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Abstract— Hybrid parallel multi-core architectures based on 

Graphical Processing Units (GPU) can provide tremendous 
computing power. Current NVIDIA and ATI hardware di splay a 
peak performance of hundreds of gigaflops. However, exploiting 
GPUs from existing applications is a difficult task that requires 
non-portable rewriting of the code. In this paper, we present 
HMPP, an Heterogenous Multi-core Parallel Programming 
environment that allows the integration of heterogeneous 
hardware accelerators in a seamless intrusive manner while 
preserving the legacy code.  
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I. INTRODUCTION 

 ue to their high potential computing power, the use of 
graphical processing units (GPUs) looks very attractive to 

speedup applications. Furthermore, new programming 
environments such as CUDA  [1], RapidMind  [2], 
PeakStream [3] or CTM [4] have made the use of GPUs, for 
general purpose programming, easier and more efficient. 
These devices achieve high performance with highly parallel 
microarchitecture and fast internal memories. This is 
illustrated in Figure 1. Data transfers are implemented using 
the PCI express bus or, in more coupled systems, via the 
HyperTransport channel [5]. The performance not only 
depends on the fast architecture but is also determined by the 
data communication overhead between the CPU and the GPU. 
Not all applications benefit from a GPU acceleration. This 
depends on the types of data used that have to be floating point 
and also on the amount of parallelism that can be extracted 
from the application to build a stream computation, i.e. a 
kernel applied on a stream of data. That’s why vendors, such 
as NVIDIA and RapidMind, have extended the C language 
with new types in order to handle stream data. While it should 
allow to map computations more efficiently and transparently 
on the hardware accelerator architecture, it requires the 
developers to rewrite their algorithms in a new language and 
leads to different hardware specific versions of the same 
source to maintain. 
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Figure 1: Use of a GPU as an Hardware Accelerator for 
General Purpose Applications. 

1) Overview 

This paper proposes a solution to not only simplify the use of 
hardware acceleration in conventional general purpose 
applications, but also to keep the application code portable. 
The goal is to integrate the use of hardware accelerators rather 
than porting the application to make use of them. The 
hardware-specific versions of the computations to be offloaded 
on an accelerator are dissociated from the original application 
source code. The CAPS HMPP toolkit [6] is a set of compiler 
directives, tools and software runtime that supports multi-core 
processor parallel programming in C and Fortran on Unix 
platforms. HMPP gives programmers a simple, flexible and 
portable interface for developing parallel applications whose 
critical computations are distributed, at runtime, over the 
available specialized and heterogeneous cores. 

The chosen approach is similar to a widely available standard, 
OpenMP, but designed to handle hardware accelerators. As 
such, the application source code is kept portable and a 
sequential binary version can be built using a traditional 
compiler. Furthermore, if the hardware accelerator (HWA) is 
not available for any reason, the legacy code still can be 
executed and the application behavior is unchanged.  
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Figure 2: HMPP Integrated Application User View. 

As depicted in the Figure 2, the proposed approach is to 
declare, by means of HMPP directives, functions (named 
codelets) which are suitable for hardware acceleration. The 
directives also specify the conditional execution of the 
codelets, their desired synchronous or asynchronous properties 
and the data transfers. 

Many new programming environments for hybrid multi-core 
systems have been proposed [2][3][7]. These environments 
extend in one way or another, current programming standards 
such a C/C++, OpenMP, etc. Most of them rely on a stream 
programming style but a program written for a given platform 
cannot run on another one. 

HMPP takes a radically different approach. A HMPP 
application can be compiled with an off-the-shelf compiler and 
run without any specific runtime to produce a conventional 
native binary. More over, thanks to its dynamic linking 
mechanism, a HMPP application is able to make use of either 
a new accelerator or an improved codelet without having to 
recompile the application source.  

This way we aim at preserving legacy codes and insulate them 
from frequent hardware platform changes that tend to 
characterize hybrid multi-cores, e.g. fast GPU architecture 
evolution.  

2) Integration with Third-party Tools 

The HMPP directives address the remote execution of a piece 
of code as well as the download and upload of data to/from the 
hardware accelerator memory if it is different from the host 
CPU memory. HMPP can be seen as a programming glue 
between target specific programming environments and 
general purpose programming. 

For instance, targeted to CUDA, HMPP expresses which parts 
in the application source should be executed in a NVIDIA 
card. The NVIDIA codelets are written in CUDA in a specific 
file while keeping the original computation in the main source. 
The developer also uses the NVIDIA provided tools such as 
the runtime and the compiler to program the codelets. The 
same applies to RapidMind target: the codelet may use the 
RapidMind vector types and needs to be linked against the 
RapidMind runtime. Contrarily to those solutions that support 
only one target at a time, HMPP is able to handle different 

accelerator targets in the same application.  

The HMPP runtime handles the concurrent execution of the 
codelets that have been previously translated into the vendor 
programming model [2][4], either by hand or with an available 
code generator2. HMPP defines a standardized hardware 
specific interface between the runtime and the codelet 
implementation. 

The HMPP toolkit comes with a C (and soon Fortran) 
preprocessor to translate the directives into appropriate 
sequences of calls to the HMPP runtime.  

Figure 3 illustrates the build process of a HMPP application. 
The hardware version of the codelets is written using the 
specific vendor programming language. The application is 
firstly preprocessed with the HMPP preprocessor and linked 
with the HMPP runtime. The hardware versions of the codelets 
are separately compiled using the vendor programming tools 
and runtime support. The codelet is then transformed into a 
dynamic shared object file with the host compiler. 

 

Figure 3: Build Process Overview. 

This paper is organized as follows: section 2 presents the set of 
HMPP directives with simple examples. Section 3 describes 
the runtime functioning and the last section shows how HMPP 
handles homogeneous as well as distributed memory systems. 

II.  HMPP PROGRAMMING INTERFACE 

MPP directives are used to annotate the original code 
with instructions to execute a routine, the codelet, on a 

hardware accelerator. 

An example of HMPP annotation is given in Extract 1. A 
codelet is a pure function, i.e. a function that always evaluates 
the same result value given the same argument value(s), and 
has no side effects and no I/O. Because argument values must 
be transferred into the accelerator, there are constraints on the 
codelet arguments. The argument coding rules permit to 
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of generators already target OpenGL and CUDA codelet programming.  
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compute the amount of data to transfer runtime. 

#pragma hmpp trivial codelet, output=outv 
void trivial(int n, float a,  
 float *inv, unsigned int N1[1], 
 float *outv, unsigned int N3[1]) { 
  int i, j; 
  for (i = 0 ; i < n ; i++) { 
    outv[i] = a * inv[i]; 
  } 
} 

Extract 1: Trivial Codelet Definition. 

Arguments are alias free (scalar arrays or pointers). Array and 
pointer arguments are followed by an array of unsigned integer 
argument that gives the size of each dimension of the array or 
pointer argument. For instance an argument A[][] is followed 
by a one dimensional array argument whose elements 0 and 1 
give the size of the first and second dimensions of A. 

The types of HMPP directives are the following: 

� Codelet: define a function as hardware-assisted. 
� Execution: specify the codelet remote execution in 

the program. 
� Data transfers: data can be uploaded before the 

execution of the codelet and data download points 
can be inserted after the execution.  

All directives are labelled with an identifier corresponding to 
exactly one codelet call site. 

1) Codelet definition Directive 

A codelet directive declares a computation to be remotely 
executed on a hardware accelerator. The favoured type of 
hardware accelerator can optionally be indicated, otherwise 
HMPP will take the first available compatible accelerator. For 
an efficient use of the accelerator, the computation can be 
specialized to the type of the parameters, their size, value etc. 
A parameter can either be read, written or both. They can be 
scalar or not. If not, their size argument must follow. A type 
conversion can also be inserted when copying the data on the 
hardware accelerator. A C or Fortran boolean expression can 
be specified in order to guard the execution of the codelet.  

More than one codelet directive can be added to a function in 
order to specify different uses or different execution contexts.  

The hardware-assisted corresponding codelet can either be 
produced using an appropriate code generator or hand-written 
in the vendor programming model. The argument values are 
used to generate specialized versions of the codelet for various 
accelerators. When the codelet is called, the appropriate 
variant of the code is selected according to the actual 
parameter values and performance issues. If an accelerator is 
not available or busy the original code of the codelet is used 
instead. 

2) Remote Codelet Execution Directive  

The remote codelet execution directive specifies how to use a 
codelet at a given point in the program. An example is shown 

in Extract 2. Data transfers and synchronization related to this 
call of the codelet both use the same label.  

The default behaviour implies to upload the argument data 
before the call and to transfer them back after. This behaviour 
can be changed using the data transfer directives.  

If the condition or the parameters values specified in the 
codelet definition are not checked, or if the hardware 
accelerator is not available, the original CPU codelet is used 
instead. The codelet execution can be asynchronous, for 
instance, it allows for concurrent execution between the CPU 
and the GPU. 

#pragma hmpp trivial callsite 
  trivial(n, 2.f, inc, N1, outv, N1); 

Extract 2: Trivial Call Site Example. 

3) Data Transfer Directives 

Data can be uploaded before the execution of the codelet and 
data can also be declared constant so as to load them only 
once. This is particularly useful when the codelet is executed 
in a loop.  

Data synchronization barriers can also be added for all 
asynchronous data retrieved back from the hardware 
accelerator. The program execution will block until all 
transfers are completed.  

4) Synchronization Directive 

When a codelet execution has been declared asynchronous, it 
is possible to use a synchronize directive to block the program 
until the corresponding codelet execution is complete. The 
hardware accelerator is then released and becomes available to 
another codelet.  

III.  RUNTIME SUPPORT 

he HMPP runtime is in charge of carrying out the 
concurrent execution of the native and hardware versions 

of the codelets. It is also responsible for handling the 
exceptions such as the execution of a codelet whose input data 
have been indicated pre-fetched but not preloaded. This is the 
case, for instance, if the preload directive has been inserted in 
a path not taken up to the codelet call site directive (i.e. a 
program point with the directive was not reach during 
execution).  

At execution, the HMPP runtime takes care to discover the 
available hardware accelerators. When a codelet is indicated to 
be run on a hardware accelerator, if the device is available and 
if the shared library corresponding codelet is present, HMPP 
loads it just as a software plug-in. Otherwise the native version 
is run on the host CPU or in a worker thread.  

Note that it is not necessary to build a machine specific version 
of the binary. As long as the host CPU is identical, the 
application will make use of the available accelerators. The 
HMPP runtime is able to run several and different hardware 
accelerators.  
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Also if an improved version of a codelet is made available, 
there is no need to recompile the overall application source, 
HMPP will just load it in place of the previous codelet 
implementation. Moreover, if a new hardware accelerator has 
been made available, a computation that has been indicated as 
hardware-assisted with no restriction on the type of accelerator 
can make use of that new device without the need to recompile 
the application. As the HMPP application is dynamically 
linked against the runtime support, only that piece of software 
provided by CAPS needs to be updated to take the accelerator 
into account. 

The following code example defines a codelet in charge of 
running the simple function: 

#pragma hmpp simple codelet, inout=outv 
void simple(int n, int m, 
            float *inv, unsigned int N1[1], 
            float *inm, unsigned int N2[2], 
            float *outv, unsigned int N3[1]) 

  { 
  int i, j; 
  for (i = 0 ; i < m ; i++) { 
    float temp =  outv[i]; 
    for (j = 0 ; j < n ; j++) { 
      temp += inv[j] * inm[i * n + j]; 
    } 
    outv[i] = temp; 
  } 
} 
 

Extract 3: Simple Codelet Definition Example. 

The corresponding call site is given below: 

#pragma hmpp simple callsite, asynchronous 
    simple(n, m, myinc1, N1, 

             inm, N2, myoutv1, N3); 
    simple(n, m, myinc2, N1, 

             inm, N2, myoutv2, N3); 
#pragma hmpp simple delegatedstore, 

calleeArg=outv 
Extract 4: Simple Codelet Use Example. 

In this example, the simple function is called twice. Only the 
first call is candidate to be accelerated, so only that call will be 
offloaded to an accelerator or a worker thread. 

At runtime, the sequence of events in the main thread of the 
application will be as follows: 

- data for the input parameters of the first call will be 
submitted to the HMPP runtime for transfer to the 
dynamically chosen accelerator; 

- asynchronous launch of the computation will be 
requested; 

- the second call to the simple function will be executed; 
- the main thread will then wait for the asynchronous 

execution of the first call to complete and will recover 
the data for the output parameter myoutv2. 

If the dynamically chosen accelerator is capable of 
asynchronous execution (for instance, a simple worker pthread 
based accelerator), then both calls to simple will be executed 
in parallel. 

HMPP is compatible with OpenMP and MPI. If a loop has 
been parallelized with OpenMP and contains HMPP 
directives, the application will fork threads that will make use 
of the available accelerators. If the vendor driver is able to 
handle the concurrent execution of several GPU, HMPP will 
use all the available accelerators. 

HMPP also works with MPI: an already MPI parallelized 
binary can be spread over the nodes of a distributed system 
and will use the local node codelets to accelerate the 
computation of which it is in charge of.  

IV.  HMPP EXAMPLES 

n this section we describe a few HMPP uses. 

1) Specializing Data Transfers to Overcome Overhead 

The benefit of offloading computations to hardware 
accelerators must be weighted against the overheads incurred 
by doing so. One of the most significant overhead for 
distributed memory accelerators is the cost of the data transfers 
between the host's memory and the accelerator's memory. For 
instance, constant data must be transferred only once. Non-
constant data may not necessarily require to be transferred at 
every call, if the said data are only modified infrequently. 
Analyses of the updating patterns of the data and the insertion 
of the directives is outside the scope of this paper and can be 
made either by hand or with the automated tools Astex [9]. 
The ability to optimize the transfers is of paramount 
importance, as shown in code Extract 5. 

  for (k = 0 ; k < iter ; k++) { 
#pragma hmpp matvec callsite, 
advancedload:calleeArg=inm, 
advancedload:calleeArg=inv, asynchronous 
    matvec(n, m, (inc+(k*n)), N1, 
           inm, N2, (outv+(k*m)), N3); 
#pragma hmpp matvec delegatedstore, calleeArg=outv 
    if (k && !(k%RATECHANGE)) { 
      for (i=0; i<m; i++) { 
        inm[i*n + iter%m] = 0.1; 
      } 
#pragma hmpp matvec advancedload, calleeArg=inm 
      uploadmat = 0; 
    } 
  } 

Extract 5: Specifying Resident Data in the Accelerator. 

In this example, a single matrix of 8192x8192 floating point 
elements is used in a sequence of 256 vector-matrix products. 
The matrix is updated every N iterations, N varying from 10 to 
250. Every time the matrix is updated it is sent to the 
accelerator. The result for various rates is shown in the graph 
below, comparing the reference C implementation on an Intel 
Core 2 Duo processor and a straightforward CUDA based 
codelet running on a NVIDIA Quadro FX5600. As we can see, 
the less frequent the updates, the higher the speedup. The idea 
is not to show the performance but to demonstrate that HMPP 
enables the implementation of various communication 
strategies, leading to higher performance. The HMPP 
environment allows an easy, non-intrusive way of specifying 
when and where the data should be transferred in order to 
attain optimum performance for the entire applications. 
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Figure 4: Data Transfer Overhead. 

2) Codelet in Case of Shared Memory Systems 

The HMPP environment, while designed for heterogeneous 
accelerators using a distributed memory model, can also 
take advantage of both homogeneous and/or shared-memory 
accelerators. One such example is the traditional symetric 
multi-processors system: HMPP can automatically extract a 
tagged function into an asynchronous codelet, whose 
execution is performed by a worker thread using the POSIX 
thread interface (pthread). 

Another possibility is to use a fully-synchronous execution 
on a shared-memory system. In this case, the codelet itself 
will be responsible for exploiting the hardware resources. 
The best example here is the Intel® Threading Building 
Blocks [8], a "library that abstracts the low-level threading 
details necessary for optimal multi-core performance". In 
this case, the codelet is re-implemented using the TBB 
library to exploit SMP hardware The runtime will then 
synchronously (with regards to the main application's 
thread) execute the parallelized code. The function can 
therefore take advantage of the library's features such as the 
automatic spawning of worker threads on all available 
processors and dynamic partitioning, without the need for 
the application to become dependant on the library. 

3) Lightweight MPI Backend 

An interesting aspect of HMPP is the automatic generation 
of memory transfers to and from the tagged functions. Such 
memory transfers can be to, or from, not only dedicated 
hardware but also from any computing resource, including 
for instance a remote host. HMPP offers a virtual execution 
back-end based on the MPI (Message Passing Interface) 
library. Instead of running a codelet on the application host 
system, HMPP is able to run any codelet on a remote host. 
Rather than loading a local codelet, the HMPP runtime will 
use the MPI library to spawn a lightweight daemon on the 
remote host. This will ensure proper transfers to and from 
the daemon and will request the daemon to execute an 
instance of the codelet. The daemon itself is a HMPP 
application and will use the exact same mechanisms to 

execute an optimized codelet on the remote host. It exploits 
available resources such as GPUs, FPGAs or homogenous 
acceleration through e.g. the aforementioned Intel TBB 
library. 

V. CONCLUSION 

o our knowledge HMPP is the first programming tool 
that addresses hybrid multi-core programming with the 

aim of preserving the legacy code. On one hand, HMPP 
helps to exploit the potential power of the hardware 
accelerators by addressing, not only remote execution, but 
also data communication between the general-purpose cores 
and the specialized ones. On the other hand, HMPP 
preserves the legacy code while allowing the use of the 
target specific software development toolkit. The use of the 
currently available beta version of HMPP has demonstrated 
that very high performance can be achieved. A Fortran 
version of HMPP is currently being developed. 
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