limt!1yiðtÞ ¼ 1). According to inequality (22), We get
ce ¼
�
Pn

j¼1
ofj

oxij

nð2þ pðN � 3ÞÞ : ð23Þ
For the small-world connected Lorenz systems in Section 4, by substituting (17) into (23), we have the coupling strength
threshold
ce ¼
41

9ð2þ pðN � 3ÞÞ : ð24Þ
For N = 100 and p = 0.05, we can calculate ce � 0.66. Thus, the coupled Lorenz systems will be unstable i. s. L. when
c > 0.66, shown in Fig. 6 .
6. Conclusion

In conclusion, by using both theoretical analysis and numerical example, we have studied the transition from non-
chaos to chaos in the NW small-world dynamical network. It has been found that, for any given coupling strength and a
sufficiently large number of nodes, the small-world dynamical network can be chaotic, even if the nearest-neighbor cou-
pled network cannot be chaotic under the same condition. In other words, the ability of achieving chaos in an originally
nearest-neighbor coupled network can be greatly enhanced by simply adding a small fraction of new connection, which
reveals an advantage of small-world network for achieving chaos. In addition, the transition ability from non-chaos to
chaos in the NW small-world dynamical network becomes weak as the increase of p. Furthermore, we have obtained
the condition of stability i. s. L. in the small-world dynamical network, which is determined by the average connectivity.
The stability condition will have guidance significance for the constructing of complex dynamical networks.
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