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Abstract:  Membrane proteins are crucial for many biological functions and have become attractive targets for pharmacological agents.

About 10%–30% of all proteins contain membrane-spanning helices. Despite recent successes, high-resolution structures for membrane

proteins remain exceptional. The gap between known sequences and known structures calls for finding solutions through bioinformatics.

While many methods predict membrane helices, very few predict membrane strands. The good news is that most methods for helical

membrane proteins are available and are more often right than wrong. The best current prediction methods appear to correctly predict all

membrane helices for about 50%–70% of all proteins, and to falsely predict membrane helices for about 10% of all globular proteins. The

bad news is that developers have seriously overestimated the accuracy of their methods. In particular, while simple hydrophobicity scales

identify many membrane helices, they frequently and incorrectly predict membrane helices in globular proteins. Additionally, all methods

tend to confuse signal peptides with membrane helices. Nonetheless, wet-lab biologists can reach into an impressive toolbox for membrane

protein predictions. However, the computational biologists will have to improve their methods considerably before they reach the levels

of accuracy they claim.
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Abbreviations:
ALOM2, hydrophobicity-based prediction of membrane

helices using a discriminant function (Klein et al 1985);

DAS, dense alignment surface method predicting

membrane helices (Cserzö et al 1997); GES, Goldman,

Engelman and Steitz (Engelman et al 1986); GPCR, G-

protein coupled receptor: family of proteins with seven

transmembrane helices; HMM, Hidden Markov model

(statistical algorithm from machine learning); HMMTOP,

Hidden Markov model predicting transmembrane helices

(Tusnady and Simon 1998); KD, Kyte and Doolittle

(Kyte and Doolittle 1982); KKD, application of

discriminant function to the KD hydropathy (Klein et al

1985); MEMSAT, dynamic-programming-based

prediction of transmembrane helices (Jones et al 1994);

META-PP, internet service allowing access to a variety

of bioinformatics tools through one single interface

(Eyrich and Rost 2000); OM, outer membrane; PHDhtm,

profile-based neural network prediction of

transmembrane helices (Rost et al 1995; Rost 1996; Rost

et al 1996b); PHDpsihtm, PSI-BLAST profile-based

neural network prediction of transmembrane helices

(Rost et al 1995; Rost 1996; Rost et al 1996b); PP

(PredictProtein), internet server for protein sequence

analysis and protein structure prediction (Rost et al 1994;

Rost 1996; Rost 2000); PRED-TMR, propensity
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optimised hydropathy prediction of membrane helices

(Pasquier et al 1999); PSI-BLAST, position specific

iterated database search (Altschul et al 1997); SOSUI,

hydrophobicity and amphiphilicity-based transmembrane

helix prediction (Hirokawa et al 1998); SPLIT,

transmembrane helix prediction (Juretic et al 1998);

SRS, Sequence Retrieval System, ie a portal to

simultaneously access most existing databases (Etzold

and Argos 1993; Etzold et al 1996); TM, transmembrane;

TMAP, alignment-based prediction of transmembrane

helices (Persson and Argos 1996); TMFinder, multiple

hydrophobicity-scale-based prediction of membrane

helices (Deber et al 2001); TMH, transmembrane helix;

TMHMM, Trans-Membrane prediction using Hidden

Markov Models (Sonnhammer et al 1998); TMpred,

membrane prediction based on statistical preferences

(Hofmann and Stoffel 1993); TopPred, hydrophobicity-

based membrane helix prediction (von Heijne 1992);

URL, Uniform Resource Locator, ie address of a website;

WW, transmembrane prediction based on the Wimley-

White hydrophobicity scale (Jayasinghe et al 2001).
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Introduction
Helical membrane proteins constitute an important class of

proteins. Membrane proteins are crucial for survival. They

constitute key components for cell–cell signalling, mediate
the transport of ions and solutes across the membrane, and
are crucial for recognition of self (Stack et al 1995; Chapman

et al 1998; Le Borgne and Hoflack 1998; Chen and Schnell
1999; Hettema et al 1999; Pahl 1999; Truscott and Pfanner
1999; Bauer et al 2000; Ito 2000; Soltys and Gupta 2000;

Thanassi and Hutltgren 2000). Furthermore, the
pharmaceutical industry preferably targets membrane-bound
receptors (Heusser and Jardieu 1997; Bettler et al 1998;

Moreau and Huber 1999; Saragovi and Gehring 2000;
Sedlacek 2000). A prominent example for the
pharmacological importance of membrane proteins is the

large super-family of G protein-coupled receptors (GPCRs),
which include receptors for hormone, neurotransmitter,
growth factor, light and odour-related ligands (Dewji and

Singer 1997; Hildebrand 1997). These receptors are of
interest to the pharmaceutical industry as they present novel
targets for drugs (Stadel et al 1997; Marchese 1999). In

addition, more than 50% of prescription drugs act on GPCRs
(Gudermann et al 1995; Attwood et al 2000; Attwood 2001).
Besides the GPCRs, other important membrane protein

families include ion channels, motor proteins and bio-
energetically-related proteins such as those involved in the
electron transport system (Kihara et al 1998; Kihara and

Kanehisa 2000).
Helical membrane proteins challenge bioinformatics.

Despite the great biological and medical importance of

membrane proteins, we still have very little experimental
information about their three-dimensional (3-D) structures.
Less than 1% of the proteins of known structure are membrane

proteins. High-resolution structures are scarce because
membrane proteins are not easy to crystallise, and are hardly
tractable by nuclear magnetic resonance (NMR)

spectroscopy. Nonetheless, there are a number of recent and
promising attempts to tackle membrane proteins by solid state
and even by solution NMR (Fu and Cross 1999; de Groot

2000; Marassi and Opella 2000; McDermott et al 2000; Riek
et al 2000; Sanders and Nagy 2000; Arora and Tamm 2001;
Fernandez et al 2001; Opella et al 2001; Wuthrich 2001).

Fortunately, it is relatively easy to identify the location of
membrane helices through low-resolution experiments. An
expert-curated list of low-resolution experiments maintained

by Steffen Möller and colleagues (Möller et al 2000)
considers information from C-terminal fusion with indicator
proteins (McGovern et al 1991; Hennessey and Broome-

Smith 1993; Traxler et al 1993; van Geest and Lolkema 2000)
and from antibody-binding (Traxler et al 1993; McGuigan

1994; Jermutus et al 1998; Morris et al 1998; Amstutz et al
2001). Nevertheless, the bad news remains that we have
experimental information for less than 500 helical membrane

proteins. We believe that the human genome alone codes for
almost 10 000 helical membrane proteins (Wallin and von
Heijne 1998; Krogh et al 2001; Liu and Rost 2001). Thus,

bioinformatics is challenged to help bridge the information
gap between what we want and what we have.

The lipid bilayer simplifies the prediction problem.

Fortunately, the task to predict aspects of structure for the
membrane regions of proteins is simplified by strong
environmental constraints on transmembrane proteins: the

lipid bilayer of the membrane reduces the degrees of freedom
to such an extent that 3-D structure formation becomes almost
a 2-D problem. However, this constraint does not apply to

the other class of membrane proteins, which are the porin-
like proteins that form pores by β-strand barrels (von Heijne
1996; Seshadri et al 1998; Buchanan 1999). Since there is

not much experimental information available on different
porin-like membrane proteins, it is difficult to develop
prediction methods and to estimate prediction accuracy for

this class.
Here, we summarise both the state-of-the-art and to some

extent the history of attempts within computational biology

and bioinformatics to predict a protein’s transmembrane
regions. We focus on the concepts and the resulting methods
that are available for everyday sequence analysis, and we

discuss some of the major problems and practical aspects of
these methods. The major problem in the field of membrane
protein prediction is the lack of experimental high-resolution

data. Consequently, estimates for prediction accuracy are
perhaps overly optimistic. In this paper we suggest estimates
that are as realistic as possible.

Concepts for predicting TM helix
location and topology
Hydrophobicity scales provide simple criteria to predict

membrane helices. Transmembrane helices (TMH) can be
predicted based on the distinctive patterns of hydrophobic

(transmembrane) and polar (non-membrane) regions within
the sequence. These patterns are as follows: (1) TM helices
are predominantly apolar and between 12 and 35 residues

long (Chen et al unpub). (2) Globular regions between
membrane helices are typically shorter than 60 residues
(Wallin and von Heijne 1998; Liu and Rost 2001). (3) Most

TMH proteins have a specific distribution of the positively
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charged amino acids arginine and lysine, coined by Gunnar
von Heijne as the ‘positive-inside-rule’ (von Heijne 1986;

von Heijne 1989). Connecting ‘loop’ regions on the inside
of the membrane have more positive charges than ‘loop’
regions on the outside (Figure 1). (4) Long globular regions

(> 60 residues) differ in their composition from those globular
regions subject to the ‘inside-out-rule’. These simple facts
have been at the heart of a variety of prediction methods

developed over the last two decades. Methods have improved
over time, and a great number of ideas have been thrown at
the problem. Here, we focus on some of the major methods.

Hydrophobicity scales were introduced 20 years ago.

Kyte and Doolittle (KD) developed one of the first methods
that evaluated the hydrophilicity and hydrophobicity of a

protein along the amino acid sequence (Kyte and Doolittle
1982). They defined a hydropathy scale that associated a
hydropathy value to each amino acid. To identify membrane

regions, they implemented a moving-window approach in

which they simply summed the hydrophobicity scale over w

adjacent residues in the native sequence (Kyte and Doolittle

1982). They tested window lengths of w = 9–12 adjacent
residues, and found windows of 19 residues to discriminate
best between membrane and globular proteins. Like most

succeeding methods, KD then had to define some threshold
T to label a segment as ‘membrane helix’: if the sum over the
hydrophobicity exceeded T, the segment was predicted to be

a membrane helix. In particular, KD suggested a threshold
of T > 1.6 for the average over 19 residues. Around the same
time, Eisenberg and colleagues developed the helical

hydrophobic moment as a measure of the amphiphilicity of a
helix. This hydrophobic moment differed between
transmembrane and globular helices, and could thus be

explored to predict transmembrane regions (Eisenberg et al
1982).

Predictions improve by processing simple hydrophobicity

scales. Klein, DeLisi and colleagues combined a discriminant
function (similar to the one introduced by Barrantes (1975))
with the hydrophobic analysis of KD (Klein et al 1985). In

particular, they applied a quadratic discriminant function to
the KD hydropathy scale and summed over a window of
w = 17 adjacent residues. Proteins with values < 0 were

classified as integral membrane proteins. Nakai and Kanehisa
applied the same concept of filtering the simple scales through
a quadratic discriminant function in their method ALOM2

(Nakai and Kanehisa 1992). The rationale of ALOM2 is that
it first tentatively evaluates the number of putative membrane
helices using a low threshold of 0.5. Then it refines the

predicted number by using a more stringent threshold of
–2.0. After the transmembrane regions are predicted, ALOM2
applies a modified positive-inside rule developed by

Hartmann, Rapoport and Lodish (Hartmann et al 1989) to
predict the protein’s topology, which in the realm of
membrane proteins refers to the orientation of its N-terminus

with respect to the lipid bilayer. Gunnar von Heijne
introduced the ‘positive-inside rule’ reflecting the observation
that non-membrane regions inside have more positively

charged residues than the regions outside (von Heijne 1986).
Hartmann, Rapoport and Lodish (1989) altered this rule
slightly by omitting the region flanking the first helix from

the compilation. After the transmembrane regions were
predicted ALOM2 used this modified positive-inside rule to
predict the membrane topology.

More refined indices improve predictions. Hydropathy-
based methods still appear to be effective in predicting
transmembrane segments. One of the drawbacks was that

such methods fail to discriminate accurately between

Figure 1 Two types of membrane proteins. A: The X-ray structure of the photo-
reaction centre (PDB code 7prc) was the first high-resolution structure of an
α-helical membrane protein (Deisenhofer et al 1985). Represented in light grey are
α-helices and β-strands (only in the non-membrane regions). The lipid membrane
bilayer is crossed by the 11 helices in the middle of the structure. The N-terminus
of the H (heavy) chain is marked by an arrow (left, middle); the beginning of that
chain is highlighted in dark grey (including the only membrane helix of that chain).
The topology is defined by the orientation of the helices with respect to the
membrane bilayer, here the upper part of the protein is located in the periplasm,
the lower part in the cytoplasm. Hence, the membrane helix of the H chain has the
topology OUT. B:  The X-ray structure of the transmembrane part of the Outer
Membrane Protein A (ompA, PDB: 1bxw) is an example of a β-barrel membrane
protein (Pautsch and Schulz 1998). The β-strands are given in light grey, and the
aromatic residues Tryptophan and Phenylalanine are in dark grey. The protein
contains only half as many (8) β-strands as most porins. Typically, membrane
β-strands are amphipathic, ie residues i and i+2 are hydrophobic while residues i+1
and i+3 are hydrophilic, since one side of the strands points to the lipid bilayer and
the other to the inside of the pore. We also indicated the specific band of aromatic
residues that lines the interface between the core transmembrane regions and the
exposed loops. The topology of beta-membrane proteins is typically determined by
the location of the longest loops. Here, this loop is extracellular.
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membrane regions and highly hydrophobic globular
segments. The PRED-TMR algorithm uses a standard

hydrophobicity analysis with an emphasis on the detection
of potential helix ends (Pasquier et al 1999). Using
propensities of amino acid residues at the termini of

transmembrane helices collected by the authors, PRED-TMR
compiles scores for the termini of each putative segment.
Based on the two termini scores, a hydropathy score of a

TMH and a length constraint, Pasquier developed a scoring
function used to find the best prediction. In contrast,
Jayasinghe et al attempted to improve hydropathy analysis

by directly improving the hydropathy scales (Jayasinghe et
al 2001). The commonly used hydrophobicity scales neglect
the thermodynamic constraints α-helices impose on

transmembrane stability. Hence, Jayasinghe et al derived a
whole-residue hydropathy scale from the Wimley-White
experiments that took into account the backbone constraints.

Another new hydrophobicity scale was at the heart of the
TMFinder method (Deber et al 2001). The scale (Liu-Deber
scale) was based on the HPLC retention time of peptides

with non-polar phase helicity. It measured the propensity of
an amino acid to be in an alpha-helical state based on circular
dichroism.

Amino acid preferences for membrane and non-

membrane proteins can be used for prediction. Rather than
using the observation that hydrophobic residues are abundant

in transmembrane helices, we could conceive a more general
strategy to infer from known membrane helices which amino
acids have the highest preference for that state. Such a simple

statistical evaluation was already the base for the first methods
predicting secondary structure for globular proteins (Schulz
1988; Fasman 1989; Rost and Sander 2000). TMpred is one

of the methods using such statistical preferences to predict
membrane helices taken from an expert-compiled data set of
membrane proteins (Hofmann and Stoffel 1993). TMpred

combines several matrices for scoring. Juretic et al integrated
multiple scales for amino acids for the prediction of
transmembrane regions in their method SPLIT (Juretic et al

1993; Juretic et al 1998). The authors derived amino acid
preferences for the ‘state’ membrane helix from a data set of
integral membrane proteins with partially known secondary

structure. They also extracted preferences for
β-strand, turn and non-regular secondary structure based on
sets of soluble proteins of known structure. The comparison

with hydrophobicity plots suggested that the preference
profiles were more accurate, exhibited higher resolution and
had less noise. Shorter, unstable or movable membrane-

helices were often missed by the hydrophobicity analyses in

proteins with transport functions. In contrast, they were
predicted by the combination of preferences. For instance,

the N-terminal TM helices of voltage-gated ion channels and
glutamate receptors were correctly identified by SPLIT.

Incorporating more information into methods improves

prediction accuracy. A considerably more complex scheme
for post-processing hydrophobicity scales was implemented
in TopPred (von Heijne 1992). TopPred predicted the

complete topology of membrane proteins by using
hydrophobicity analysis, automatic generation of possible
topologies and ranking these topologies by the positive-inside

rule. First, the method introduced a particular sliding
trapezoid window to detect segments of outstanding
hydrophobicity using the GES-scale (Engelman et al 1986).

The two bases of the trapezoid were chosen to be 11 and 21
residues long. The authors used the shape of a trapezoid to
combine the favourable noise-reduction of a triangular

window (Claverie and Daulmiere 1991) with a more
physically relevant rectangular window, which represents the
central non-polar region of the lipid bilayer. Next, TopPred

explored the positive-inside rule. This rule simply states the
observation that positively charged residues (Arg and Lys)
are more abundant on the inside of membranes (von Heijne

1986). Generally, this fact allows for membrane protein
topology prediction. However, TopPred went a step further
by choosing the thresholds for considering a segment as

membrane helix that yielded the optimal difference between
the number of positively charged residues at the inside and
at the outside. All these refinements implemented in TopPred

led to a major improvement in prediction accuracy (von
Heijne 1992). SOSUI combined a variety of physico-
chemical parameters to detect transmembrane proteins

(Hirokawa et al 1998). In particular, the following parameters
are used to detect membrane helices: KD hydropathy, an
amphiphilicity, relative and net charges, and protein length.

Increasing the complexity by implementing dynamic

programming improves performance. In 1994, MEMSAT
(Jones et al 1994) implemented statistical tables (log

likelihoods) compiled from well-characterised membrane
protein data and a dynamic programming algorithm, to
recognise membrane topology models by expectation

maximisation. Residues are classified as being one of five
structural states as follows: L

i
 (inside loop), L

o
 (outside loop),

H
i
 (inside helix end), H

m
 (helix middle), and H

o
 (outside helix

end). Helix end caps are defined to span over four adjacent
residues (one helical turn). Next the authors extracted the
propensity of each amino acid for each of these five states

from experimentally well-described membrane proteins.
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Using these propensities, MEMSAT calculates a score
relating a given sequence to a predicted topology and

arrangement of membrane helices. The particular feature of
MEMSAT is that it finds the optimal score through dynamic
programming, ie an algorithm is also explored to find the

optimal pairwise sequence alignment (Needleman and
Wunsch 1970; Sellers 1974). Thus, MEMSAT finds the best
out of a great number of possible predictions (Jones et al

1994).
Evolutionary information from protein families raises

accuracy further. Until 1996, automatic methods based their

predictions of membrane regions on the properties of single
protein sequences. From predicting secondary structure for
globular proteins, we know that using alignment information

improves prediction accuracy significantly (Rost and Sander
1993; Rost and Sander 1994; Rost 2001). PHDhtm was the
first method that used information from protein families for

membrane predictions (Rost et al 1995; Rost et al 1996a;
Rost et al 1996b). In the initial version, location and topology
of membrane helices were simply predicted by a system of

neural networks (Rost et al 1995). PHDhtm was then (Rost
et al 1996a; Rost et al 1996b) refined by post-processing the
neural network output through a dynamic programming-like

algorithm, similar to the one introduced by Jones et al. The
combination of various algorithms and multiple alignment
information resulted in what is still one of the most accurate

prediction methods today. TMAP was another early
application of multiple sequence alignments to determine
membrane-spanning segments (Persson and Argos 1996). It

was based on propensity values determined for segments of
21 consecutive residues in transmembrane segments (P

m
),

and for the flanking four-residue caps (ends) of membrane

helices (P
e
). Residues with high P

m
 tended to be hydrophobic

whereas those with high P
e
 tended to be basic and polar

residues. The compositional difference in the protein

segments exposed to the two surfaces of a membrane for
twelve important residues was determined. Ratios were
calculated for Asn, Asp, Gly, Phe, Pro, Trp, Tyr and Val

(mostly found at the outside of membranes), and for Ala,
Arg, Cys and Lys (mostly inside). The consensus over these
twelve residues was used to predict topology. Multiple

alignments improve prediction accuracy. However, for 20%–
30% of all proteins there are no homologues in current
databases (Liu and Rost 2001). In response to this situation,

the so-called dense alignment surface (DAS) method was
developed (Cserzö et al 1997). DAS is based on the RreM
scoring matrix originally introduced to improve alignments

for G-protein coupled receptors. It compares low-stringency

dot-plots of the query protein against the background
representing the universe of non-homologous membrane

proteins using the RreM scoring matrix.
Grammatical rules reflect global aspects of membrane

regions. The lipid bilayer constrains the structure of the

membrane-passing regions of proteins in many ways.
TMHMM pioneered building models of predicted membrane
proteins considering a variety of such constraints in one

consistent methodology (Sonnhammer et al 1998; Krogh et
al 2001). A similar concept was implemented in HMMTOP
(Tusnady and Simon 1998; Tusnady and Simon 2001).

TMHMM and HMMTOP realise their models through hidden
Markov models (HMMs). TMHMM implements a cyclic
model with seven states for transmembrane-helix (TMH)

core, TMH-caps on the N- and C-terminal sides, non-
membrane regions on the cytoplasmic side, two non-
membrane regions on the non-cytoplasmic side and a globular

domain state in the middle of each non-membrane region.
The two non-membrane regions on the non-cytoplasmic-side
model short and long loops respectively, which correspond

to two different membrane insertion mechanisms. In contrast,
HMMTOP uses a hidden Markov model distinguishing the
following five structural states: inside non-membrane region;

inside TMH-cap; membrane helix; outside TMH-cap; and
outside non-membrane region. Conceptually, this model is
similar to the one used in MEMSAT (Jones et al 1994). It

differed in the placement and interpretation of TMH-caps,
which Tusnady et al interpret as not being in the membrane
(Tusnady and Simon 1998).

Helical caps can be predicted by molecular dynamics.

Molecular dynamics methods attempt to represent protein
conformations, and have been used together with energy

minimisation to simulate protein folding (Levitt and Warshel
1975; Hagler and Honig 1978; Levitt 1983; Karplus and
Petsko 1990; Berendsen 1991; Dill 1993; van Gunsteren

1993). In practice, both the enormous complexity of the free
parameters and the inaccuracy in experimentally determining
the fundamental constants seriously hamper the success of

such methods. However, they sometimes yield accurate
predictions for short peptides such as membrane helices.
Molecular dynamics simulations in an explicit lipid and water

environment have been used to define the precise ends of
TM helices (Forrest et al 1999; Sajot and Genest 2000).
Molecular dynamics typically generates many possible

models rather than unambiguously pointing to one single
model. Briggs and colleagues present a new approach to
selecting candidate models (Briggs et al 2001). They assume

that neutral amino acid substitutions do not affect the stability
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of a native structure but may destabilise the non-native
structures. Applying this assumption to the α-helical

transmembrane domains of two homodimers (human
glycophorin A and human CD3-zeta), they in fact identify a
single model by their simulation.

Concepts for predicting TM beta-
sheet proteins
There is a structural variety of beta-membrane proteins.

β-barrel membrane proteins are found in the outer membranes
(OMs) of gram-negative bacteria and are likely in the OMs

of mitochondria and chloroplasts. In prokaryotes, they
mediate non-specific, passive transport of ions and small
molecules, and can selectively pass molecules such as maltose

and sucrose (Nikaido 1994; Schirmer et al 1995; Meyer et al
1997; Forst et al 1998; Schirmer 1998). In eukaryotic
organelles, β-barrel membrane proteins have been suggested

to be involved in voltage-dependent anion channels
(Mannella 1998). This wide range of functions is associated
with a wide range of structural variants: β-barrel membrane

proteins with barrel sizes from small 8-stranded to large
22-strandedβ-barrels and with different topologies (Schulz
2000). Of the β-barrel membrane proteins, porins are the

best studied. Many porin barrels are trimers and contain 16
anti-parallelβ-strands; maltoporin from Escherichia coli

contains 18 strands (Meyer et al 1997). A band of

hydrophobic residues encircles the trimer (Weiss and Schulz
1992; Pebay-Peyroula et al 1995; Meyer et al 1997) (Figure
1). Porins also contain a central channel that is partially

blocked by a loop that folds inwardly and is attached to the
inner side of the barrel wall (Schirmer 1998). This
arrangement forms an ‘eyelet’, which defines the size of solute

molecule that can traverse the channel. Currently, high-
resolution structures are only available for bacterial OM
proteins (Tamm et al 2001).

Membrane strands are difficult to predict. Unlike
α-helical membrane proteins, there are no simple low-
resolution experiments that yield large amounts of data for

β-barrel membrane proteins. This has constrained the ability
to develop prediction methods. Many β-strands contain
alternating hydrophobic and hydrophilic side-chains.

However, this simple rule usually does not suffice to identify
membrane strands (Schulz 2000). Methods that implement
physico-chemical properties were applied successfully only

in the context of experimental information (Paul and
Rosenbusch 1985; Welte et al 1991; Schirmer and Cowan
1993). All early attempts to predict membrane strands

employed the amphipacity and hydrophobicity of β-strands.

Paul and Rosenbusch attempted a minimal approach to
predict and identify segments causing polypeptides to reverse

their direction (turn identification), but they avoided
hydrophobicity parameters (Paul and Rosenbusch 1985). In
contrast, Jahnig suggested that a generalisation of

hydrophobicity analysis was sufficient to predict membrane-
spanning amphiphilic α-helices and β-strands (Jahnig 1990).
Unfortunately, membrane strands have no long stretch of

consecutive hydrophobic residues. In fact, the overall
hydrophobicity for β-barrel membrane proteins is similar to
that of soluble proteins. Welte and colleagues compared the

hydrophilicity profiles and sequences of porin from
Rhodobacter capsulatus with those of OmpF and PhoE from
Escherichia coli. They determined a set of specific insertions

and deletions in the alignments of these proteins, and inferred
that OmpF and PhoE have similar structures in their
membrane-spanning regions. Their experimental work

verified this prediction (Welte et al 1991). Cowan and
colleagues (Cowan et al 1992) suggested to use the mean
hydrophobicity of one side of a putative β-strand by averaging

over hydrophobic moments (Eisenberg et al 1984) of every
second residue within a sliding window (Vogel and Jahnig
1986; Schirmer and Cowan 1993). To improve the signal-

to-noise-ratio, they accounted for the band of aromatic
residues in flanking positions of the β-strands. Another
method that was considered for predicting β-membrane

spanning regions was a rule-based approach. Gromiha and
colleagues combined amino acid preferences for β-strands
with the surrounding hydrophobicity of the respective

residues to predict β-strands (Gromiha and Ponnuswamy
1993; Gromiha et al 1997). With their method they
reproduced about 82% of the residues in structurally known

membrane regions.
Non-linear statistics enables prediction of membrane

β-strands. Diederichs and colleagues proposed to use a neural

network to predict the topology of the bacterial OM β-strand
proteins and to locate residues along the axes of the pores
(Diederichs et al 1998). The neural network predicts the

z-coordinate of C-alpha atoms in a coordinate frame with
the outer membrane in the xy-plane, such that low z-values
indicate periplasmic turns, medium z-values indicate

transmembraneβ-strands and high z-values indicate
extracellular loops. Most recently, Jacoboni, Fariselli,
Casadio and colleagues applied a method combining neural

networks and dynamic programming to predict the location
of membrane strands (Jacoboni et al 2001). The networks
used alignment information as input, and predicted whether

or not a particular residue is part of a membrane strand. In
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the second step, the method simply finds the optimal path
through the network prediction, much like the methods

applied to predict membrane helical proteins (Jones et al
1994; Rost et al 1995; Rost et al 1996a). Finally, the topology
is assigned based on the location of the longest loop that is

taken to be exterior. The authors estimated that their system
correctly predicts about 93% of all known membrane-strands.
It is not clear whether or not the estimates from Diederichs

et al and Jacoboni et al will hold true for all
β-strand membrane proteins. The first problem is a merely
technical one: for such a small set of experimentally known

families (about 15 different families) (Bigelow and Rost,
unpublished data) it is almost impossible to avoid over-
training methods with many free parameters (such as neural

networks). The second problem is of principle nature: we
have to assume that the 15 different β-strand membrane
families, for which we have high-resolution structures, are

representative of all β-strand membrane proteins. This may
turn out to be an incorrect assumption.

Practical Aspects
Availability
Most methods described are available through public

servers.A list of URLs and the contact addresses are given
in Table 1. Most programs – except for ALOM2, Eisenberg,
KD, KKD, PRED-TMR, TMAP, TMpred, and WW – are

also available through META-PP, which provides a single
interface to simultaneously access many high-quality servers
(Eyrich and Rost 2000). This concept of accessing many

servers through one has been pioneered by the BCM-
Launcher (Smith et al 1996), supposedly accessing the largest

number of different methods. Other combinations are given
by NPSA (NPSA 2001), META-Poland (Rychlewski 2000),
and ProSAL (Kleywegt 2001). In contrast to all others,

META-PP attempts to (1) return as few results as possible
by filtering out technical messages and (2) combine only high-
quality methods. A generalisation of the ‘common interface’

idea is implemented in the sequence retrieval system SRS
(Etzold and Argos 1993; Etzold et al 1996), which enables
simultaneous access of most existing databases. Successively

SRS starts to also incorporate the direct access to prediction
methods.

Prediction accuracy
Performance of prediction methods has been overestimated

significantly! For all the methods described in this review
high levels of prediction accuracy have been reported.
Frequently, authors were daring enough to claim that their

methods correctly predicted more than 90% of all membrane
helices. We cannot estimate the accuracy of existing methods
since they have all been developed using the known

membrane proteins. However, we can estimate an upper limit
for prediction accuracy. This limit suggests that developers
have overrated their methods by 15%–50% (Chen et al

unpub). How could this have happened? There are a variety
of reasons. (1) We do not have enough high-resolution
structures to allow a statistically significant analysis (Chen

et al unpub). With this bottleneck, training/developing and

Table 1 Availability of prediction methods

Method Server Program

Helical membrane
proteins
ALOM psort.nibb.ac.jp/form.html Kenta Nakai: knakai@ims.u-tokyo.ac.jp
DAS www.sbc.su.se/~miklos/DAS miklos@bip.bham.ac.uk
HMMTOP www.enzim.hu/hmmtop Gábor E Tusnády: tusi@enzim.hu
MEMSAT www.psipred.net David Jones: d.jones@cs.ucl.ac.uk
KD fasta.bioch.virginia.edu/fasta/grease.htm William Pearson: wrp@virginia.edu
PHDhtm cubic.bioc.columbia.edu/predictprotein Burkhard Rost: rost@columbia.edu
SOSUI sosui.proteome.bio.tuat.ac.jp/ Mitaku Group: sosui@proteome.bio.tuat.ac.jp
SPLIT www.mbb.ki.se/tmap/index.html Davor Juretic: juretic@mapmf.pmfst.hr
TMAP www.mbb.ki.se/tmap/index.html Bengt Persson: Bengt.Persson@ibp.vxu.se
TMHMM www.cbs.dtu.dk/services/TMHMM-2.0 Anders Krogh: krogh@cbs.dtu.dk
TMpred www.ch.embnet.org/software/
TopPred2 http://bioweb.pasteur.fr/seqanal/interfaces/toppred.html Gunnar von Heijne: gunnar@dbb.su.se
WW blanco.biomol.uci.edu/mpex/ Stephen White: blanco@helium.biomol.uci.edu

βββββ-sheet
membrane proteins
β-strand predictor www.biocomp.unibo.it (upon request)
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test sets may share or have homologous members. To get
around this problem, developers include low-resolution

experimental data and structures in their data sets. One caveat
of this practice is to assume that low-resolution experiments,
eg gene fusion, are sufficiently similar to high-resolution

structures (crystallography). Unfortunately, this is not the
case. In fact, low-resolution experiments differ from high-
resolution experiments almost as much as prediction methods

do (Chen et al unpub). Hence, low-resolution experiments
are not sufficient to evaluate prediction accuracy. (2) All
methods optimise some parameters. Since there are so few

high-resolution structures, all methods use as many of the
known ones as possible. However, methods perform much
better on proteins for which they were developed than on

new proteins, and this was overlooked in a recent analysis of
prediction methods (Möller et al 2001). (3) Methods using
evolutionary information failed due to the surprising fact that

membrane helices are not entirely conserved across species.
This observation is surprising since it implies that these
proteins either do not perform similar cellular functions,

eg G-coupled receptor, or that we can actually realise the
function with a different number of membrane regions in
some cases. (4) Finally, levels of prediction accuracy

published between methods can often not be compared
appropriately to one another since they are frequently based

on different measures for prediction accuracy and on different
data sets. The latter prompted Möller, Apweiler and
colleagues to collect a set of well-characterised integral

membrane proteins (Möller et al 2000). Each protein has
been assigned a reliability index depending on the available
structural and biochemical data. Currently, from the total set

of 320 proteins in the data set, there are 33 membrane proteins
with known structures, 24 with biochemical characterisation
and 142 with partial biochemical evidence. The data set can

be accessed via ftp://ftp.ebi.ac.uk/databases/testsets/
transmembrane.

Most methods get the number of helices right for most

membrane proteins. All methods based on advanced
algorithms tend to underestimate transmembrane helices
(Table 2: %obs > %prd). Thus, about 86% of the TMH

residues predicted by the best methods in this category
(PHDhtm and DAS) are correctly predicted. Assume that we
consider a prediction of a membrane helix correct if the

predicted and the observed helical regions differ by less than
three residues. Given this measure for accuracy, we found
that the best current methods correctly predict all membrane

Table 2 Accuracy of popular prediction methodsa

Per-segment accuracyc Per-residue accuracyd

Methodb Q
ok

obs%
htmQ prd

htmQ% TOPO Q
2

obs
TQ%

2
prd

TQ%
2

obs
NQ%

2
prd
NQ%

2

ERRORe ± 9 ± 7 ± 7 ± 9 ± 3 ± 6 ± 7 ± 4 ± 4

DAS 79 99 96 72 48 94 97 62

HMMTOP2 83 99 99 61 79 70 89 88 71

PHDhtm07 86 99 98  50 80 72 87 82 74
PHDhtm08 86 99 98 54 80 72 87 82 74
PHDpsihtm07 84 99 98 66 80 76 83 86 80
PRED-TMR 61f 84 90 76 58 85 94 66

SOSUI 71 88 86 75 66 74 80 69

TMHMM1 71 90 90 45 80 68 81 89 72

TopPred2 75 90 90 54 77 64 83 90 69

WW 54 95 91 71 71 72 67 67

aData set: Sequence-unique subset of 36 high-resolution membrane helical proteins from PDB (Berman et al 2000). Note: this is the largest subset of all 105 high-resolution
membrane chains, which fulfils the condition that no pair in the set has significant sequence similarity as defined in Rost (1999).
bMethods: see abbreviations at begin of article.
c Per-segment accuracy:Q

ok
 percentage of proteins for which all TM helices are predicted correctly (allowed deviation of up to 3 residues), obs

htmQ% percentage of all observed

helices that are correctly predicted, prdhtmQ% percentage of all predicted helices that are correctly predicted, TOPO percentage of proteins for which the topology (orientation of
helices) is correctly predicted (note: empty for methods that do not predict topology).
dPer-residue accuracy: Q2 percentage of correctly predicted residues in two-states: membrane helix / non-membrane helix, obs

TQ%
2 percentage of all observed TMH helix

residues that are correctly predicted, prdTQ%
2

percentage of all predicted TMH helix residues that are correctly predicted, obs
NQ%

2
percentage of all observed non-TMH helix

residues that are correctly predicted, prdNQ%
2

percentage of all predicted non-TMH helix residues that are correctly predicted.
eERROR: the estimates for per-segment accuracy resulted from a bootstrap experiment with M = 100 and K = 18; the estimates for per-residue accuracy were obtained by
standard deviations over Gaussian distributions for the respective score.
f Numbers in italics: two standard deviations below the numerically highest value in each column (set in bold letters).
NOTE: all methods are tested on the same set of proteins. However, the numbers are NOT from a cross-validation experiment, ie some methods may have used some of the
proteins for training. Generally, newer methods are more likely to be overestimated than older ones. In particular, HMMTOP2, TMHMM1, and WW have been developed
using ALL the proteins, listed here.
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helices correctly for 70%–75% of all proteins (Table 2).
However, the topology is predicted correctly for only about

half of all proteins. The only exception is HMMTOP2, but
all proteins tested here were used to train HMMTOP2, hence
the level of 61% accuracy in topology prediction may be

overestimated significantly. In terms of per-residue scores,
the best current methods correctly predict more than 65% of
the observed TMH residues correctly (Table 2). Although

the results summarised in Table 2 are similar to those recently
compiled on a non-unique set of low- and high-resolution
structures (Möller et al 2001), most estimates still constitute

overestimates since very few methods shown (DAS, PHDhtm,
TopPred2) did NOT use most of the proteins to optimise
prediction accuracy.

Simple hydrophobicity scales are less accurate than

advanced methods. A surprising result recently published
suggested that simple hydrophobicity scales predict

membrane helices almost as accurately as do the most
advanced current prediction methods (Möller et al 2001).
We tested 20 different hydrophobicity scales on various data

sets and could not confirm this optimism (Chen et al unpub).
Rather, the example given in Table 2 for the Whitney-White
scale (WW) appeared to be one of the best simple

hydrophobicity scales, although it predicts all membrane
helices correctly for only 54% of the proteins tested. In fact,
most hydrophobicity scores locate all helices without over-

prediction for less than 40% of the proteins (Chen et al
unpub).

All methods confuse membrane helices with signal

peptides. Signal peptides that are cleaved off secreted proteins
usually contain stretches of hydrophobic residues resembling
membrane helices (Nielsen et al 1996; Nielsen et al 1997a;

Nielsen et al 1997b; Nielsen et al 1999). Hence, most methods
confuse signal peptides with membrane helices. The best
separation is achieved by ALOM2, a method optimised to

sort proteins into classes of sub-cellular localisation (Nakai
and Kanehisa 1992; Nakai and Horton 1999). The most
accurate specialists for membrane prediction (TMHMM and

PHDhtm) appear to falsely predict signal peptides as
membrane helices for 30%–40% of all the signal peptides
we tested (Chen et al unpub). Surprisingly accurate in

rejecting signal peptides is the Wolfenden scale for
hydrophobicity (Wolfenden et al 1979). All other hydro-
phobicity scales predict more than 90% of the signal peptides

as membrane helices (Chen et al unpub).
Many methods predict membrane helices in globular

proteins. Interestingly, most methods have also been

overestimated significantly in their ability to distinguish

between globular and membrane proteins. Particularly poor
is the distinction by hydrophobicity-based methods, which

have reached levels of nearly 100% false positives (Chen et
al unpub). In fact, the only scales we tested that incorrectly
detected membrane helices in less than 80% of all globular

proteins we tested (Chen et al unpub) were: Wolfenden = 2%,
WW = 32%, and Eisenberg-scale = 66%. SOSUI, TMHMM1
and PHDhtm currently distinguish best between membrane

and non-membrane proteins. These three predict membrane
helices in less than 2% of the globular proteins. Similar results
were reported on globular proteins taken from SWISS-PROT

(Möller et al 2001).

Genome analysis
Despite the overestimated performance, predictions of
transmembrane helices are valuable tools to quickly scan

proteomes of entirely sequenced organisms for membrane
proteins. As stated above, hydrophobicity-based methods
mostly fail to distinguish membrane and globular proteins

(Chen et al unpub). Nevertheless, the averages of helical
membrane proteins published for entire genomes are
surprisingly similar between different authors (Goffeau et al

1993; Rost et al 1996b; Arkin et al 1997; Frishman and
Mewes 1997; Jones 1998; Wallin and von Heijne 1998; Liu
and Rost 2001). Apparently, about 10%–30% of all proteins

contain membrane helices. One crucial difference between
the results from different groups is that more cautious
estimates do not find a statistically significant difference in

the percentages of TMH proteins between the three kingdoms:
eukaryotes, prokaryotes and archae (Liu et al unpub). Thus,
the overall content of helical membrane proteins appears not

to correlate with the postulated complexity of an organism
(eukaryotes more complex than prokaryotes; prokaryotes
more complex than archae). However, eukaryotes have

significantly more proteins with over 10 membrane helices
than all other species. Furthermore, the three kingdoms also
differ in the types of membrane proteins that are most

abundant. For example, eukaryotes have more 7TM proteins
(receptors), while prokaryotes have more 6- and 12TM
proteins (ABC transporters) (Wallin and von Heijne 1998;

Liu and Rost 2001).

Emerging and future
developments
Membrane-helix predictions can be improved by averaging

over many methods. The prediction of secondary structure

for globular proteins can be improved by combining many
prediction methods (Rost 2001; Rost et al 2001). Applying a
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similar average, Promponas and colleagues developed their
method CoPreTHi, a web-based application that uses the

results from DAS, ISREC-SAPS, PHDhtm, PRED-TMR,
SOSUI, TMpred and TopPred2 (Promponas et al 1999).
CoPreTHi combines the results into a joint prediction

histogram; residues are predicted as transmembrane if they
are identified as such by at least three methods. Nilsson and
colleagues explored consensus predictions for membrane

protein topology to derive a reliability for the prediction
(Nilsson et al 2000). In particular, they used five methods
(TMHMM, HMMTOP, MEMSAT, TopPred2, and PHDhtm)

to evaluate a test set of 60 Escherichia coli inner membrane
proteins with experimentally determined topologies. They
found that prediction performance varies strongly with the

number of methods that agree, and that the topology of nearly
half of all inner membrane proteins can be predicted with
high reliability (>90% correct predictions) by a simple

majority vote. When only two methods agree on topology,
none of the topologies were found to be correct.

Identifying amphiphilic α -helices may improve

predictions. A number of α-helix forming peptides have been
reported to promote membrane fusion and other biological
events related to the disruption of the hydrophobic/

hydrophilic interface induced by the hydrophobicity gradient
along the central helical axis. This hydrophobicity gradient
may facilitate the penetration of a membrane, and may thus

destabilise the packing of the lipids in the membrane bilayer
and/or of the protein/water interface. This could then disrupt
the interface and promote related biological events (Martin

et al 1994; Brasseur et al 1997; Fujii 1999; Pecheur et al
1999; Peuvot et al 1999; Brasseur 2000). To facilitate more
detailed descriptions of amphiphilic α-helices, quantitative

methods have been developed that measure the overall
amphiphilicity of helices. Examples are the Depth Weighted
Insertion Hydrophobicity (DWIH) method (Roberts et al

1997) and the commonly used hydrophobic moment
introduced by Eisenberg and colleagues (Eisenberg 1982;
Eisenberg et al 1984). Harris et al (2000) improved the

identification of obliquely orientated α-helices through a
hydrophobic moment plot. In particular, they found a linear
association between the mean hydrophobic moment <µ

H
>

and the corresponding mean hydrophobicity, <H
0
>. The

association was described by the least squares regression line:
<µ

H
> =0.508- 0.422< H

0
 >. Hence, proteins that fall along

this line would be a putative oblique-orientated α-helix. The
results suggested that oblique orientated α-helices may
possess a characteristic balance between the amphiphilicity

and the hydrophobicity of their structures (Harris et al 2000).

Helical-membrane and signal peptide predictions have

to be combined explicitly. One of the problems with some of

the current methods is that they falsely predict signal peptides
as transmembrane helices. The best signal peptide
identification tool appears to be SignalP (Nielsen et al 1997a;

Nielsen et al 1997b; Nielsen et al 1999). Trivially, this method
can be incorporated into a post-prediction filter to remove
predicted helices in the signal peptide region. Two methods

have been developed that work in this direction. (1) PSORT
(Nakai and Horton 1999) uses a variety of predictions and
sequence motifs to group proteins according to their sub-

cellular localisation, thereby implicitly combining membrane
predictions and signal peptide predictions. (2) HMMTOP
and TMHMM implicitly use known signal peptides to refine

their predictions. However, a more thorough combination is
still missing.

There are databases for particular families of membrane

proteins and sequence motifs.  Databases of protein
signatures, ie relatively short sequence motifs, are becoming
increasingly valuable diagnostic resources. While PROSITE

(Hofmann et al 1999) annotates single motifs that have been
unravelled experimentally, PRINTS encodes groups of motifs
in the form of fingerprints (Attwood et al 2000). For instance,

receptor subtype fingerprints comprise different parts of the
terminal, loop and TM regions of G-protein-coupled
receptors (GPCRs). Databases such as these can certainly be

incorporated into membrane protein prediction methods to
help identify novel receptors (Horn et al 2001). The strong
interest in GPCRs has also led to specialised bioinformatics

tools that identify GPCRs. Kim et al (2000) presented an
algorithm dubbed quasi-periodic feature classifier (QFC) that
characterises the physico-chemical properties of membrane

proteins with multiple helices. They apply a non-parametric
linear discriminant function to their variables describing the
‘feature space’, and thus separate GPCRs from non-GPCRs.

The expected advantage of this approach is that it may find
more remotely similar homologues than methods purely based
on sequence similarity. Unfortunately, a thorough cross-

validation of the method that would undermine this hope is
still missing.

Membrane-specific substitution matrices improve

database searches. Database searches  are based on alignment
methods that need to score the match of amino acid X in
protein A with amino acid Y in protein B. A variety of

substitution matrices are used for this purpose (Barton 1996;
Henikoff 1996). All these substitution matrices were
developed based on data sets of globular proteins. It is then

not surprising that these matrices are not optimal to align
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membrane regions. Ng, Henikoff and Henikoff (2000) have
recently addressed this problem by developing the membrane-

helix specific substitution matrix PHAT. They demonstrated
that this matrix aligned membrane proteins more accurately
than globular matrices. The PHAT matrix series used target

frequencies from PHDhtm matrices (ie from transmembrane
regions) and background frequencies from the Persson-Argos
matrix (ie from hydrophobic regions) with corresponding

relative entropy. Obviously, the necessary next step is to
implement the following cycle: (1) predict membrane helices
based on standard alignments, (2) use PHAT for the predicted

membrane region to realign, (3) use the PHAT alignment to
refine the prediction, and (4) possibly repeat steps 2–3. Such
a refined search may allow automatic detection of distant

similarities in the twilight zone (Rost 1999) that otherwise
remain hidden until the experimental structure is available.

Conclusions
Optimist: membrane predictions are relatively accurate and

useful. Overall, prediction methods are more accurate and
more useful for membrane proteins than they are for globular
proteins. The best current methods for helical membrane

proteins appear to correctly predict all membrane helices for
more than 60% of all proteins. Furthermore, all advanced
methods that are not based solely on hydrophobicity

incorrectly detect membrane helices in less than 10% of all
globular proteins (Möller et al 2001; Chen et al unpub). In
contrast, most methods based only on hydrophobicity go

wrong for more than 80% of all globular proteins, and even
the best current methods frequently confuse signal peptides
and membrane helices (Chen et al unpub). Nevertheless, most

often the best methods correctly reject signal peptides (Chen
et al unpub). Most prediction errors constitute the over- or
under-prediction of a single membrane helix. While this has

important impacts on functionally classifying the protein, the
good news is again that most often the good methods correctly
predict the number of membrane helices, ie they may help in

providing a first clue about aspects of function in the context
of genome analysis. Recently, a number of tools have
addressed the problem to predict β-membrane proteins. The

estimated levels of prediction accuracy are promising.
Unfortunately, there is no accurate method yet that detects
β-membrane proteins in context of entire genome searches.

Pessimist: all methods have been overestimated

significantly. A number of recently determined high-
resolution structures of membrane proteins revealed that the

accuracy of low-resolution experiments may have been
overestimated. However, the accuracy of prediction methods

was overestimated more seriously. Particular problems for
prediction methods result from the following observations

(Chen et al unpub): (1) many membrane helices span over
more than 30 residues, and (2) membrane helices are not as
well-conserved as they appeared to be in the much smaller

sequence databases of a decade ago. A seemingly ‘trivial’
flaw of many estimates published by various groups was that
they compared results based on different data sets and

different scores measuring accuracy. The most important
problem may have been that developers were not careful
enough in avoiding overfitting the few experimentally known

proteins. In fact, this reality strongly constrains the estimates
of accuracy provided in this analysis: only the methods
published before 1998 (DAS, PHD, and TopPred2) did not

use most of the proteins for which the results are given in
Table 2. Thus, the actual prediction accuracy may even be
lower. Current prediction methods are still valuable both for

everyday sequence and entire proteome analysis. However,
it seems that ‘simple’ predictions of the location of helices
are not as simple as anticipated. A lot of work remains to be

done before we reach the levels of accuracy that optimists
may have believed were reached a decade ago.

The ultimate solution: we need more high-resolution

experiments! Promising new strategies may yield more high-
resolution structures of membrane proteins. The frequently
observed instability of membrane proteins outside of a lipid-

bilayer may call for crystallising these proteins in membrane-
like environments (Landau and Rosenbusch 1996). Such a
membrane system, which consists of lipid, water and protein

in appropriate proportions, forms a complex three-
dimensional lipidic array providing nucleation sites (seeding),
and supports growth by lateral diffusion of protein molecules

in the membrane (feeding). Future developments may include
the use of different lipids, the inclusion of various additives,
the development of different types of crystallisation screens

and the rational introduction of covalent or non-covalent
lattice contacts (Gouaux 1998). Although, structural genomics
for membrane proteins is still far away, we hope that with

every dozen new high-resolution structures solved prediction
methods will gradually evolve. How many years will it then
take until prediction methods reach the levels of accuracy

that have been mistakenly published already in the last
millennium? The answer depends on the number of surprises
about non-canonical features of membrane proteins that await

us on the road ahead! Clearly, the surprise details in high-
resolution structures over the last five years have re-opened
the field of simply predicting the topology and location of

membrane proteins.
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