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Abstract  
We investigated the possibility of applying a hybrid feed-forward inverse nonlinear auto-regressive 

with exogenous input (NARX) fuzzy model-PID controller to a nonlinear pneumatic artificial muscle 

(PAM) robot arm to improve its joint angle position output performance. The proposed hybrid inverse 

NARX fuzzy-PID controller is implemented to control a PAM robot arm that is subjected to nonlinear 

systematic features and load variations in real time. First the inverse NARX fuzzy model is modeled 

and identified by a modified genetic algorithm (MGA) based on input/output training data gathered 

experimentally from the PAM system. Second the performance of the optimized inverse NARX fuzzy 

model is experimentally demonstrated in a novel hybrid inverse NARX fuzzy-PID position controller 

of the PAM robot arm. The results of these experiments demonstrate the feasibility and benefits of the 

proposed control approach compared to traditional PID control strategies. Consequently the good 

performance of the MGA-based inverse NARX fuzzy model in the proposed hybrid inverse NARX 

fuzzy-PID position control of the PAM robot arm is demonstrated. These results are also applied to model 

and to control other highly nonlinear systems. 

 

Keywords: modeling and identification, nonlinear inverse NARX fuzzy model, pneumatic artificial muscle (PAM) robot 

arm, modified genetic algorithm (MGA) optimization, hybrid inverse NARX fuzzy-PID control. 
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1. INTRODUCTION 
 

A new type of pneumatic actuator, the pneumatic artificial muscle (PAM), is becoming increasingly 

popular for used in precision robotic tasks as well as in human exoskeleton technologies intended to 

enhance strength and mobility. PAM possesses all the advantages of traditional pneumatic actuator (i.e., 

low cost, light weight) along with high power/weight and power/volume ratios (Chou et al., 1994a). 

This is an advantage for robotic and exoskeleton applications in which heavy actuators can add 

significantly to the payload (Chou et al., 1994b; Tsagarakis et al., 2000; Caldwell et al., 1995; Cocatre-

Zilgien et al., 1996; Pack et al., 1997; Ahn and Anh, 2006, 2007a; Ahn and Thanh, 2006). 

A major problem inherent to PAM actuators and to pneumatic actuators in general, is the problem of 

precise control. This problem occurs because pneumatic actuators are highly nonlinear and their 

properties vary with time. Since rubber tube and plastic sheath components are continually in contact 

with each other and its shape is continually changing, the PAM’s temperature fluctuates and changes 

the properties of the actuator over time. Approaches to PAM control have included PID control, 

adaptive control (Lilly, 2003), nonlinear optimal predictive control (Reynolds et al., 2003), variable 

structure control (Repperger et al., 1998; Medrano-Cerda et al.,1995), gain scheduling (Repperger et 

al.,1999), and various soft computing approaches including neural network Kohonen training algorithm 

control (Hesselroth et al.,1994), neural network + nonlinear PID controller (Ahn and Thanh, 2005), and 

neuro-fuzzy/genetic control (Chan et al., 2003; Lilly et al., 2003). 

Due to their highly nonlinear nature and time-varying parameters, PAM robot arms present a 

challenging nonlinear model problem. Previous studies have used a number of approaches to model 

PAM actuators. Balasubramanian et al., (2003a) applied the fuzzy model to identify the dynamic 

characteristics of PAM and later applied the nonlinear fuzzy model to model and to control of the PAM 

system. Lilly (2003) presented a direct continuous-time adaptive control technique and applied it to 

control joint angle in a single-joint arm. Tsagarakis et al. (2000) developed an improved model for 

PAM. The disadvantage of these PAM manipulator models lies in their mathematical approaches, 

which are too complex to apply in practice. Hesselroth et al. (1994) presented a neural network that 

controlled a five-link robot using back propagation to learn the correct control over a period of time. 

Repperger et al. (1999) applied a gain scheduling model-based controller to a single vertically hanging 

PAM. Chan et al., (2003) and Lilly et al., (2003) introduced a fuzzy P+ID controller and an 

evolutionary fuzzy controller, respectively, for the PAM system. The novel feature is a new method of 

identifying fuzzy models from experimental data using evolutionary techniques. Unfortunately, these 

fuzzy models are clumsy and have only been tested in simulation studies. Previously, we (Ahn and Anh, 
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2006) applied a modified genetic algorithm (MGA) for optimizing the parameters of a linear ARX 

model of the PAM manipulator which can be modified online with an adaptive self-tuning control 

algorithm, and then (Ahn and Anh, 2007b) successfully applied recurrent neural networks (RNN) for 

optimizing the parameters of neural NARX model of the PAM robot arm. Recently, we (Ahn and Anh, 

2009) successfully applied the modified genetic algorithm (MGA) for optimizing the parameters of the 

NARX fuzzy model of the PAM robot arm. 

The implementation of a simple but efficient model for the one-link PAM robot arm that can not only 

be utilized efficiently for modeling, identification and simulation but also can be applied efficiently to 

the control of highly nonlinear systems like the PAM robot arm remains a challenging problem. 

Conventionally, the fuzzy models based on expert human knowledge of the system were used for such 

problems and often involved heuristic trial and error approach. Recently, research has been conducted 

to tune fuzzy models using real data (Nelles O., 2000). Real data would make it possible to develop a 

good fuzzy model of a system while restricting the complexity of the model. For the purposes of 

nonlinear system control, a fuzzy model obtained from the experimental input-output training data set 

is required for prediction, simulation, optimization and control of an unknown system plant. 

 In this paper we describe the modeling and identification of a PAM robot arm actuated by a group of 

antagonistic PAM pairs. We suggest a modified genetic algorithm (MGA) for the generation of an 

inverse NARX fuzzy model (INFM) based on the experimental input-output data obtained from a PAM 

robot arm system. In this way, the proposed MGA algorithm optimally generates appropriate fuzzy if-

then rules to characterize the dynamic features of the PAM robot arm. The proposed INFM model 

identification approach based on the MGA method is successfully applied to control not only the PAM 

robot arm system but also other dynamic nonlinear processes. 

The unique contributions of this paper include the fact that  for the first time, the modeling and 

identification of the proposed inverse NARX fuzzy model of the PAM robot arm are realized; the 

optimization of the inverse NARX fuzzy model’s parameters of the PAM robot arm is completed using 

an MGA; an efficient inverse NARX fuzzy model is formulated in both first order NARX11 and 

second order NARX22 structures and shown to be suitable for the control of highly nonlinear PAM 

robot arm; and finally the good performance of the MGA-based inverse NARX fuzzy model in the 

proposed hybrid inverse NARX fuzzy-PID position control of the PAM robot arm is demonstrated.  

The paper is arranged as follows. Section 1 is a literature review highlighting studies addressing the 

modeling and identification of PAM robot arms, and presents novel features of MGA-based 

identification using the inverse NARX fuzzy model investigated in this paper. Section 2 introduces the 

proposed modified genetic algorithm (MGA) used for PAM robot arm modeling and identification. 
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Section 3 presents the INFM model. Section 4 presents the hardware configuration of the PAM robot 

arm and introduces the proposed hybrid inverse NARX fuzzy-PID control of the PAM robot arm. 

Section 5 presents and analyzes the results of MGA-based modeling and identification of the inverse 

NARX fuzzy model and assesses its performance in the proposed hybrid inverse NARX fuzzy-PID 

control scheme. Section 6 concludes the paper. 

 

2. MODIFIED GENETIC ALGORITHM (MGA) FOR IDENTIFYING THE INVERSE NARX 

FUZZY MODEL 

Classic genetic algorithm (GA) involves three basic operations: reproduction, crossover and mutation. 

To derive a solution to a near optimal problem, GA creates sequences of populations that correspond to 

the numerical values of a particular variable. Each individual, namely a chromosome, in a population 

represents a potential solution to the problem in question. Selection is the process by which 

chromosomes in a population that contain better fitness value have a greater probability of reproducing. 

In this paper, we used a roulette-wheel selection scheme. Through selection, chromosomes encoded 

with better fitness values are chosen for recombination to yield off-springs for successive generations. 

Then the natural evolution (including crossover and mutation) of the population will be continued until 

a desired termination or error criterion is achieved. This results in a final generation containing highly 

fit chromosomes representing optimal solutions to the searching problems. Figure 1 describes the 

procedure of GA optimization. 

2.1. Modifications to the conventional genetic algorithm 

In recent years, considerable research has focused on improving GA performance (Chen et al., 2000; 

Potts et al., 1994; Back et al., 2001). Inappropriate choices of operators and parameters used in the GA 

process make GAs susceptible to premature convergence. In this paper, an attempt is made to 

simultaneously apply the proposed improved strategies to overcome such problems. 

(1) Extinction strategy: 

 Because of the properties of global optimization and the fast convergence of the GA process, after a 

certain number of generations, the searching process thus tends to stagnate and the final result may 

be trapped into a local optimum. The only mechanism of the conventional GA that generates better 

chromosomes is mutation. Unfortunately, slow mutation rates must be chosen to yield a stable 

process. These slow rates lead to very small increases in fitness values especially for long 

chromosomes. This paper introduces a novel technique called the extinction strategy to overcome 

this problem. Based on this concept, if no further increases in the fitness value are detected; i.e., a 

variance equal to zero, the best q% of chromosomes survive every Le generation according to their 
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better fitness values. The others are randomly generated to fill out the population. The surviving 

chromosomes are allowed to mate as usual to form the next generation. 

(2) Elitist strategy: 

 When creating a new population by crossover and mutation, the best chromosomes may be lost. 

The elitist strategy guarantees the survival of the best individual in a generation. Thus, this strategy 

ensures the continuous increase of maximum fitness values from generation to generation. 

Practically, this strategy can be implemented by replacing the worst chromosome in the next 

generation with the best chromosome of the previous generation. Consequently, elitism can rapidly 

increase the performance of the GA. 

(3) G-bit strategy: 

 A single bit mutation of a chromosome can be thought of as a local search in an area surrounding 

that chromosome within a multi-dimensional space. When the population converges prematurely to 

a local optimum, a single bit mutation may be required to relocate to a new region. A high mutation 

rate proves helpful in this situation, but it may also tend to transform the genetic search into a 

random search. To solve this problem, this paper will apply an extra operation, called the G-bit 

operation, to the GA process. Back et al. (2001) introduced G-bit improvement as a simply change 

of a single bit value from 0 to 1 or vice versa if the fitness of this modified string is better than that 

of the original string. Otherwise the original string remains unchanged. This test is executed 

repeatedly from the first bit to the last bit of a string. Furthermore, in order to save computing time, 

the G-bit improvement is only applied to the best individual in a generation. 

In this paper, the proposed MGA adopts all of these advanced strategies. The elitist strategy and G-

bit operation ensures a steady increase of the maximum fitness value. The extinction strategy prevents 

the searching process from being trapped in a local optimum. Consequently, the overall efficiency and 

the searching process of the optimum solution are improved by these modifications. 

 

2.2. Modified genetic algorithm (MGA) for optimizing inverse NARX fuzzy model’s parameters 

A general nonlinear model is considered: 

      ),,()( UYWfky =          (1) 

where f() is a nonlinear function such that (1) is stable; W = [w1,w2,..,wh] is a set of h fixed parameters; 

Y = [y(k-1),..,y(k-n)] is a set of n autoregressive output terms and U = [u(k-1),..,u(k-m)] is a set of m 

past input values. 

In the case that the structure of f(.) is assumed to be known, Equation (1) can be estimated as 
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      ),,ˆ()(ˆ UYWfky =          (2) 

where ]ˆ,...,ˆ[ˆ
1 hwwW =  is a set of h parameters estimated and )(ˆ ky  is the estimated output. 

In order to apply the novel proposed MGA, each estimated parameter iŵ (i=1,
…

, h) will be encoded 

as a binary string called a gene. All genes are cascaded to form a longer string Ŵ called a chromosome. 

This MGA-based identification strategy is used to search for the best chromosome Ŵ  so that 

)()(ˆ kyky →  from the testing input-output data range. Each generation will explore a collection of N 

chromosomes of estimated parameters. 

Consider the fitness value Fj associated with the j 
th

 chromosome in a population that is defined as 

1

1

24
)))(ˆ)((

1
.(10

−

=

∑ −=
M

k

jj kyky
M

F         (3) 

in which k is the discrete time index in the identification process; M is the window size through which 

errors will be accumulated and )(ˆ ky j is the estimated k
th

 output that belongs to the j
th 

chromosome of 

the estimated parameters. In each generation, the MGA will search for the maximum fitness value over 

the entire space of parameters. Experimentally, the larger the M value is when modified, the slower the 

execution of the MGA becomes. Unfortunately, a small M value tends to cause the estimation to 

oscillate. Consequently, a trade-off should be considered when choosing an available M value. 

Before running the MGA algorithm, it needs to tune the following parameters: 

Pc: crossover rate used in the crossover operation 

Pm: mutation rate used in the mutation operation 

D: number of chromosomes chosen for mating as parents used in the crossover operation 

N: number of chromosomes in each generation 

Lt: number of generations tolerated for no improvement on the value of the fitness before the MGA is 

terminated 

Le: number of generations tolerated for no improvement on the value of the fitness before the 

operator extinction is applied. It needs to pay attention that te LL 〈〈 . 

ρ : portion of the chosen parents permitted to survive into the next generation used in the crossover 

operation 

q:  percentage of chromosomes survived according to their fitness values in the extinction strategy 

The steps of the MGA-based model identification procedure are summarized as follows: 
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Step 1: tune the parameters as described above. Encode the estimated parameters into genes and 

chromosomes as a string of binary digits. Considering that the parameters lie in several bounded 

regions ηk 

kkw η≤  for k=1,…,h.          (4) 

The length of the chromosome needed to encode Wk is based on ηk and the desired accuracy δk. Set i 

= k = m = 0. 

Step 2: Randomly generate randomly the initial generation of N chromosomes. Set i=i+1. 

Step 3: Decode the chromosomes then calculate the fitness value for every chromosome of the 

population in the generation. Consider iFmax
 as the maximum fitness value in the i

th
 generation. 

Step 4: Apply the elitist strategies to guarantee the survival of the best chromosome in each 

generation. Then apply the G-bit strategy to this chromosome to improve the efficiency of the MGA in 

local search. 

Step 5: Combine the basic sub-steps of the conventional GA optimization 

(1) Reproduction: In this paper, reproduction is set as a linear search through roulette wheel values 

weighted proportional to the fitness value of the individual chromosome. Each chromosome is 

reproduced with the probability of 

∑
=

N

j

j

j

F

F

1

 with j being the index of the chromosome (j=1,…,N).  

(2) Crossover: Choose D chromosomes possessing maximum fitness values among N 

chromosomes of the present gene pool for mating and then allow some of them, called the ρρρρ best 

chromosomes, are allowed to survive into the next generation. Parents chosen from D chromosomes 

will be mating with the crossover rate Pc. 

(3) Mutation: Mutate a bit of the string ( 10 ↔ ) with the mutation rate Pm.  

Step 6: If 1

maxmax

−= ii FF , then k=k+1, m=m+1 ; otherwise, k=0 and m=0. 

Step 7: If k=Le, then apply the extinction strategy and then set k=0. 

Step 8: If m=Lt, then terminate the MGA algorithm; otherwise go to Step 3 to run the (i+1)
th

 

generation. 

The flow chart of the proposed MGA-based optimization and identification process of the PAM 

manipulator fuzzy model is given in Fig. 2. 

The present research has multiple goals. First the proposed MGA will be applied to identify the PAM 

robot arm inverse NARX fuzzy model. Second we will compare the performance results of the 

proposed MGA-based inverse NARX11 fuzzy model with the proposed MGA-based inverse NARX22 
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fuzzy models. Finally we evaluate the performance of the proposed MGA-based inverse NARX fuzzy 

model in a hybrid inverse NARX fuzzy-PID position control scheme applied to a highly nonlinear 

PAM robot arm.  

 

3. DESIGN AND IMPLEMENTATION OF THE MGA-BASED INVERSE NARX FUZZY 

MODEL 

3.1. Assumptions and constraints  

As the PAM robot arm system is operated nearly symmetrically, it is assumed that the symmetrical 

membership functions about the y-axis will provide a valid fuzzy model. A symmetrical rule-base is 

also assumed. The following constraints are introduced to the design of the inverse NARX fuzzy 

Model (INFM). First, all universes of discourses are normalized to lie between –1 and 1 with scaling 

factors external to the INFM used to give appropriate values to the input and output variables. Second, 

it is assumed that the first and last membership functions have their apexes at –1 and 1, respectively, 

and that only triangular membership functions are to be used. Third, the number of fuzzy sets is 

constrained to be an odd integer greater than unity. Finally, the base vertices of the membership 

functions are coincident with the apex of the adjacent membership functions. This ensures the value of 

any input variable is a member of at most two fuzzy sets. 

3.2. Spacing parameter 

The spacing parameter specifies how the centers are spaced out across the universe of discourse. This 

method of designing the membership functions is inspired by previous studies (Park et al., 1995; 

Cheong et al., 2000). A value of one indicates even spacing, while a value smaller than unity indicates 

that the membership functions are more spaced out in the center of the range and closer together at the  

extremes as shown in Fig.3. The position of each center is calculated by taking the position where the 

centre would be if the spacing were even and raising this to the power of the spacing parameter. Figure 

3 presents the triangle input membership function with MFs = 7 and a spacing factor = 2. 

 

3.3. Designing the rule base 

As well as specifying the membership functions, the rule-base must also be designed.  To specify a 

rule base, characteristic spacing parameters for each variable and a characteristic angle for each output 

variable are used.   
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In the proposed construction method, certain characteristics of the rule-base are that extreme outputs 

usually occur when the inputs have extreme values while mid-range outputs are generated when the 

input values are mid-range and similar combinations of input linguistic values lead to similar output 

values. Using these assumptions the output space is partitioned into different regions corresponding to 

different output linguistic values. The space partitioning is determined by the characteristic spacing 

parameters and the characteristic angles. The angles determine the slope of line through the origin on 

which seed points are placed. The positioning of the seed points is determined by a spacing method 

similar to the one used to determine the center of the membership function.  

Grid points representing each possible combination of the input linguistic values are also placed in 

the output space. These are spaced in the manner described above. The rule-base is determined by 

calculating which seed-point is closest to each grid point. The output linguistic value representing the 

seed-point is set as the consequent of the antecedent represented by the grid point. This is illustrated in 

Fig. 4a, which is a graph showing seed points (blue circles) and grid-points (red circles). Figure 4b 

shows the derived rule-base. The lines on the graph delineate the different regions corresponding to 

different consequents. The parameters for this example are 0.9 for both input spacing parameters, 1 for 

the output spacing parameter, and 45° for the angle theta parameter. 

 

3.4. Fuzzy inference system (FIS) implementation for the inverse NARX fuzzy model. 

To automatically implement the fuzzy inference system (FIS) structure for the proposed MGA-based 

INFM model, a necessary program is written in M-function that utilizes the fuzzy logic toolbox (FLT) 

for MATLAB to create the FIS. It respectively creates the membership functions and the rule-base and 

then creates the FIS from both of them.  

First, error checking is performed to ensure that the parameters chosen by the MGA are valid. 

Secondly, the input/output parameters of the INFM model are called to create the membership 

functions of each of the input/output variables. Then creating a rule-matrix in the format required by 

the FLT creates a suitable rule-base for each of the output variables and puts them together in a suitable 

way to create the FIS. In this paper, only triangular membership functions (MF) are used. From two 

parameters, namely, the number of MF and the spacing parameters, the centers of each membership 

function are calculated. As the base vertices are at the same positions as the centers of the adjacent MFs, 

the calculating task of the full set of input-output MF parameters is then completed. 

The next step of the FIS implementation is to create the rule-base. This step returns a rule-base based 

on the parameters that are passed in. These parameters are composed of a number  of  MFs per variable,  
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spacing parameters for each variable and characteristic angles for the seed lines. First, the coordinates 

of the seed points are calculated and then the grid-point coordinates are calculated.  The consequents  

for each rule are then generated for each grid-point by measuring the distance to each seed point and 

finding the shortest one. The antecedents and consequents are then returned in a matrix in the format 

required by the FLT. 

With all of these, a full dynamic FIS can be generated using only a number of conformable 

parameters. This is ideal for applying the MGA to find an optimal INFM as the MGA can work on 

these parameters and improve the performance of the INFM characteristics. How this is achieved is 

demonstrated in the next subsection. 

 

3.5. Parameter encoding 

To run an MGA, suitable encoding and bounds for each of the parameters need to be carefully 

decided. For this task the parameters given in Table 1 are used with the shown ranges and precisions. 

Binary encoding is used as necessary to allow the MGA to more flexibly search for the solution space. 

The numbers of the membership functions are limited to the odd integers inclusive between (3–5) in 

the case MGA-based PAM robot arm INFM model design. Experimentally, this was considered a 

reasonable constraint. The advantage of using this constraint is that this parameter can be captured in 

just one bit per variable. 

For the spacing parameters, two separate parameters are used. The first, within the range (0.1– 1), 

determines the magnitude, and the second, which takes only the values –1 or 1, is the power by which 

the magnitude is raised. This determines whether the membership functions compress in the center  or  

at the extremes. Consequently, each spacing parameter obtains the range (0.1 – 10). The precision 

required for the magnitude is 0.01, meaning that eight total bits are used for each spacing parameter.  

The scaling for the input variables is allowed to vary in the range (0 – 100) while that of the output 

variable is given the range (0 – 1000). These values were identified after a few trials of the MGA used 

wider ranges, as the values returned were found to lie within these ranges. For this encoding scheme  

the total number of bits per chromosome are 105, 102 and up to 175 in the case of the MGA-based 

PAM robot arm inverse TS fuzzy model, the inverse NARX11 fuzzy model, and the inverse NARX22 

fuzzy model, respectively. This means that there are 2
102

 or approximately 5x10
30

 potential solutions, 

an unknown but likely very small fraction of which represents a desirable INFM model that would be 

discovered by the proposed MGA. Based on the experiment results, the proposed MGA succeeds in 
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finding close to optimal solutions in large spaces despite having no prior knowledge. This demonstrates 

the power of proposed MGA. 

 

3.6. Nonlinear inverse NARX fuzzy models for PAM robot arm. 

The newly proposed INFM for a PAM robot arm presented in this paper is improved by combining 

the extraordinary predictive and adaptive features of the NARX model structure. The resulting model 

established a nonlinear relationship between the past inputs and outputs and the predicted output, where 

the system’s prediction output is a combination of the system output produced by real inputs and the 

system’s historical behaviors. It can be expressed as: 

( ) ( ) ( ) ( ) ( )( )dbda nnkunkunkykyfky −−−−−= ,...,,,...,1ˆ      (5) 

Here, na and nb are the maximum lag considered for the output and input terms, respectively, nd is the 

discrete dead time, and f represents the mapping of the fuzzy model. 

The structure of the newly designed INFM is governed by the fact that this NARX fuzzy model 

interpolates between local linear, time-invariant (LTI) ARX models as follows: 

Rule j: if z1(k) is  A1,j  and … and zn(k) is  An,j then 

( ) ( ) ( )∑ ∑
= =

+−−+−=
a bn

i

n

i

j

d

j

i

j

i cnikubikyaky
1 1

ˆ       (6) 

where the element of the z(k) “scheduling vector” are usually a subset of the x(k) regressors that 

contain the variables relevant to the nonlinear behaviors of the system, 

( ) ( ) ( ) ( ) ( ){ }dbda nnkunkunkykykZ −−−−−∈ ,...,,,...,1      (7) 

while the fj(q(k)) consequent function contains all the regressor  q(k)=[X(k) 1], 

( ) ( ) ( )∑ ∑
= =

+−−+−=
a bn

i

n

i

j

d

j

i

j

ij cnikubikyakqf
1 1

)(       (8) 

In the simplest case, the NARX type zero-order TS fuzzy model (the singleton or Sugeno fuzzy 

model which is not applied in this paper) is formulated by the simple rules consequents as: 

Rule j : if  Z1(k) is A1, j  and…and  Zn(k) is  An,j then 

( ) jcky =ˆ            (9) 

where z(k) contains all inputs of the NARX model: 

( ) ( ) ( ) ( ) ( ) ( ){ }dbda nnkunkunkykykXkZ −−−−−== ,...,,,...,1     (10) 

Thus the difference between the NARX TS fuzzy model and the fuzzy TS model method is that the 

output from the TS fuzzy model is linear and constant, and the output from NARX fuzzy model is the 

NARX function. However they have the same fuzzy inference structure (FIS). 
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The block diagrams presented in Fig. 5a and Fig. 5b illustrate the difference between the MGA-based 

PAM robot arm inverse TS fuzzy model identification and the MGA-based PAM robot arm INFM 

design. 

The block diagrams presented in Fig. 5b and Fig. 5c illustrate the improvement from the MGA-based 

PAM robot arm inverse NARX11 fuzzy model identification to the MGA-based PAM robot arm 

inverse NARX22 fuzzy model identification. All such block diagrams will be studied thoroughly in 

this paper. 

4. CONTROL SYSTEM AND HARDWARE CONFIGURATION SETUP 

4.1. Hybrid feed-forward inverse NARX fuzzy model –PID control scheme 

The novel proposed hybrid inverse NARX fuzzy-PID control scheme is depicted in the Fig. 6. Since 

the combination of the feedforward control and the feedback PID control in a closed–loop system is an 

efficient technique and has been proven to be more stable, more robust and more accurate than non-

hybrid schemes (Boerlage et al., 2003), this hybrid scheme is used in this paper. In a feed-forward 

controller design, the proposed INFM of the PAM robot arm is designed offline to approximate as 

closely as possible the dynamic and nonlinear features of the PAM robot arm. This INFM is then 

incorporated in parallel with the closed–loop feedback PID controller to increase the accuracy and to 

ameliorate the performance of the joint position control of the PAM system. The block diagram of the 

proposed hybrid inverse NARX fuzzy-PID controller is shown in Fig.6. 

The basic concept underlying this approach is to learn the PAM robot arm’s inverse characteristics 

and to use the INFM to generate the compensated control signal UFUZZY. The main equation of the 

proposed control algorithm is given by: 

FUZZYPID UUU +=           (11) 

where U is the required control voltage, UPID is the control voltage generated by the PID controller and 

UFUZZY is the control voltage generated by the INFM. The INFM obtains the dynamic inverse PAM 

manipulator model. The error e(k) creates the compensating value UPID through the PID controller 

while the proposed hybrid inverse NARX fuzzy-PID control is in operation. This occurs to compensate 

for modeling errors and un-modeled disturbances. Likewise, the parallel-connected conventional PID 

controller also contributes to a faster and more accurate tracking performance. 

4.2. Experimental Setup 

The prototype PAM robot arm used in this paper has two axes, is closed loop activated with two 

antagonistic PAM pairs, and is pneumatically driven controlled through two proportional valves. Each 
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of the two axes provides a different motion and contributes one degree of freedom link of the PAM 

robot arm (see Fig. 8). 

 In this paper, the first joint of the PAM robot arm is fixed and the proposed control algorithm is 

applied to control the joint angle position of the second joint of the PAM robot arm. 

The experimental system is illustrated in Fig.9. We used a proportional valve manufactured by 

FESTO Corporation. An angle encoder sensor is used to measure the output angle of the joint. The 

entire system is a closed loop system operated through a computer. It first generates u0(t)=5[v] to 

inflate the artificial muscles with air pressure at P0 (initial pressure) to render the joint initial status. By 

changing the input u(t) from the D/A converter, it could set the air pressures of the two artificial 

muscles at (P 0 + ∆P) and (P 0 - ∆P), respectively. As a result, the joint is forced to a certain angle and 

we can then measure the joint angle rotation through the rotary encoder and the counter. 

The experimental apparatus is shown in Fig.10. The hardware includes an IBM compatible PC 

(Pentium 1.7 GHz) that sends the control voltage signal u(t) to control the proportional valve (FESTO, 

MPYE-5-1/8HF-710B) through a D/A board (ADVANTECH, PCI 1720 card) that changes the digital 

signal from the PC to analog voltage u(t). The torque is generated by the contraction and the dilation of 

the antagonistic artificial muscles. Consequently, the second joint of the PAM manipulator is rotated. 

The joint angle, θ[deg], is detected by a rotary encoder (METRONIX, H40-8-3600ZO) with a 

resolution of 0.1[deg] and fed back to the computer through a 32-bit counter board (COMPUTING 

MEASUREMENT, PCI QUAD-4 card), which changes digital pulse signals to a joint angle value y(t). 

The external inertia load could be tested with two different loads (0.5[kg] and 2[kg]). The experiments 

are conducted under the pressure of 4[bar] and all control software is coded in MATLAB-SIMULINK 

with the C-mex S-function. 

 

5. EXPERIMENTAL RESULTS. 

 

5.1. Results of the MGA-based INFM identification of the PAM robot arm. 

A prototype PAM robot arm is chosen for INFM design. The essential procedure consists of four 

basic steps as considered in Fig.3. The first step obtains the experimental data that describes the 

underlying intrinsic features of the PAM robot arm. Fig.11 presents the testing input applied to the 

tested PAM robot arm and the responding joint angle output collected from it. This experimental input-

output data is used for training and validating the proposed INFM. 
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Pseudo Random Binary Signal (PRBS) input during the first 40 seconds and output from the 

corresponding PAM robot arm joint angle are used for estimating, while the PRBS input during the 

consecutive 40 seconds along with the output from the corresponding PAM robot arm joint angle will 

be used to validate the derived model (Fig.11). 

Two different identification cases were considered, including the proposed MGA-based PAM robot 

arm inverse NARX11 fuzzy model and the inverse NARX22 fuzzy model. 

The identification block diagram based on the experimental input-output data values measured from 

the PAM robot arm is shown in Fig.5. Table 1 contains the fuzzy model parameters used for encoding 

the optimized input values of the MGA-based optimization algorithm. The range (3–5) corresponds to 

the number of membership functions permitting two different odd values that would be chosen by the 

MGA (3 and 5).  

The novel feature of the proposed inverse NARX11 fuzzy model lies in the exploitation of two input 

variables Y(z) and U(z-1) instead of Y(z) and Ydot(z) which are used in the conventional TS Fuzzy 

model. Likewise, the proposed inverse NARX22 fuzzy model is composed of four input variables Y(z), 

Y(z-1), U(z-1) and U(z-2). This novel structure combines the extraordinary approximating ability of the 

fuzzy system with the powerful predictive potentiality of the recurrent NARX structure realized in the 

inverse NARX11 and inverse NARX22 fuzzy models.  

The convergence of the fitness values calculated based on the MGA shown in Equation (3) is 

presented in Fig. 12 in the case of the inverse NARX11 fuzzy model and in Fig. 14 in the case of the 

inverse NARX22 fuzzy model (with population = 20, Pc=0.5, PM=0.1 and generation = 100). Both 

figures show that the best fitness values obtained are 168800 in the case of the inverse NARX11 fuzzy 

model and 186042 in the case of the inverse NARX22 fuzzy model with high speed of convergence. 

The best fitness value is obtained at generation 92 with the inverse NARX11 fuzzy model and 

generation 68 with the inverse NARX22 fuzzy model. Furthermore, the powerful ability of MGA 

searching enhanced by the elitism strategy, extinction strategy, and G-bit method, leads to a very good 

fitness value ( ≈ 50000 with the inverse NARX11 and ≈ 55000 with the inverse NARX22 fuzzy model).  

Consequently, the resulting inverse NARX11 and inverse NARX22 fuzzy models cover most of 

nonlinear features of the PAM robot arm implied in the input signals U(z-1)[v] and Y(z) [deg], and the 

output signal U(z)[v]. The estimated results of the identified PAM robot arm inverse NARX11 and 

inverse NARX22 fuzzy models presented in Fig.13a and Fig.15a respectively yield an excellent range 

of error (< ± 0.3[V] with the inverse NARX11 fuzzy model and < ± 0.15[V] with the inverse NARX22 

fuzzy model). Likewise, the validation results of the MGA-based identified PAM robot arm inverse 

NARX11 and inverse NARX22 fuzzy models presented in Fig.13b and Fig.15b, respectively, also 
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show a good range of error (< ± 0.3[V] with the inverse NARX11 fuzzy model and < ± 0.15[V] with the 

inverse NARX22 fuzzy model).  

These results assert the powerful potential of the proposed INFM not only for modeling and 

identification but also for control.  

Figures 13c and Fig. 15c illustrate the shapes of the input and output membership functions and the 

rule-base surf-view of the proposed inverse NARX11 and inverse NARX22 fuzzy models, respectively. 

These two figures show that although the MGA-based NARX11 fuzzy model only requires a modest 

FIS structure with the MF of two inputs U(z-1)[v] and Y(z)[deg] and the output U(z)[V] only equal to 

[5, 5, 5], the shape of the surf-viewer of the proposed inverse NARX11 fuzzy model (shown in Fig. 

13c) is sophisticated because the inverse NARX11 fuzzy model is capable of learning all of the 

dynamic features of the PAM robot arm. Likewise, Fig. 15c shows that although the MGA-based 

inverse NARX22 fuzzy model requires only a simple FIS structure with a membership function (MF) 

of four inputs (Y(z)[deg], Y(z-1)[deg], U(z-1) [V], U(z-2)[V]) and output U(z)[V] only equal to [3, 3, 3, 

5, 5], the shape of the surf-viewer of the MGA-based inverse NARX22 fuzzy model (shown in Fig. 

15d) is sophisticated and is implied on three principal surf-viewers among the total six, which confirms 

that it is possible for the proposed inverse NARX22 fuzzy model to learn all of the nonlinear features 

of the PAM robot arm contained in the input and output training signals. 

These results indicate that the INFM is capable of learning all of the nonlinear dynamic features of 

the PAM robot arm because the predictive capability of the recurrent first order NARX structure and of 

the recurrent second order NARX structure permit both to thorough learn all of the highly nonlinear 

and dynamic features of the PAM robot arm. 

Finally, the convergence of the principal parameters of the proposed PAM robot arm inverse 

NARX11 and inverse NARX22 fuzzy models (including the convergence of the number of input and 

output membership functions; the convergence of the theta-parameter of the rule-base; the convergence 

of the scaling gain of the input-output variables; the convergence of the spacing-parameter determining 

the shape of the input-output membership functions; and the convergence of the spacing-parameter 

determining the structure of the rule-base of the input-antecedents and output-consequent) identified 

and optimized by the MGA are shown in Figs.13d and Fig.15e, respectively. From the theta-angle 

parameter and the spacing parameter of the input-output rule base identified by the MGA, the derived 

resulting rule-base of the desired inverse NARX11 fuzzy model is shown in Table 3. It is composed of 

25 rules from two input variables (Y(z)[deg] and U(z-1)[V]) that both possessed MF numbers of 5. 
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Next Subsection 5.2 will experimentally prove the good performance of the novel INFM not only in 

modeling and identification but also in control. The novel INFM will be applied in the proposed hybrid 

inverse NARX fuzzy-PID control scheme. 

 

5.2. Experimental Results of the PAM Robot Arm Hybrid Inverse NARX Fuzzy-PID Position 

Control: 

The second joint of the PAM robot arm is considered as a case study to apply this control technique. 

The performance of the novel proposed hybrid inverse NARX fuzzy-PID control scheme is verified on 

the position joint angle control of the second joint of the PAM robot arm. Fig.8 describes the working 

diagram of this control scheme. 

The proposed hybrid inverse NARX11 fuzzy-PID control algorithm runs in real-time windows target 

(RWT) platform of the MATLAB-SIMULINK environment with the inverse NARX11 fuzzy model 

being an MGA-based optimized fuzzy inference system (FIS) structure as described in Figs 14 and 15. 

The PID controller is implemented in parallel with the inverse NARX fuzzy to compensate and keep the 

PAM system stable during starting time. Three PID parameters are chosen by trial and error method 

and are determined as KP=0.09; KI=0.089 and KD=0.02. 

The final purpose of the PAM robot arm is to be used as an elbow and wrist rehabilitation robot 

device. Thus, the experiments were carried out with respect to three different waveforms as reference 

inputs (triangular, trapezoidal and sinusoidal reference) with two different end-point payloads (load 

0.5[kg] and load 2[kg]) to demonstrate the performance of the novel proposed hybrid inverse NARX 

fuzzy-PID controller. Furthermore, comparisons of the control performance were performed between 

the conventional PID and the two different methods of the proposed hybrid inverse NARX fuzzy-PID 

controller.  

These two novel proposed methods were composed of the proposed hybrid inverse NARX11 fuzzy-

PID and proposed hybrid inverse NARX22 fuzzy-PID. The first method possesses the nonlinear first 

order NARX model in the MGA-based inverse NARX11 fuzzy model and the second method 

corresponds to the nonlinear second order NARX model implied in the MGA-based inverse NARX22 

fuzzy model. 

The initial value K and the PID controller parameters Kp, Ki and Kd were set to be K = 0.6, Kp = 

0.089, Ki = 0.09, and Kd = 0.02. These PID controller parameters were obtained by trial and error 

through experiment. 

First, the experiments were carried out to verify the effectiveness of the proposed hybrid inverse 

NARX fuzzy-PID controller with the triangular reference input. Fig.16a compares the experimental 
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results between the conventional PID controller and the proposed hybrid inverse NARX fuzzy-PID 

controller in the two cases of load 0.5[kg] and load 2[kg], respectively.  

This figure shows that due to the good dynamic approximation of the INFM which adapts well to the 

payload variation and nonlinear disturbances of the PAM system in its operation, the error between the 

desired reference yREF and the actual joint angle response y of the PAM manipulator were optimized. 

Consequently, the minimized error is obtained only in the range ± 0.8[deg] for both the proposed 

hybrid inverse NARX11 fuzzy-PID and the hybrid inverse NARX22 fuzzy-PID in the case of load 

0.5[kg]. The same good result is obtained with both of the proposed control scheme in the case of load 

2[kg]. These results are very impressive in comparison with the bad error of the conventional PID 

controller ( ± 2.5[deg] in both of case). 

The comparison between the proposed hybrid inverse NARX11 fuzzy-PID and hybrid inverse 

NARX22 fuzzy-PID showed that both of the proposed control algorithms obtain the good robustness 

and accuracy as well and thus are considered to obtain the performance equivalent. 

Figure 16b shows the resulted shape of the control voltage U applied to the joint of the PAM robot 

arm, which is generated by the proposed Hybrid Inverse NARX Fuzzy-PID controller to assure the 

performance and accuracy of the PAM robot arm response. This control voltage U is composed of UPID 

and UFUZZY. The control voltage UPID is used to compensate the variation of the reference signal and of 

the two different payloads while UFUZZY is used to ameliorate the response accuracy and to keep the 

PAM system operation stable.  

Next, the experiments were carried out to verify the effectiveness of the proposed Hybrid Inverse 

NARX Fuzzy-PID controller with the trapezoidal reference input. Fig.17a shows the experimental 

results comparison between the conventional PID controller and the two proposed hybrid inverse 

NARX11 fuzzy-PID and hybrid inverse NARX22 fuzzy-PID controllers in the two cases of load 

0.5[kg] and load 2[kg] respectively.  

These results show that due to the good dynamic approximation of the INFM which adapts well to 

the different payloads and nonlinear disturbances of the PAM system in its operation, the error between 

the desired reference yREF and the actual joint angle response y of the PAM robot arm were optimized. 

Consequently, the minimized error is obtained only in the range ± 0.7[deg] with both of the proposed 

control scheme in the case of load 0.5[kg] and only in the range ± 0.6[deg] with both of proposed 

control scheme in case of load 2[kg]. These results are very superior in comparison with the 

disappointing error of the conventional PID controller ( ± 2[deg] for the case of load 0.5[kg] and up to 

± 2.2[deg] for the case of load 2[kg]). 
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Figure 17b shows the resulted shape of the control voltage U applied to the joint of the PAM 

manipulator, which is generated by the proposed Hybrid Inverse NARX Fuzzy-PID controller to assure 

the performance and accuracy of the PAM manipulator response. This control voltage U is composed 

of UPID and UFUZZY. The control voltage UPID is used to compensate the variation of the reference signal 

and the different payloads while UFUZZY is used to ameliorate the response accuracy and to keep the 

PAM system operation stable. Likewise, the proposed hybrid inverse NARX fuzzy-PID controller 

assures to robustly control with the refined control voltage as to keep the PAM robot arm response 

stable and accurate tracking. 

Finally, the experiments were carried out to verify the effectiveness of the proposed Hybrid Inverse 

NARX Fuzzy-PID controller with the sinusoidal reference 0.05[Hz]. Fig.18 compares the experimental 

results between the conventional PID controller and the two proposed control scheme in the two cases 

of load 0.5[kg] and load 2[kg], respectively.  

These results show that due to the good approximation and robustness of the INFM, which adapts 

well to the different payloads and the disturbance variation of the PAM system in its operation, the 

error between the desired reference yREF and the actual joint angle response y of the PAM robot arm is 

optimized. As a result, the error is well minimized in the range ± 2[deg] in the case of load 0.5[kg], in 

the range ± 1.8[deg] with the proposed hybrid inverse NARX11 fuzzy-PID and ± 1.4[deg] with the 

proposed hybrid inverse NARX22 fuzzy-PID in the case of load 2[kg]. These results are very superior 

in comparison with the passive error of the conventional PID controller ( ± 4[deg] in the case of load 

0.5[kg] and up to ± 3.4[deg] in the case of load 2[kg]). 

The comparison between the proposed hybrid inverse NARX11 fuzzy-PID and hybrid inverse 

NARX22 fuzzy-PID shows that the proposed hybrid inverse NARX22 fuzzy-PID obtains both of 

excellent robustness and good accuracy slightly better in comparison with the proposed hybrid inverse 

NARX11 fuzzy-PID and thus the proposed hybrid inverse NARX22 fuzzy-PID controller is considered 

to possess the best performance. However, the proposed hybrid inverse NARX11 fuzzy-PID controller 

proves to have the advantage due to its simple fuzzy FIS structure. 

In summary, Table 4 tabulates all of the principal results of the MGA-based PAM robot arm INFM 

identification. Based on the fitness convergence as well as the related important parameters shown in  

Figs.12 and 13 for the novel proposed MGA-based Inverse NARX11 Fuzzy model identification, and 

Figs.14 and 15 with good results in the case of the novel proposed MGA-based inverse NARX22 fuzzy 

model identification, it can be concluded that the MGA-based inverse fuzzy model identification 

algorithm, which very poorly obtains the training performance is quite inferior in comparison with the 

novel proposed MGA-based INFM identification algorithm not only in the speed of convergence but 
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also in performance. Furthermore, it is also shown that the proposed method had a good control 

performance for the highly nonlinear system, such as the PAM robot arm. The controller had an 

adaptive control capability when the control parameters were offline optimized via the modified 

genetic algorithm (MGA). The controller designed by this method only needs a training procedure in 

advance, but it uses only the input and output training data from the plant for the adaptation of the 

proposed INFM. From the experiments of the position control of the PAM robot arm, it was verified 

that the proposed control algorithm presented in this paper was precisely and robustly controlled with a 

simple structure and obtained a better dynamic property, good robustness and it was suitable for the 

control of various plants, including the linear and nonlinear processes, compared to the conventional 

PID controller. 

 

6. CONCLUSIONS 

Whereas expert knowledge is usually required to design a fuzzy model using traditional methods, 

this paper shows that it is capable even without using any knowledge of the system except the 

experiment input-output training data. The novel proposed MGA can build an effective INFM model 

obtaining superb features both in convergence speed and in improving performance. This novel 

proposed technique may leads to an increase in the use of the proposed NARX fuzzy model, as the 

previously time-consuming design procedure can be reduced spectacularly, not only in modeling, 

simulation and identification of the highly nonlinear systems, but also in the online adaptive and 

predictive control of the dynamic nonlinear systems in general and the PAM robot arm in particular. 

Furthermore the performance of the proposed Hybrid Inverse NARX Fuzzy-PID controller was found 

to be very good and robust in the presence of intrinsic and external disturbances. This facilitates testing 

under different input conditions and ensures future applications of the PAM robot arm as a 

rehabilitation device for stroke patients. It determines confidently that the proposed Hybrid Inverse 

NARX Fuzzy-PID controller not only proves its good performance in control of the highly nonlinear 

PAM robot arm but also is very efficient in the control of other real-time industrial and human-friendly 

applications.  
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Figure 1: The flow chart of the conventional GA optimization procedure. 
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Figure 2: The flow chart of the modified genetic algorithm (MGA) optimization procedure. 
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Figure 3: Triangle input membership function with spacing factor = 2. 

 

 

 
Figure 4a: The seed points and the grid points for rule-base construction 

 

 
Figure 4b: Derived rule base 

 



25 

 
 

Figure 5: Block diagrams of the MGA-based PAM robot arm Inverse Fuzzy Model Identification 
 

 
Figure 6.Block diagram of the proposed PAM robot arm Hybrid Inverse NARX Fuzzy -PID control system 
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Figure 7: Photograph of the experimental two-axes PAM robot arm 

 

 
 

Figure 8: Block diagram for the working principle of the second joint of the 2-axes PAM robot arm. 

 

 
 

Figure 9. Schematic diagram of the experimental apparatus 
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Figure 11: Inverse NARX Fuzzy Model Training data obtained by experiment. 
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Figure 12. Fitness Convergence MGA-based Inverse NARX11 Fuzzy Model Identification of the PAM robot arm 

(Using MGA Method with Population=20; Generation=100; Fitness=168800). 
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Figure 13a. Estimation of MGA-based Inverse NARX11 Fuzzy Model of the PAM robot arm 
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Figure 13b. Validation of MGA-based Inverse NARX11 Fuzzy Model of the PAM robot arm 
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Figure 13c. Membership Input-Output & Surf-View of MGA-based Inverse NARX11 Fuzzy Model Identification  
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Figure 13d. Convergence of Principal Parameters of MGA-based Inverse NARX11 Fuzzy Model Identification 
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Figure 14. Fitness Convergence MGA-based Inverse NARX22 Fuzzy Model Identification of the PAM robot arm 

(Using MGA Method with Population=20; Generation=100; Fitness=186042). 
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Figure 15a. Estimation of MGA-based Inverse NARX22 Fuzzy Model of the PAM robot arm 
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Figure 15b. Validation of MGA-based Inverse NARX22 Fuzzy Model of the PAM robot arm 
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Figure 15c. Membership Input-Output of MGA-based Inverse NARX22 Fuzzy Model Identification 
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Figure 15d. Rule Base Surf-Viewer of MGA-based Inverse NARX22 Fuzzy Model Identification 
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Figure 15e. Convergence of Principal Parameters of MGA-based Inverse NARX22 Fuzzy Model Identification 
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Figure 16a.Triangular response of the PAM robot arm 
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Figure 16b.The resulting control voltage applied to the PAM robot arm. 
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Figure 17a.Trapezoidal response of the PAM robot arm 

 

0 10 20 30 40 50 60 70

-0.1

0

0.1

0.2

0.3

0.4

[V
]

TRAPEZOIDAL  TRAJECTORY - LOAD 0.5[kg]

0 10 20 30 40 50 60 70
-0.1

0

0.1

0.2

0.3

0.4

TRAPEZOIDAL  TRAJECTORY - LOAD 2 [kg]

0 10 20 30 40 50 60 70

5

5.2

5.4

5.6

t  [sec]

[V
]

0 10 20 30 40 50 60 70

5

5.2

5.4

5.6

t  [sec]

Ufuzzy - proposed Hybrid Inverse-NARX-Fuzzy-PID method

Upid - proposed Hybrid Inverse-NARX-Fuzzy-PID method

U - proposed Hybrid Inverse-NARX-Fuzzy-PID method

U - PID method

Ufuzzy - proposed Hybrid Inverse-NARX-Fuzzy-PID method

Upid - proposed Hybrid Inverse-NARX-Fuzzy-PID method

U - proposed Hybrid Inverse-NARX-Fuzzy-PID method

U - PID method

 
Figure 17b.The resulting control voltage applied to the PAM robot arm. 
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Figure 18.Sinusoidal response of the PAM robot arm 

 

 

Table 1. MGA-based INFM model parameters used for encoding. 
Parameter Range Precision No. of Bits 

Number of Membership Functions 3-5  2 1 

Membership Function Spacing 0.1 – 1.0 0.1 7 

Membership Function -1 - 1 2 1 

Rule-Base Scaling 0.1 – 1.0 0.01 7 

Rule-Base Spacing -1 - 1 2 1 

Input Scaling 0 - 100 0.1 10 

Output Scaling 0 - 1000 0.1 17 

Rule-Base Angle 0 - 2π π/512 11 

 
 

Table 2. The rule-base of the MGA-based Inverse NARX11 Fuzzy Model (best fitness value = 168800) 
        Input2-U(z-1) 

Input1-Y(z) 

1 2 3 4 5 

1 1 3 3 3 5 

2 1 3 3 3 5 

3 1 3 3 3 5 

4 1 3 3 3 5 

5 1 3 3 3 5 
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Table 3. The summary of the MGA-based PAM robot arm INFM model configuration parameters. 

  

Parameters 

MGA-based 

Inverse TS Fuzzy 

Model 

MGA-based 

Inverse NARX11 

Fuzzy Model 

MGA-based 

Inverse NARX22 

Fuzzy Model 

Population 20 20 20 

Generations 100 100 100 
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g
 

P
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et

er
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Best Fitness Value 5807 168800 186042 

Input Variables Y and Ydot Y and U(z-1) Y(z), Y(z-1),  

U(z-1) and U(z-2) 

Number of MFs of 

Inputs and Output 

[5, 5, 9] [5, 5, 5] [3, 3, 3, 5, 5] 

SCALING GAIN of 

Inputs and Output 

[98.729; 56.794; 21.057] [2.5415; 40.567; 7.7519] [35.973; 62.072; 30.01; 62.659; 

7.9179] 

SPACING Factor of 

Inputs and Output MFs 

[2.7609; 0.16378; 2.2359] [0.24173; 7.7914; 3.1281] [0.97165; 3.3509; 0.28425; 

1.2815; 2.9953] 

SPACING Factor of 

Rule Base 

[4.2617; 0.45433; 0.39055] [3.4324; 6.3819; 1.137 ] [0.97874; 0.5748; 0.41181; 

1.6387; 1.0929] 

Theta Angle of rule base [4.7331] (rad) [1.6422] (rad) [6.0315; 4.7208; 0.93312] (rad) 
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Error Index > ± 10[V] < ± 0.3[V] < ± 0.15[V] 

Figures representing the results  Figures 12 and 13 Figures 14 and 15 

 

 


