HMPP™: A Hybrid Multi-core Parallel

Programmin

g Environment

Romain Dolbeau, Stéphane Bihan, and Francois BG#RS entreprise’

Abstract— Hybrid parallel multi-core architectures based on Main
Graphical Processing Units (GPU) can provide tremestous memory GPU
computing power. Current NVIDIA and ATI hardware di splay a upload Memory
peak performance of hundreds of gigaflops. Howevemrxploiting remote
GPUs from existing applications is a difficult taskthat requires data
non-portable rewriting of the code. In this paper,we present Rarmehs
HMPP, an Heterogenous Multi-core Parallel Programmng Application data
environment that allows the integration of heterogeeous data
hardware accelerators in a seamless intrusive mannewhile dowload
preserving the legacy code. remote
data
Keywords: GPGPU, Heterogeneous Programming Environment, r
Heterogeneous Core | ntegration. GPU
cores
Remote
procedure
|. INTRODUCTION General call
. . . . purpose
D ue to their high potential computing power, the o processor
graphical processing units (GPUSs) looks very atitrado cores
speedup applications. Furthermore, new programming
environments such as CUOA], RapidMind[2],

PeakStream [3] or CTM [4] have made the use of GRbfs

general purpose programming, easier and more effici

These devices achieve high performance with higlalsallel
microarchitecture and fast internal memories. Thss
illustrated in Figure 1. Data transfers are implated using
the PCI express bus or, in more coupled systenss,theé
HyperTransport channel [5]. The performance notyo
depends on the fast architecture but is also datedrby the
data communication overhead between the CPU anGHiéd
Not all applications benefit from a GPU accelenatid his
depends on the types of data used that have todienfy point
and also on the amount of parallelism that can tieeted
from the application to build a stream computatiae, a
kernel applied on a stream of data. That's why weesdsuch

Figure 1: Use of a GPU as an Hardware Acceleratorof
General Purpose Applications.

1) Overview

This paper proposes a solution to not only simglify use of
hardware acceleration in conventional general paepo
nIapplications, but also to keep the application cpdeable.
The goal is to integrate the use of hardware araeles rather
than porting the application to make use of thenme T
hardware-specific versions of the computationse@ffioaded
on an accelerator are dissociated from the origipalication
source code. The CAPS HMPP toolkit [6] is a setahpiler
directives, tools and software runtime that suppaortlti-core
processor parallel programming in C and Fortran Umix

as NVIDIA and RapidMind, have extended the C lamgua patforms. HMPP gives programmers a simple, fleiahd

with new types in order to handle stream data. @kishould
allow to map computations more efficiently and garently
on the hardware accelerator architecture, it reguithe
developers to rewrite their algorithms in a newglaage and
leads to different hardware specific versions of tame
source to maintain.

1 romain.dolbeau@caps-entreprise.com stephane.bihan@caps

entreprise.confrancois.bodin@caps-entreprise.com

portable interface for developing parallel applizas whose
critical computations are distributed, at runtinmyer the
available specialized and heterogeneous cores.

The chosen approach is similar to a widely avadladthndard

OpenMP, but designed to handle hardware accelsrafs

such, the application source code is kept portabid a

sequential binary version can be built using a iti@uhl

compiler. Furthermore, if the hardware acceler@thA) is

not available for any reason, the legacy code stih be
- executed and the application behavior is unchanged.

accelerator targets in the same application.

. The HMPP runtime handles the concurrent executioth®
= 10
[=][=]

Host application

#distributed codelet execution through HMPP

pthread HwAL HWA2 HWA3
C codelets C codelets C codelets C codelets

codelets that have been previously translated timovendor
programming model [2][4], either by hand or witharailable
code generatr HMPP defines a standardized hardware
specific interface between the runtime and the lebdde
implementation.

HMPP runtime

pthread : HW}QCD"QE“ I HW&CDdE_‘E'S / The HMPP toolkit comes with a C (and soon Fortran)
Rt HWAZ runtime | HWAS runtime preprocessor to translate the directives into gmyate
Host OS sequences of calls to the HMPP runtime.

Figure 2: HMPP Integrated Application User View.))) .
Figure 3 illustrates the build process of a HMPBliaption.

As depicted in the Figure 2, the proposed apprdactd The hardware version of the codelets is writemgisihe
declare, by means of HMPP directives, functionsm@@ specific vendor programming language. The appbeatis
codelets) which are suitable for hardware acce@®ratThe firstly preprocessed with the HMPP preprocessor larded
directives also specify the conditional executioh tbe jth the HMPP runtime. The hardware versions ofdbeelets
codelets, their desired synchronous or asynchropmypgerties are separately compiled using the vendor programrtonls
and the data transfers. and runtime support. The codelet is then transfdrinéo a

Many new programming environments for hybrid matire dynamic shared object file with the host compiler.

systems have been proposed [2][3][7]. These enwiemms J:m v oo ™ oo o
extend in one way or another, current programmiagdards g drectves (G”) ‘F’
such a C/C++, OpenMP, etc. Most of them rely orfreasn |- l

programming style but a program written for a giyeatform Fprama mpp csl callsite - -
cannot run on another one. — preprocessr L il
HMPP takes a radically different approach. A HMPF | e e code
application can be compiled with an off-the-shelinpiler and e ’ b
run without any specific runtime to produce a conianal ot - -
native binary. More over, thanks to its dynamickilg \l |

mechanism, a HMPP application is able to make fistiver \ .

a new accelerator or an improved codelet withowirtgato

recompile the application source. l

This way we aim at preserving legacy codes andatesthem heteroaenéots

from frequent hardware platform changes that tend pplcanon

characterize hybrid multi-cores, e.g. fast GPU iecture

evolution. Figure 3: Build Process Overview.

2) Integration with Third-party Tools This paper is organized as follows: section 2 prissthe set of

HMPP directives with simple examples. Section 3cdbss
the runtime functioning and the last section shboxss HMPP
handles homogeneous as well as distributed mengetgras.

The HMPP directives address the remote executianméce
of code as well as the download and upload of aéheom the
hardware accelerator memory if it is different frahe host
CPU memory. HMPP can be seen as a programming glue

between target specific programming environmentsl an Il. HMPP PROGRAMMING INTERFACE
general purpose programming. MPP directives are used to annotate the origindeco
For instance, targeted to CUDA, HMPP expressestwhits with instructions to execute a routine, the codelata

in the application source should be executed in\aDNa ~ hardware accelerator.

card. The NVIDIA codelets are written in CUDA irspecific An example of HMPP annotation is given in ExtractAl
file while keeping the original computation in thein source. codelet is a pure function, i.e. a function thatayls evaluates
The developer also uses the NVIDIA provided toalshsas the same result value given the same argument (g3Juend
the runtime and the compiler to program the codel@he has no side effects and no I/O. Because argumdus/aust
same applies to RapidMind target: the codelet msg the pe transferred into the accelerator, there aretaints on the

RapidMind vector types and needs to be linked agaime codelet arguments. The argument coding rules petmit
RapidMind runtime. Contrarily to those solutionsittlsupport

only one target at a time, HMPP is able to handtterent 2 For instance, the CAPS tunénttp://www.caps-entreprise.coynfamily
of generators already target OpenGL and CUDA cogetigramming.

compute the amount of data to transfer runtime.

codel et ,
float a,

#pragma hnmpp trivial
void trivial (int n,

out put =out v

float *inv, unsigned int N1[1],

float *outv, unsigned int N3[1]) {
int i, j;

for (i =0 ; i <n; i++) {
outv[i] = a * inv[i];

Extract 1: Trivial Codelet Definition.

in Extract 2. Data transfers and synchronizatidatee to this
call of the codelet both use the same label.

The default behaviour implies to upload the argundsta
before the call and to transfer them back afters Dehaviour
can be changed using the data transfer directives.

If the condition or the parameters values specifiedthe
codelet definition are not checked, or if the haads
accelerator is not available, the original CPU ¢edis used
instead. The codelet execution can be asynchronfuus,

Arguments are alias frefgcalar arrays or pointers). Array andinstance, it allows for concurrent execution betwége CPU

pointer arguments are followed by an array of umsibjinteger
argument that gives the size of each dimensiomeftray or
pointer argument. For instance an argument A[][foifowed
by a one dimensional array argument whose elenteatsd 1
give the size of the first and second dimensions. of

The types of HMPP directives are the following:

= Codelet define a function as hardware-assisted.

and the GPU.
#pragma hnpp trivial callsite
trivial(n, 2.f, inc, N1, outv, Nl);

Extract 2: Trivial Call Site Example.
3) Data Transfer Directives

Data can be uploaded before the execution of theleband
data can also be declared constant so as to lead tmly

= Execution: specify the codelet remote execution ironce. This is particularly useful when the cod&egxecuted

the program.

= Data transfers data can be uploaded before th

execution of the codelet and data download poi
can be inserted after the execution.

All directives are labelled with an identifier cesponding to
exactly one codelet call site.

1) Codelet definition Directive

A codelet directive declares a computation to beotely
executed on a hardware accelerator. The favourpd of
hardware accelerator can optionally be indicatatieravise
HMPP will take the first available compatible aezakor. For
an efficient use of the accelerator, the computatan be
specialized to the type of the parameters, theg, sialue etc.
A parameter can either be read, written or botreyTtan be
scalar or not. If not, their size argument mustofel A type
conversion can also be inserted when copying the ala the
hardware accelerator. A C or Fortran boolean egpgrascan
be specified in order to guard the execution oftinelet.

More than one codelet directive can be added tmetibn in
order to specify different uses or different exemutontexts.

The hardware-assisted corresponding codelet cédrerelte

produced using an appropriate code generator ai-Waitten

in the vendor programming model. The argument \walue

used to generate specialized versions of the cbfitelgarious

accelerators. When the codelet is called, the apjate

variant of the code is selected according to théushc
parameter values and performance issues. If areaat® is

not available or busy the original code of the dedis used
instead.

2) Remote Codel et Execution Directive

The remote codelet execution directive specifies tmuse a
codelet at a given point in the program. An exaniplghown

in a loop.

ei?;ata synchronization barriers can also be added albr

asynchronous data retrieved back from the hardware
accelerator. The program execution will block undill
transfers are completed.

4) Synchronization Directive

When a codelet execution has been declared asymaspit
is possible to use a synchronize directive to bkbekprogram
until the corresponding codelet execution is cotepldhe
hardware accelerator is then released and becora#sltde to
another codelet.

he HMPP runtime is in charge of carrying out the
concurrent execution of the native and hardwarsioes
of the codelets. It is also responsible for hargllithe
exceptions such as the execution of a codelet wimpse data
have been indicated pre-fetched but not preloatikis. is the
case, for instance, if the preload directive haankiaserted in
a path not taken up to the codelet call site diec(i.e. a
program point with the directive was not reach wlgiri
execution).

RUNTIME SUPPORT

At execution, the HMPP runtime takes care to discahe
available hardware accelerators. When a codeietlisated to
be run on a hardware accelerator, if the deviewdlable and
if the shared library corresponding codelet is enesHMPP
loads it just as a software plug-in. Otherwiserthtive version
is run on the host CPU or in a worker thread.

Note that it is not necessary to build a machirexie version
of the binary. As long as the host CPU is identichke
application will make use of the available accelesa The
HMPP runtime is able to run several and differemtdiwvare
accelerators.

Also if an improved version of a codelet is madaible, HMPP is compatible with OpenMP and MPI. If a looash
there is no need to recompile the overall applicasource, been parallelized with OpenMP and contains HMPP
HMPP will just load it in place of the previous &et directives, the application will fork threads thvetl make use
implementation. Moreover, if a new hardware acedterhas of the available accelerators. If the vendor driierble to
been made available, a computation that has belicated as handle the concurrent execution of several GPU, RN
hardware-assisted with no restriction on the tyjpgcoelerator use all the available accelerators.

can make use of that new device without the needdompile
the application. As the HMPP application is dynaattic
linked against the runtime support, only that pietsoftware
provided by CAPS needs to be updated to take tbelerator
into account.

The following code example defines a codelet inrgbaof

HMPP also works with MPI: an already MPI paralleliz
binary can be spread over the nodes of a distidbagstem
and will use the local node codelets to accelerdue
computation of which it is in charge of.

IV. HMPPEXAMPLES

running the simple function:

#pragma hnpp sinpl e codel et, inout=outv

I n this section we describe a few HMPP uses.

void sinmple(int n, int m 1) Specializing Data Transfers to Overcome Overhead

{

The corresponding call site is given below:

#pragnma hnpp sinple callsite, asynchronous

float *inv, unsigned int N1[1],
float *inm unsigned int N2[2], The benefit of offloading computations to hardware

float *outv, unsigned int N3[1]) zccelerators must be weighted against the overtieadsed
by doing so. One of the most significant overhead f

int i, j;

for (i =0 ; i <m; i++) { distributed memory accelerators is the cost ofifhta transfers
float tenp = outv[i]; between the host's memory and the accelerator'sorgeifor
for (j =0; j <n; j++) {

instance, constant data must be transferred ontg.oNon-
constant data may not necessarily require to besfeared at
outv[i] = tenp; every call, if the said data are only modified @guently.

Analyses of the updating patterns of the data aedrsertion

of the directives is outside the scope of this pawe can be
Extract 3: Simple Codelet Definition Example. made either by hand or with the automated toolsxAf].
The ability to optimize the transfers is of parambou
importance, as shown in code Extract 5.

for (k =0 ; k <iter ; k++) {

temp += inv[j] * innfi * n + j];

sinple(n, m nyincl, Ni, # :
. . pragma hnpp nmatvec callsite,
_ inm N2, myoutvl, N3); advanced| oad: cal | eeAr g=i nm
sinple(n, m nyinc2, Ni, advanced! oad: cal | eeAr g=i nv, asynchronous
inm N2, nyoutv2, N3); matvec(n, m (inc+(k*n)), NI,
#pragma hnpp sinpl e del egat edstore, inm N2, (outv+(k*m), N3);
cal | eeAr g=out v #pragma hnpp matvec del egat edstore, calleeArg=outv
, if (k & ! (KYRATECHANGE)) {
Extract 4: Simple Codelet Use Example. for (i=0; i<m i++) {

inMi*n + iter%n = 0.1;

In this example, the simple function is called ®vi©nly the
first call is candidate to be accelerated, so timdy call will be upl oadmat = 0
offloaded to an accelerator or a worker thread.

#pragma hnpp mat vec advancedl| oad, cal |l eeArg=i nm

}

At runtime, the sequence of events in the mainattref the Extract 5: Specifying Resident Data in the Accelettar.

application will be as follows:

If the dynamically chosen accelerator is capable
asynchronous execution (for instance, a simple aropkhread
based accelerator), then both calls to simple lvgllexecuted
in parallel.

In this example, a single matrix of 8192x8192 fiogtpoint

data for the input parameters of the first calllwi¢ €elements is used in a sequence of 256 vector-matoetucts.
submitted to the HMPP runtime for transfer to thd he matrix is updated every N iterations, N varyfrggn 10 to

dynamically chosen accelerator; 250. Every time the matrix is updated it is sent the
asynchronous launch of the computation will beccelerator. The result for various rates is showte graph
requested; below, comparing the reference C implementatioraorintel

the second call to the simple function will be axed; ~ Core 2 Duo processor and a straightforward CUDAebas
the main thread will then wait for the asynchronougodelet running on a NVIDIA Quadro FX5600. As we cge,
execution of the first call to complete and wiltoser ~the less frequent the updates, the higher the spedthe idea
the data for the output parameter myoutv2. is not to show the performance but to demonstteie HMPP
enables the implementation of various communication
%ftrategies, leading to higher performance. The HMPP
environment allows an easy, non-intrusive way acgying
when and where the data should be transferred deracto
attain optimum performance for the entire appladi

18

Time

10 20 30 40 50 60 70 80

Matrice Update Interval

2,5

mmm Ref
=3 Test
Speedup

90 100 110 120

Figure 4: Data Transfer Overhead.

2) Codelet in Case of Shared Memory Systems

The HMPP environment, while designed for heterogase
accelerators using a distributed memory model, &iao
take advantage of both homogeneous and/or sharewiye
accelerators. One such example is the traditioyalesric
multi-processors system: HMPP can automaticallyaexta
tagged function into an asynchronous codelet, whose
execution is performed by a worker thread usingRSIX
thread interface (pthread).

Another possibility is to use a fully-synchronouseeution
on a shared-memory system. In this case, the doitieddf
will be responsible for exploiting the hardware naeses.
The best example here is the Intel® Threading Bugld
Blocks [8], a "library that abstracts the low-lexbteading
details necessary for optimal multi-core perforngndn
this case, the codelet is re-implemented using B8
library to exploit SMP hardware The runtime willeth
synchronously (with regards to the main applicasion
thread) execute the parallelized code. The functan
therefore take advantage of the library's feataueh as the
automatic spawning of worker threads on all avédlab
processors and dynamic partitioning, without thechéor
the application to become dependant on the library.

3) Lightweight MPI Backend

An interesting aspect of HMPP is the automatic ggtien

of memory transfers to and from the tagged funsti®Guch
memory transfers can be to, or from, not only datdid
hardware but also from any computing resource udiob

for instance a remote host. HMPP offers a virtuacation
back-end based on the MPI (Message Passing Inggrfac
library. Instead of running a codelet on the amlan host
system, HMPP is able to run any codelet on a remose.
Rather than loading a local codelet, the HMPP noatwill
use the MPI library to spawn a lightweight daemaontloe
remote host. This will ensure proper transfersrtd from
the daemon and will request the daemon to execate a
instance of the codelet. The daemon itself is a RMP
application and will use the exact same mechanigms

execute an optimized codelet on the remote hoskgkits
available resources such as GPUs, FPGAs or homaogeno
acceleration through e.g. the aforementioned IitBB
library.

V.CONCLUSION

To our knowledge HMPP is the first programming tool
that addresses hybrid multi-core programming whith t
aim of preserving the legacy code. On one hand, FMP
helps to exploit the potential power of the hardwar
accelerators by addressing, not only remote exatubut
also data communication between the general-purporss
and the specialized ones. On the other hand, HMPP
preserves the legacy code while allowing the usehef
target specific software development toolkit. Tise of the
currently available beta version of HMPP has derrated
that very high performance can be achieved. A BRortr
version of HMPP is currently being developed.

REFERENCES

[1] NVIDIA developers site, CUDA homepage,
http://developer.nvidia.com/object/cuda.html

[2] RapidMind Corp. home pagettp://www.rapidmind.net/

[3] PeakStream Corp. home pafbtp://www.peakstream.com/

[4] ATI CT™M Guide, Technical Reference Manual,
http://ati.amd.com/companyinfo/researcher/docuntdits CTM_G
uide.pdf

[5] Hypertransport consortium home page,
http://www.hypertransport.org/

[6] Romain Dolbeau and Frangois BodintIMPP description
documentation. http://www.caps-entreprise.com

[7]1 Perry HWang, Jamison D. Collins, Gautham N. Chjm@ng Jiang,
Xinmin Tian, Milind Girkar, Nick Y. Yang, Guei-Yuahueh, and
Hong Wang, “EXOCHI: Architecture and Programming
Environment for A Heterogeneous Multi-core Multeaded System,
PLDI'07.

[8] Intel® Threading Blocks, Int&
http://www.intel.com/cd/software/products/asmo-
na/eng/294797.htm

[9] A Hot Path Based Code Partitioning For Distributéeimory System
on a Chip http://www.irisa.fr/caps/projects/Astex/index.html

