
 1

Abstract— Hybrid parallel multi-core architectures based on

Graphical Processing Units (GPU) can provide tremendous
computing power. Current NVIDIA and ATI hardware di splay a
peak performance of hundreds of gigaflops. However, exploiting
GPUs from existing applications is a difficult task that requires
non-portable rewriting of the code. In this paper, we present
HMPP, an Heterogenous Multi-core Parallel Programming
environment that allows the integration of heterogeneous
hardware accelerators in a seamless intrusive manner while
preserving the legacy code.

Keywords: GPGPU, Heterogeneous Programming Environment,
Heterogeneous Core Integration.

I. INTRODUCTION

 ue to their high potential computing power, the use of
graphical processing units (GPUs) looks very attractive to

speedup applications. Furthermore, new programming
environments such as CUDA [1], RapidMind [2],
PeakStream [3] or CTM [4] have made the use of GPUs, for
general purpose programming, easier and more efficient.
These devices achieve high performance with highly parallel
microarchitecture and fast internal memories. This is
illustrated in Figure 1. Data transfers are implemented using
the PCI express bus or, in more coupled systems, via the
HyperTransport channel [5]. The performance not only
depends on the fast architecture but is also determined by the
data communication overhead between the CPU and the GPU.
Not all applications benefit from a GPU acceleration. This
depends on the types of data used that have to be floating point
and also on the amount of parallelism that can be extracted
from the application to build a stream computation, i.e. a
kernel applied on a stream of data. That’s why vendors, such
as NVIDIA and RapidMind, have extended the C language
with new types in order to handle stream data. While it should
allow to map computations more efficiently and transparently
on the hardware accelerator architecture, it requires the
developers to rewrite their algorithms in a new language and
leads to different hardware specific versions of the same
source to maintain.

1 romain.dolbeau@caps-entreprise.com, stephane.bihan@caps-
entreprise.com, françois.bodin@caps-entreprise.com

Figure 1: Use of a GPU as an Hardware Accelerator for
General Purpose Applications.

1) Overview

This paper proposes a solution to not only simplify the use of
hardware acceleration in conventional general purpose
applications, but also to keep the application code portable.
The goal is to integrate the use of hardware accelerators rather
than porting the application to make use of them. The
hardware-specific versions of the computations to be offloaded
on an accelerator are dissociated from the original application
source code. The CAPS HMPP toolkit [6] is a set of compiler
directives, tools and software runtime that supports multi-core
processor parallel programming in C and Fortran on Unix
platforms. HMPP gives programmers a simple, flexible and
portable interface for developing parallel applications whose
critical computations are distributed, at runtime, over the
available specialized and heterogeneous cores.

The chosen approach is similar to a widely available standard,
OpenMP, but designed to handle hardware accelerators. As
such, the application source code is kept portable and a
sequential binary version can be built using a traditional
compiler. Furthermore, if the hardware accelerator (HWA) is
not available for any reason, the legacy code still can be
executed and the application behavior is unchanged.

HMPP™: A Hybrid Multi-core Parallel
Programming Environment

Romain Dolbeau, Stéphane Bihan, and François Bodin, CAPS entreprise1

D

 2

Figure 2: HMPP Integrated Application User View.

As depicted in the Figure 2, the proposed approach is to
declare, by means of HMPP directives, functions (named
codelets) which are suitable for hardware acceleration. The
directives also specify the conditional execution of the
codelets, their desired synchronous or asynchronous properties
and the data transfers.

Many new programming environments for hybrid multi-core
systems have been proposed [2][3][7]. These environments
extend in one way or another, current programming standards
such a C/C++, OpenMP, etc. Most of them rely on a stream
programming style but a program written for a given platform
cannot run on another one.

HMPP takes a radically different approach. A HMPP
application can be compiled with an off-the-shelf compiler and
run without any specific runtime to produce a conventional
native binary. More over, thanks to its dynamic linking
mechanism, a HMPP application is able to make use of either
a new accelerator or an improved codelet without having to
recompile the application source.

This way we aim at preserving legacy codes and insulate them
from frequent hardware platform changes that tend to
characterize hybrid multi-cores, e.g. fast GPU architecture
evolution.

2) Integration with Third-party Tools

The HMPP directives address the remote execution of a piece
of code as well as the download and upload of data to/from the
hardware accelerator memory if it is different from the host
CPU memory. HMPP can be seen as a programming glue
between target specific programming environments and
general purpose programming.

For instance, targeted to CUDA, HMPP expresses which parts
in the application source should be executed in a NVIDIA
card. The NVIDIA codelets are written in CUDA in a specific
file while keeping the original computation in the main source.
The developer also uses the NVIDIA provided tools such as
the runtime and the compiler to program the codelets. The
same applies to RapidMind target: the codelet may use the
RapidMind vector types and needs to be linked against the
RapidMind runtime. Contrarily to those solutions that support
only one target at a time, HMPP is able to handle different

accelerator targets in the same application.

The HMPP runtime handles the concurrent execution of the
codelets that have been previously translated into the vendor
programming model [2][4], either by hand or with an available
code generator2. HMPP defines a standardized hardware
specific interface between the runtime and the codelet
implementation.

The HMPP toolkit comes with a C (and soon Fortran)
preprocessor to translate the directives into appropriate
sequences of calls to the HMPP runtime.

Figure 3 illustrates the build process of a HMPP application.
The hardware version of the codelets is written using the
specific vendor programming language. The application is
firstly preprocessed with the HMPP preprocessor and linked
with the HMPP runtime. The hardware versions of the codelets
are separately compiled using the vendor programming tools
and runtime support. The codelet is then transformed into a
dynamic shared object file with the host compiler.

Figure 3: Build Process Overview.

This paper is organized as follows: section 2 presents the set of
HMPP directives with simple examples. Section 3 describes
the runtime functioning and the last section shows how HMPP
handles homogeneous as well as distributed memory systems.

II. HMPP PROGRAMMING INTERFACE

MPP directives are used to annotate the original code
with instructions to execute a routine, the codelet, on a

hardware accelerator.

An example of HMPP annotation is given in Extract 1. A
codelet is a pure function, i.e. a function that always evaluates
the same result value given the same argument value(s), and
has no side effects and no I/O. Because argument values must
be transferred into the accelerator, there are constraints on the
codelet arguments. The argument coding rules permit to

2 For instance, the CAPS tuner (http://www.caps-entreprise.com/) family

of generators already target OpenGL and CUDA codelet programming.

H

 3

compute the amount of data to transfer runtime.

#pragma hmpp trivial codelet, output=outv
void trivial(int n, float a,
 float *inv, unsigned int N1[1],
 float *outv, unsigned int N3[1]) {
 int i, j;
 for (i = 0 ; i < n ; i++) {
 outv[i] = a * inv[i];
 }
}

Extract 1: Trivial Codelet Definition.

Arguments are alias free (scalar arrays or pointers). Array and
pointer arguments are followed by an array of unsigned integer
argument that gives the size of each dimension of the array or
pointer argument. For instance an argument A[][] is followed
by a one dimensional array argument whose elements 0 and 1
give the size of the first and second dimensions of A.

The types of HMPP directives are the following:

� Codelet: define a function as hardware-assisted.
� Execution: specify the codelet remote execution in

the program.
� Data transfers: data can be uploaded before the

execution of the codelet and data download points
can be inserted after the execution.

All directives are labelled with an identifier corresponding to
exactly one codelet call site.

1) Codelet definition Directive

A codelet directive declares a computation to be remotely
executed on a hardware accelerator. The favoured type of
hardware accelerator can optionally be indicated, otherwise
HMPP will take the first available compatible accelerator. For
an efficient use of the accelerator, the computation can be
specialized to the type of the parameters, their size, value etc.
A parameter can either be read, written or both. They can be
scalar or not. If not, their size argument must follow. A type
conversion can also be inserted when copying the data on the
hardware accelerator. A C or Fortran boolean expression can
be specified in order to guard the execution of the codelet.

More than one codelet directive can be added to a function in
order to specify different uses or different execution contexts.

The hardware-assisted corresponding codelet can either be
produced using an appropriate code generator or hand-written
in the vendor programming model. The argument values are
used to generate specialized versions of the codelet for various
accelerators. When the codelet is called, the appropriate
variant of the code is selected according to the actual
parameter values and performance issues. If an accelerator is
not available or busy the original code of the codelet is used
instead.

2) Remote Codelet Execution Directive

The remote codelet execution directive specifies how to use a
codelet at a given point in the program. An example is shown

in Extract 2. Data transfers and synchronization related to this
call of the codelet both use the same label.

The default behaviour implies to upload the argument data
before the call and to transfer them back after. This behaviour
can be changed using the data transfer directives.

If the condition or the parameters values specified in the
codelet definition are not checked, or if the hardware
accelerator is not available, the original CPU codelet is used
instead. The codelet execution can be asynchronous, for
instance, it allows for concurrent execution between the CPU
and the GPU.

#pragma hmpp trivial callsite
 trivial(n, 2.f, inc, N1, outv, N1);

Extract 2: Trivial Call Site Example.

3) Data Transfer Directives

Data can be uploaded before the execution of the codelet and
data can also be declared constant so as to load them only
once. This is particularly useful when the codelet is executed
in a loop.

Data synchronization barriers can also be added for all
asynchronous data retrieved back from the hardware
accelerator. The program execution will block until all
transfers are completed.

4) Synchronization Directive

When a codelet execution has been declared asynchronous, it
is possible to use a synchronize directive to block the program
until the corresponding codelet execution is complete. The
hardware accelerator is then released and becomes available to
another codelet.

III. RUNTIME SUPPORT

he HMPP runtime is in charge of carrying out the
concurrent execution of the native and hardware versions

of the codelets. It is also responsible for handling the
exceptions such as the execution of a codelet whose input data
have been indicated pre-fetched but not preloaded. This is the
case, for instance, if the preload directive has been inserted in
a path not taken up to the codelet call site directive (i.e. a
program point with the directive was not reach during
execution).

At execution, the HMPP runtime takes care to discover the
available hardware accelerators. When a codelet is indicated to
be run on a hardware accelerator, if the device is available and
if the shared library corresponding codelet is present, HMPP
loads it just as a software plug-in. Otherwise the native version
is run on the host CPU or in a worker thread.

Note that it is not necessary to build a machine specific version
of the binary. As long as the host CPU is identical, the
application will make use of the available accelerators. The
HMPP runtime is able to run several and different hardware
accelerators.

T

 4

Also if an improved version of a codelet is made available,
there is no need to recompile the overall application source,
HMPP will just load it in place of the previous codelet
implementation. Moreover, if a new hardware accelerator has
been made available, a computation that has been indicated as
hardware-assisted with no restriction on the type of accelerator
can make use of that new device without the need to recompile
the application. As the HMPP application is dynamically
linked against the runtime support, only that piece of software
provided by CAPS needs to be updated to take the accelerator
into account.

The following code example defines a codelet in charge of
running the simple function:

#pragma hmpp simple codelet, inout=outv
void simple(int n, int m,
 float *inv, unsigned int N1[1],
 float *inm, unsigned int N2[2],
 float *outv, unsigned int N3[1])

 {
 int i, j;
 for (i = 0 ; i < m ; i++) {
 float temp = outv[i];
 for (j = 0 ; j < n ; j++) {
 temp += inv[j] * inm[i * n + j];
 }
 outv[i] = temp;
 }
}

Extract 3: Simple Codelet Definition Example.

The corresponding call site is given below:

#pragma hmpp simple callsite, asynchronous
 simple(n, m, myinc1, N1,

 inm, N2, myoutv1, N3);
 simple(n, m, myinc2, N1,

 inm, N2, myoutv2, N3);
#pragma hmpp simple delegatedstore,

calleeArg=outv
Extract 4: Simple Codelet Use Example.

In this example, the simple function is called twice. Only the
first call is candidate to be accelerated, so only that call will be
offloaded to an accelerator or a worker thread.

At runtime, the sequence of events in the main thread of the
application will be as follows:

- data for the input parameters of the first call will be
submitted to the HMPP runtime for transfer to the
dynamically chosen accelerator;

- asynchronous launch of the computation will be
requested;

- the second call to the simple function will be executed;
- the main thread will then wait for the asynchronous

execution of the first call to complete and will recover
the data for the output parameter myoutv2.

If the dynamically chosen accelerator is capable of
asynchronous execution (for instance, a simple worker pthread
based accelerator), then both calls to simple will be executed
in parallel.

HMPP is compatible with OpenMP and MPI. If a loop has
been parallelized with OpenMP and contains HMPP
directives, the application will fork threads that will make use
of the available accelerators. If the vendor driver is able to
handle the concurrent execution of several GPU, HMPP will
use all the available accelerators.

HMPP also works with MPI: an already MPI parallelized
binary can be spread over the nodes of a distributed system
and will use the local node codelets to accelerate the
computation of which it is in charge of.

IV. HMPP EXAMPLES

n this section we describe a few HMPP uses.

1) Specializing Data Transfers to Overcome Overhead

The benefit of offloading computations to hardware
accelerators must be weighted against the overheads incurred
by doing so. One of the most significant overhead for
distributed memory accelerators is the cost of the data transfers
between the host's memory and the accelerator's memory. For
instance, constant data must be transferred only once. Non-
constant data may not necessarily require to be transferred at
every call, if the said data are only modified infrequently.
Analyses of the updating patterns of the data and the insertion
of the directives is outside the scope of this paper and can be
made either by hand or with the automated tools Astex [9].
The ability to optimize the transfers is of paramount
importance, as shown in code Extract 5.

 for (k = 0 ; k < iter ; k++) {
#pragma hmpp matvec callsite,
advancedload:calleeArg=inm,
advancedload:calleeArg=inv, asynchronous
 matvec(n, m, (inc+(k*n)), N1,
 inm, N2, (outv+(k*m)), N3);
#pragma hmpp matvec delegatedstore, calleeArg=outv
 if (k && !(k%RATECHANGE)) {
 for (i=0; i<m; i++) {
 inm[i*n + iter%m] = 0.1;
 }
#pragma hmpp matvec advancedload, calleeArg=inm
 uploadmat = 0;
 }
 }

Extract 5: Specifying Resident Data in the Accelerator.

In this example, a single matrix of 8192x8192 floating point
elements is used in a sequence of 256 vector-matrix products.
The matrix is updated every N iterations, N varying from 10 to
250. Every time the matrix is updated it is sent to the
accelerator. The result for various rates is shown in the graph
below, comparing the reference C implementation on an Intel
Core 2 Duo processor and a straightforward CUDA based
codelet running on a NVIDIA Quadro FX5600. As we can see,
the less frequent the updates, the higher the speedup. The idea
is not to show the performance but to demonstrate that HMPP
enables the implementation of various communication
strategies, leading to higher performance. The HMPP
environment allows an easy, non-intrusive way of specifying
when and where the data should be transferred in order to
attain optimum performance for the entire applications.

I

 5

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 100 110 120

Matrice Update Interval

T
im

e

0

0,5

1

1,5

2

2,5

Ref

Test

Speedup

Figure 4: Data Transfer Overhead.

2) Codelet in Case of Shared Memory Systems

The HMPP environment, while designed for heterogeneous
accelerators using a distributed memory model, can also
take advantage of both homogeneous and/or shared-memory
accelerators. One such example is the traditional symetric
multi-processors system: HMPP can automatically extract a
tagged function into an asynchronous codelet, whose
execution is performed by a worker thread using the POSIX
thread interface (pthread).

Another possibility is to use a fully-synchronous execution
on a shared-memory system. In this case, the codelet itself
will be responsible for exploiting the hardware resources.
The best example here is the Intel® Threading Building
Blocks [8], a "library that abstracts the low-level threading
details necessary for optimal multi-core performance". In
this case, the codelet is re-implemented using the TBB
library to exploit SMP hardware The runtime will then
synchronously (with regards to the main application's
thread) execute the parallelized code. The function can
therefore take advantage of the library's features such as the
automatic spawning of worker threads on all available
processors and dynamic partitioning, without the need for
the application to become dependant on the library.

3) Lightweight MPI Backend

An interesting aspect of HMPP is the automatic generation
of memory transfers to and from the tagged functions. Such
memory transfers can be to, or from, not only dedicated
hardware but also from any computing resource, including
for instance a remote host. HMPP offers a virtual execution
back-end based on the MPI (Message Passing Interface)
library. Instead of running a codelet on the application host
system, HMPP is able to run any codelet on a remote host.
Rather than loading a local codelet, the HMPP runtime will
use the MPI library to spawn a lightweight daemon on the
remote host. This will ensure proper transfers to and from
the daemon and will request the daemon to execute an
instance of the codelet. The daemon itself is a HMPP
application and will use the exact same mechanisms to

execute an optimized codelet on the remote host. It exploits
available resources such as GPUs, FPGAs or homogenous
acceleration through e.g. the aforementioned Intel TBB
library.

V. CONCLUSION

o our knowledge HMPP is the first programming tool
that addresses hybrid multi-core programming with the

aim of preserving the legacy code. On one hand, HMPP
helps to exploit the potential power of the hardware
accelerators by addressing, not only remote execution, but
also data communication between the general-purpose cores
and the specialized ones. On the other hand, HMPP
preserves the legacy code while allowing the use of the
target specific software development toolkit. The use of the
currently available beta version of HMPP has demonstrated
that very high performance can be achieved. A Fortran
version of HMPP is currently being developed.

REFERENCES

[1] NVIDIA developers site, CUDA homepage,
http://developer.nvidia.com/object/cuda.html.

[2] RapidMind Corp. home page, http://www.rapidmind.net/.
[3] PeakStream Corp. home page, http://www.peakstream.com/.
[4] ATI CTM Guide, Technical Reference Manual,

http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_G
uide.pdf.

[5] Hypertransport consortium home page,
http://www.hypertransport.org/.

[6] Romain Dolbeau and François Bodin, HMPP description
documentation. http://www.caps-entreprise.com.

[7] Perry H Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang,
Xinmin Tian, Milind Girkar, Nick Y. Yang, Guei-Yuan Lueh, and
Hong Wang, “EXOCHI: Architecture and Programming
Environment for A Heterogeneous Multi-core Multithreaded System,
PLDI’07.

[8] Intel® Threading Blocks, Intel®,

http://www.intel.com/cd/software/products/asmo-
na/eng/294797.htm.

[9] A Hot Path Based Code Partitioning For Distributed Memory System
on a Chip, http://www.irisa.fr/caps/projects/Astex/index.html

T

