

Readiness of Multiple E-Beam Maskless Lithography (MEB ML2)

Speaker: S.C.Wang

Jack J.H. Chen, T.Y. Fang, S.J. Lin, S.M. Chang, Faruk Krecinic, Wen Wang, and Burn J. Lin

Taiwan Semiconductor Manufacturing Co., LTD, Taiwan

Bert-Jan Kampherbeek, Guido de Boer, Bart Schipper, Paul Scheffers, Christiaan van den Berg, and Marco Wieland MAPPER Lithography B.V., The Netherlands

Contact: jhchen@tsmc.com

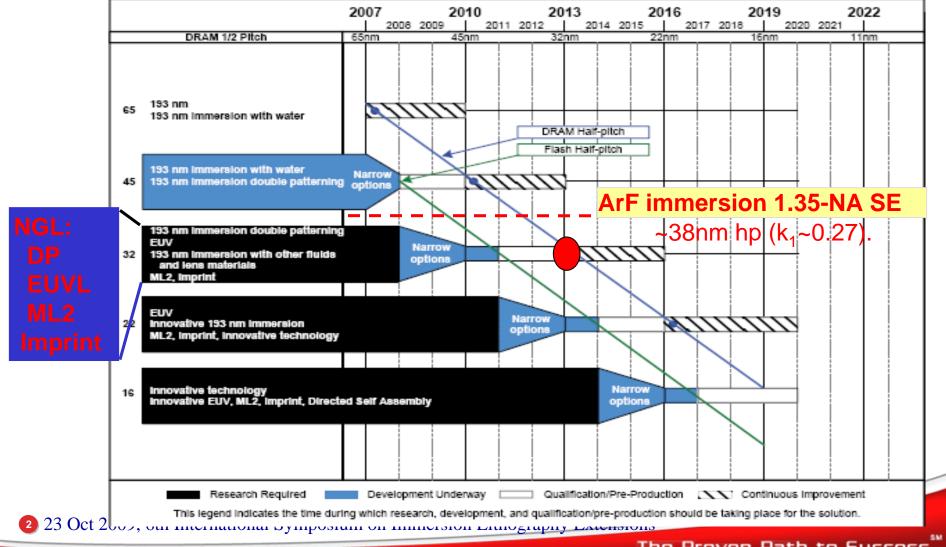
The Proven Path to Success

Why Maskless?

- "The limit of lithography will not be in resolution but in economy."
 - Dr. Burn J. Lin, in 1987

"The devil is in the mask!"

– Dr. Burn J. Lin, in 2007


Source from Proc. of SPIE Vol. 6520-02, (2007)

1 23 Oct 2009, 6th International Symposium on Immersion Lithography Extensions

The Proven Path to Success

ITRS Roadmap (2007)

© 2009 TSMC, Ltd

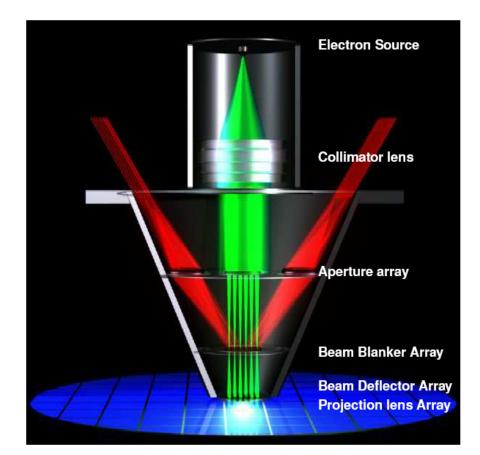
The Proven Path to Success

Considerations for NGL

- Cost
 - Comparable to existing single exposure
 - >100WPH at similar or less than one scanner footprint

Extensibility

- Resolution & Throughput
- Extensible from 22nm node and at least next two nodes
- Mask
 - Remove/Relax mask making challenges
- Patterning performance
 - CDU & LWR
 - SMO & MMO with existing optical lithography
- Defectivity
 - Low defect density
 - Inspection solution!


Major Challenges of NGLs

- Fundamentally, masks are too expensive and too difficult for <32nm-HP node and beyond
- Double Patterning by ArFi: Double masks/processes cost! Design rule restrictions!
- **EUV**: ML mask defect, inspection and source power.
- **Nanoimprint**: **1X**, **3D** template is too tough, defect and overlay
- MEB ML2: Throughput is a concern! However, it has a lot of advantages
 - No mask cost & mask induced troubles,
 - Remove design rule constraints,
 - Lowest cost if throughput can be > 10wph, or >100WPH by cluster
 - Cost (mainly from electronics) trend down by Moore's law,
 - MEB column is much cheaper than optical lenses

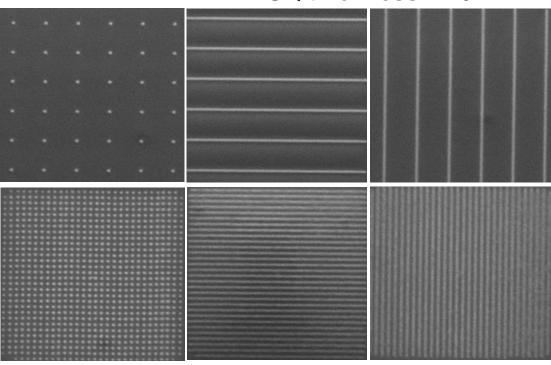
The MAPPER Technology

- Single electron source split in 13,000 Gaussian beams
- $V_{acc} = 5keV$
- Apertures are imaged on substrate through 13,000 micro lenses
- MEMS-stacked static electric lenses
- Optical-switched CMOS-MEMS blanker array

* Infomation from MAPPER Lithography.

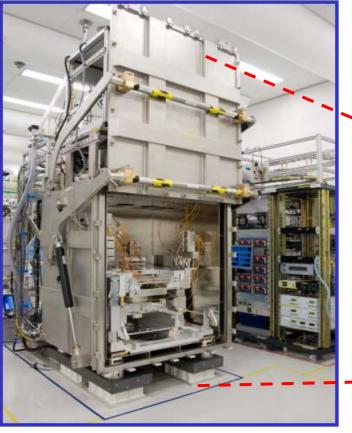
5 23 Oct 2009, 6th International Symposium on Immersion Lithography Extensions

The Proven Path to Success



45nm images by Pre-Alpha Tool (Q4, '08)

HSQ thickness = 40nm


MAPPER Pre-Alpha Tool 110beams @ 5keV,

pattern	CD [nm]		CD Mean-to-target [nm]		CDu [nm]	
	Measured	Required	Measured	Required	Measured	Required
Dots dense	43.4	45	1.6	3.2	2.5	4.5
Dots isolated	46.4	45	1.4	3.2	2.8	4.5
Lines_Horizontal dense	42.8	45	2.2	3.2	1.9	4.5
Lines_Horizontal isolated	42.1	45	2.9	3.2	3.0	4.5
Lines_Vertical dense	44.9	45	0.1	3.2	2.8	4.5
Lines_Vertical isolated	46.5	45	1.5	3.2	2.9	4.5

Cluster concept for 100WPH tool

MAPPER single column tool Upgrade to 13,000 beams for 10WPH HVM clustered production tool:

- >13,000 beams per chamber (10WPH)
- 10WPH x 5 x 2 = 100WPH
- Footprint ~ArF scanner < 2/3 EUV scanner</p>
- In-line to track

Proc. of SPIE 2009, Vol. 7271, 727100
 23 Oct 2009, 6th International Symposium on Immersion Lithography Extensions

Courtesy by MAPPER,

Interface to

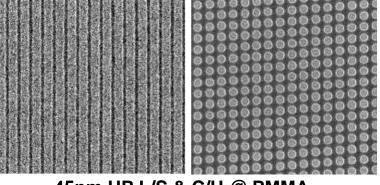
track

MAPPER Pre-Alpha Tool @ TSMC

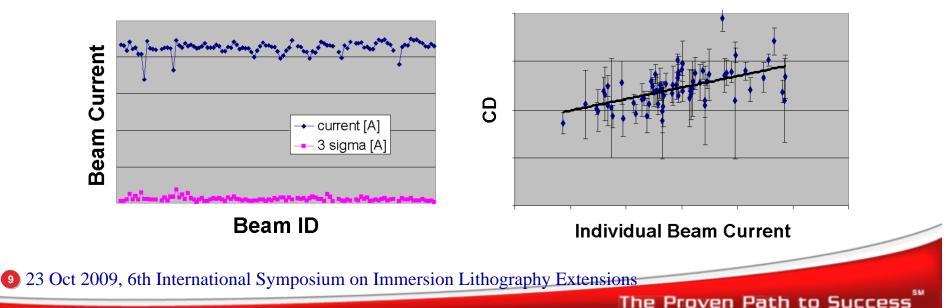
- **Tool configuration**
 - 110x Gaussian beams @ 5keV
 - Raster scan by individual beam, with MEMS blanker array controlled by 110x optical data channels
 - 300mm wafer stage & loadlock interface
 - Resolution start from 45nm HP, will upgrade to 32nm HP.
- Possibly upgrade to 10WPH on the same platform

8 23 Oct 2009, 6th International Symposium on Immersion Lithography Extensions

The Proven Path to Success


© 2009 TSMC, Ltd

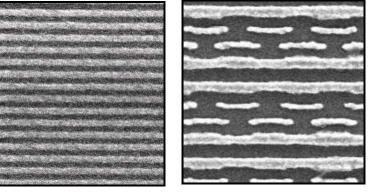
45nm HP resolution & CDU correction


- Individual beam current can be measured by using Faraday cup,
- Correlation of CD vs beam current shows the possibility of correction CDU by apply different dosage offset

Individual Beam Current

45nm HP L/S & C/H @ PMMA

CD vs Beam current @45nm HP L/S

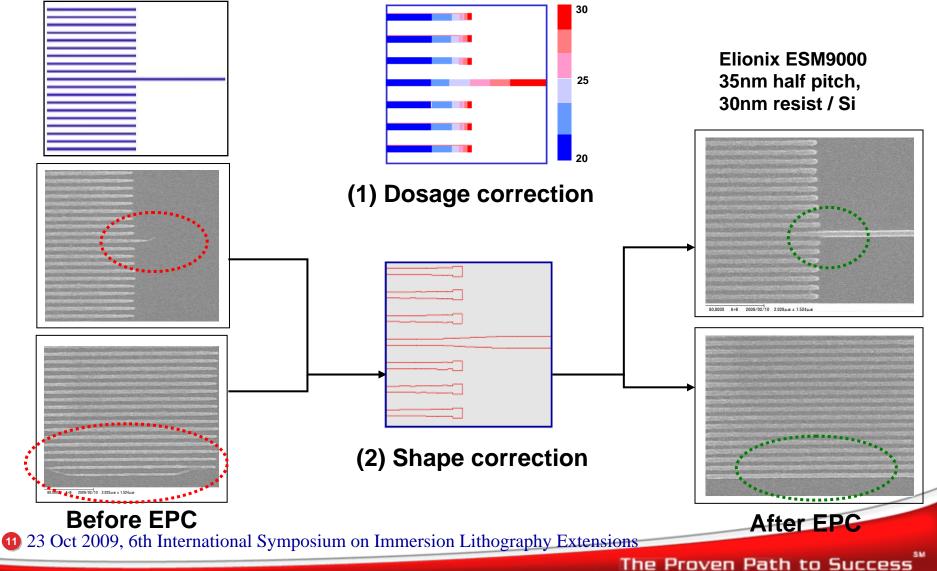

30nm HP resolution @5keV

- Mimic 5keV writing experiments at spot size ~ 25nm were done by a SEM-converted writer in NTU IRND Lab.
- Manual processes, in poor environmental control.

- ZEP520A Positive resist
 @40nm thickness
- 10 23 Oct 2009, 6th International Symposium on Immersion Lithography Extensions

The Proven Path to Success

HSQ – Negative resist


@40nm thickness

E-Beam Proximity Correction Verification

Proximity Effect Correction

Test Clip:

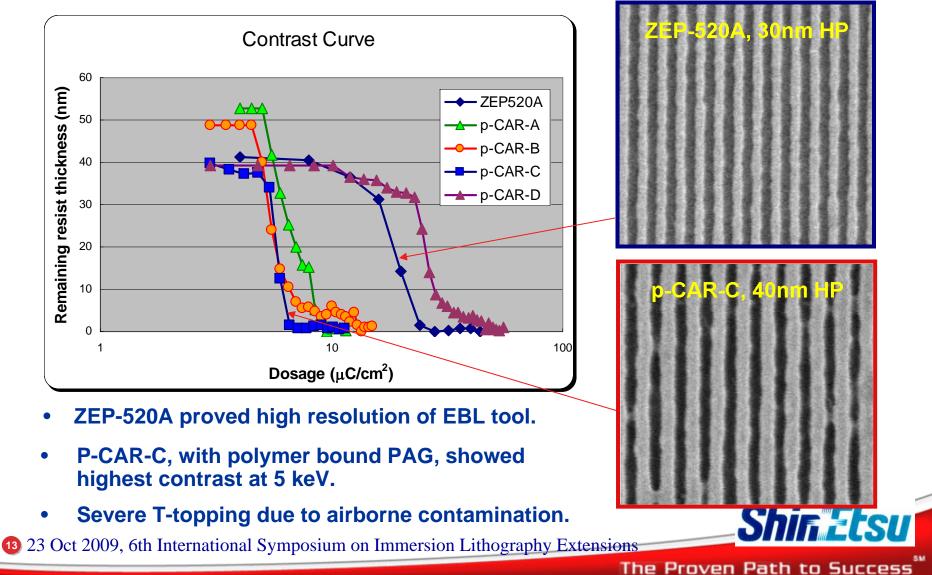
32nm Logic clips

Conditions:

HSQ thickness 40nm Beam size = 35 nm Scanning pixel = 2.25 nm

Reference: SPIE 7271_54 (2009)

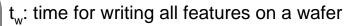
W/O EPC


23 Oct 2009, 6th International Symposium on Immersion Lithography Extensions

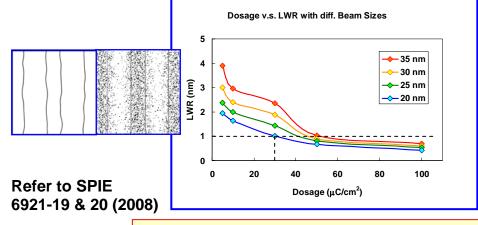
The Proven Path to Success

W/ EPC

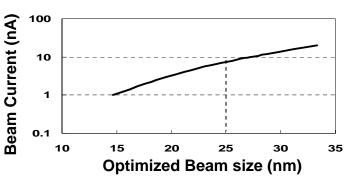
Chemical Amplified Resist @ 5keV



Throughput Challenge – 1: Source


$$WPH = \frac{3600}{t}$$
$$t = t_w + t_m + t_o$$
$$= \frac{QA}{n \cdot I} + \sum t_m \times r_m + t_o$$

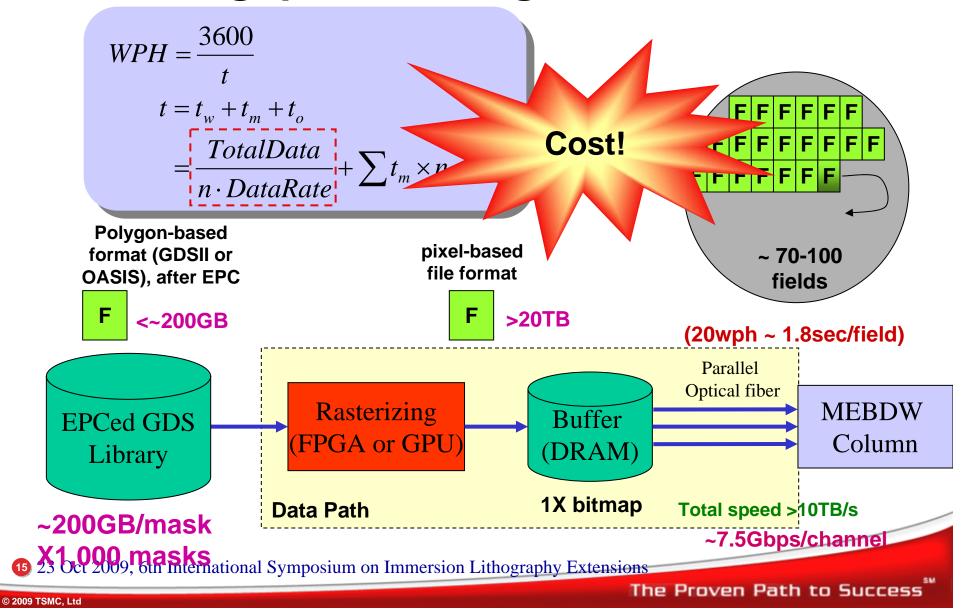
Monte-Carlo simulation by MOSES:



- *t_m*: time for movements between shots, including over-scans, turnovers of changing scanning direction, and so on
- t_o: overhead time between wafers

However,
$$I = \frac{\pi^2}{4} B_r V \alpha^2 d_I^2$$

Beam current vs. Optimized beam size


- → Required source Brightness ~ 10⁷ A/m²Sr²V!
- ➔ Or need a solution for ~50x increment on writing area for a normal source brightness!

© 2009 TSMC, Ltd

14 23 Oct 2009, 6th

Throughput Challenge – 2: Data Rate

Conclusions

- MAPPER Pre-Alpha tool has been installed in manufacturing environment, and 45-nm HP resolution by 110 beams has been successfully proven.
- High resolution down to 30nm HP at 5keV has been demonstrated, and EPC by shape modulation has been proven.
- Clustered MEB can achieve 100WPH at scanner footprint, and thus in-line to track. CAR is also feasible. So the existing single patterning lithography concept and operation can continue.
- Ebeam maskless lithography is the most desirable NGL if succeeds! Since maskless, as long as the MEB tool is ready, the technology is ready!

Acknowledgement

- Mr. Hill Liao and Mr. Te-Wei Tsai from TSMC, Hsinchu, for their support on tool installation and resist testing.
- Prof. J.Y. Yen, Prof. K.Y. Tsai, Prof. C.H. Kuan and their group from National Taiwan University for providing EBL tool and lab facility.
- Dr. Yoshio Kawai, from ShinEtsu, Japan, for providing CAR resist sample.
- Mr. Maurits Weeda, Mr. Tijs Teepen, Mr. Abdi Farah, and other colleagues from MAPPER Lithography, Delft, who contributed to the pre-alpha tool.

17 23 Oct 2009, 6th International Symposium on Immersion Lithography Extensions The Proven Path to Success

The End

Questions?

23 Oct 2009, 6th International Symposium on Immersion Lithography Extensions

The Proven Path to Success

© 2009 TSMC, Ltd