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Abstract. Threads experiencing long-latency loads on a simultanenuthread-
ing (SMT) processor may clog shared processor resourcémutimaking for-
ward progress, thereby starving other threads and redasi@gll system through-
put. An elegant solution to the long-latency load problen$MT processors is
to employ runahead execution. Runahead threads do not bboeknit on a long-
latency load but instead execute subsequent instructioasspeculative execu-
tion mode to expose memory-level parallelism (MLP) throygéfetching. The
key benefit of runahead SMT threads is twofold: (i) runahémeads do not clog
resources on a long-latency load, and (ii) runahead threagit far-distance
MLP.

This paper proposes MLP-aware runahead threads: runalxeadt®n is only
initiated in case there is far-distance MLP to be exploitgégdoing so, useless
runahead executions are eliminated, thereby reducinguimar of speculatively
executed instructions (and thus energy consumption) vpinéserving the perfor-
mance of the runahead thread and potentially improving &éropnance of the
co-executing thread(s). Our experimental results show\thd-aware runahead
threads reduce the number of speculatively executed pigins by 13.9% and
10.1% for two-program and four-program workloads, respebtt, compared to
MLP-agnostic runahead threads while achieving comparsygeem throughput
and job turnaround time.

1 Introduction

Long-latency loads (last D-cache level misses and D-TLBsass have a big perfor-
mance impact on simultaneous multithreading (SMT) pramsg23]. In particular, in
an SMT processor with dynamically shared resources, a dhegperiencing a long-
latency load will eventually stall while holding resourdesorder buffer entries, issue
gueue slots, rename registers, etc.), thereby potensitgtying the other thread(s) and
reducing overall system throughput.

Tullsen and Brown [21] recognized this problem and propdsdiiit the amount
of resources allocated by threads that are stalled due tplitency loads. In theftush
policy, fetch is stalled as soon as a long-latency load isdetl and instructions are
flushed from the pipeline in order to free resources allataiethe long-latency thread.
The flush policy by Tullsen and Brown, however, does not presmemory-level par-
allelism (MLP) [3,8], but instead serializes independemig-latency loads. This may
hurt the performance of memory-intensive (or, more prdgid¢LP-intensive) threads.



Eyerman and Eeckhout [6] therefore proposeditid?-aware flustpolicy which first
predicts the MLP distance for a long-latency load, i.e.rédicts the number of instruc-
tions one needs to go down the dynamic instruction streareXposing the available
MLP. Subsequently, based on the predicted MLP distance,-Bk&re flush decides to
(i) flush the thread in case there is no MLP, or (ii) continuecdting resources for the
long-latency thread for as many instructions as predicyettié MLP predictor. The key
idea is to flush a thread only in case there is no MLP; in cage tkeMLP, MLP-aware
flush allocates as many resources as required to exposeditedde memory-level par-
allelism.

Ramirez et al. [17] proposed runahead threads in an SMT psocavhich avoid
resource clogging on long-latency loads while exposing orgratevel parallelism. The
idea of runahead execution [14] is to not block commit on aylatency load, but to
speculatively execute instructions ahead in order to exisP through prefetching.
Runahead threads are particularly interesting in the comtean SMT processor be-
cause they solve two issues: (i) they do not clog resourcdsragilatency loads, and
(i) they preserve MLP, and even allow for exploiting fastdince MLP (beyond the
scope of the reorder buffer).

A limitation of runahead threads in an SMT processor thosghat they consume
execution resources (functional unit slots, issue queats,sleorder buffer entries, etc.)
even if there is no MLP to be exploited, i.e., runahead exenwtoes not contribute to
the performance of the runahead thread in case there is notvibe exploited, and
in addition, may hurt the performance of the co-executirrgdl(s) and thus overall
system performance. In this paper, we proplgkd>-aware runahead thread$he key
idea of MLP-aware runahead threads is to enter runaheadigxeonly in case there
is far-distance MLP to be exploited. In particular, the MLBtdnce predictor first pre-
dicts the MLP distance upon a long-latency load, and in das&M_P distance is large,
runahead execution is initiated. If not, i.e., in case thePMlistance is small, we fetch
stall the thread after having fetched as many instructiensradicted by the MLP dis-
tance predictor, or we (partially) flush the long-latencsetid if more instructions have
been fetched than predicted by the MLP distance predictor.

MLP-aware runahead threads reduce the number of spe@lja¢ivecuted instruc-
tions significantly over MLP-agnostic runahead threaddevindt affecting overall SMT
performance. Our experimental results using the SPEC CBUB6énchmarks on a 4-
wide superscalar SMT processor configuration report thaPhlware runahead threads
reduce the number of speculatively executed instructign3:9% and 10.1% on av-
erage for two-program and four-program workloads, redpelst compared to MLP-
agnostic runahead threads, while yielding comparablesys#iroughput and job turn-
around time. Binary MLP prediction (using the previouslpposed MLP predictor by
Mutlu et al. [13]) along with an MLP-agnostic flush policy rfiaer reduces the num-
ber of speculatively executed instructions under runalea&dution by 13% but hurts
system throughput (STP) by 11% and job turnaround time (ANJyI2.3% on average.

This paper is organized as follows. We first revisit the Mluage flush policy (Sec-
tion 2) and runahead SMT threads (Section 3). Subsequerglpropose MLP-aware
runahead threads in Section 4. After detailing our expemitaesetup in Section 5, we
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Fig. 1. Updating the MLP distance predictor.

then present our evaluation in Section 6. Finally, we descrelated work (Section 7),
and conclude (Section 8).

2 MLP-Aware Flush

The MLP-aware flush policy proposed in [6] consists of threschanisms: (i) it iden-
tifies long-latency loads, (ii) it predicts the load’s MLFstdince, and (iii) it stalls fetch
or flushes the long-latency thread based on the predicted di&tBnce. The first step
is trivial (i.e., a load instruction is labeled as a longelaty load as soon as the load is
found out to be an off-chip memory access, e.g., an L3 mis€eiaB miss). We now
discuss the second and third steps in more detail.

2.1 MLP Distance Prediction

Once a long-latency load is identified, the MLP distance ioted predicts theMLP
distance or the number of instructions one needs to go down the dymarsiruction
stream in order to expose the maximum exploitable MLP forgiven reorder buffer
size. The MLP distance predictor consists of a table indéweithe load PC, and each
entry in the table records the MLP distance for the corredpunload. There is one
MLP distance predictor per thread.

Updating the MLP distance predictor is done using a strectialled thelong-
latency shift registe(LLSR), see Figure 1. The LLSR has as many entries as there
are reorder buffer entries divided by the number of threadsi{ming a shared reorder
buffer), and there are as many LLSRs as there are threads ¢gpomitting an instruc-
tion from the reorder buffer, the LLSR is shifted over onegasition from tail to head,
and one bit is inserted at the tail of the LLSR. A ‘1’ is insekia case the committed
instruction is a long-latency load, and a ‘0’ is insertedesthise. Along with inserting
a ‘0’ or a ‘1’ we also keep track of the load PCs in the LLSR. Ise€a ‘1’ reaches the
head of the LLSR, we update the MLP distance predictor taliles is done by com-
puting the MLP distance which is the bit position of the lggp@aring ‘1’ in the LLSR
when reading the LLSR from head to tail. In the example giveRigure 1, the MLP
distance equals 6. The MLP distance predictor is updatechdmsriting the computed
MLP distance in the predictor table entry pointed to by thegldatency load PC. In



other words, the MLP distance predictor is a simple lastegredictor, i.e., the most
recently observed MLP distance is stored in the predictaeta

2.2 MLP-Aware Fetch Policy

The best performing MLP-aware fetch policy reported in ke MLP-aware flush
policy and operates as follows. Say the predicted MLP désagualsn. Then, if more
thanm instructions have been fetched since the long-latency, Isayin instructions,
we flush the lash - minstructions fetched. If less thaninstructions have been fetched
since the long-latency load, we continue fetching instams untilminstructions have
been fetched, and we then fetch stall the thread.

The flush mechanism requires checkpointing support by teexaichitecture. Com-
mercial processors such as the Alpha 21264 [11] effectisefyport checkpointing at
all instructions. If the microprocessor would only suppcieckpointing at branches
for example, the flush mechanism could flush the instructast the first branch af-
ter the nexim instructions. The MLP-aware flush policy resorts to the IQOUfetch
policy [22] in the absence of long-latency loads. The MLRagwflush policy also im-
plements the ‘continue the oldest thread’ (COT) mechanisopgsed by Cazorla et
al. [1]. COT means that in case all threads stall because ohg-latency load, the
thread that stalled first gets priority for allocating resms. The idea is that the thread
that stalled first is likely to be the first thread to get theadlfick from memory and
continue execution.

3 Runahead Threads

Runahead execution [4,14] avoids the processor frommsgaliihen a long-latency load
hits the head of the reorder buffer. When a long-latency tbatlis still being serviced,
reaches the reorder buffer head, the processor takes amiatkwhich includes the
architectural register state, the branch history regiatet the return address stack),
records the program counter of the blocking long-laten@d|cand initiates runahead
execution. The processor then continues to execute inigtngcin a speculative way
past the long-latency load: these instructions do not ch#mgarchitectural state. Long-
latency loads executed during runahead send their reqieestain memory but their
results are identified as invalid; and an instruction thasusn invalid argument also
produces an invalid result. Some of the instructions exatduring runahead execu-
tion (those that are independent of the long-latency loats) miss in the cache as
well. Their latencies then overlap with the long-latencgidathat initiated runahead
execution. And this is where the performance benefit of readircomes from: it ex-
ploits memory-level parallelism (MLP) [3,8], i.e., indep#ent memory accesses are
processed in parallel. When, eventually, the initial Idatgncy load returns from mem-
ory, the processor exits runahead execution, flushes ttedimap restores the check-
point, and resumes normal execution starting with the loedriction that initiated
runahead execution. This normal execution will make fagtegress because some of
the data has already been prefetched in the caches duriaead execution.



Whereas Mutlu et al. [14] proposed runahead execution foieatg high perfor-
mance on single-threaded superscalar processors, Raghak#17] integrate runahead
threads in an SMT processor. The reason for doing so is ta@offaist, runahead threads
seek for exploiting MLP thereby improving per-thread penfance. Second, runahead
threads do not stall on commit and thus do not clog resources iSMT processor.
This appealing solution to the shared resource partitgpioblem in SMT processors
yields substantial SMT performance improvements, espgedi@ memory-intensive
workloads according to Ramirez et al. (and we confirm thoseltgin our evaluation).
The runahead threads proposal by Ramirez et al., howeveéatés runahead execu-
tion upon a long-latency load irrespective of whether thiefdLP to be exploited. As
a result, in case there is no MLP, runahead execution wilsaore resources without
contributing to performance, i.e., the runahead execusiarseless because it does not
exploit MLP. This is the problem being addressed in this papel for which we pro-
pose MLP-aware threads as described in the next section.

4 MLP-Aware Runahead Threads

An MLP-aware fetch policy as well as runahead threads conte teir own benefits
and limitations. The limitation of an MLP-aware fetch pglis that it cannot exploit
MLP over large distances, i.e., the exploitable MLP is lgditto (a fraction of) the
reorder buffer size. Runahead threads on the other handxgdmiteMLP at large dis-
tances, beyond the scope of the reorder buffer, which ineg@erformance substan-
tially for memory-intensive workloads. However, if MLP4agstic — as in the original
description of runahead execution by Mutlu et al. [14] asaglin the follow-on work
by Ramirez et al. [17] — runahead execution is initiated upwery in-service long-
latency load that hits the reorder buffer head irrespeatfwghether there is MLP to be
exploited. As a result, runahead threads may consume eargasources without any
performance benefit for the runahead thread. Moreoverhema execution may even
hurt the performance of the co-executing thread(s). Anadisadvantage of runahead
execution compared to the MLP-aware flush policy is that nies&ructions need to
be re-fetched and re-executed upon the return of the imigabng-latency load. In the
MLP-aware flush policy on the other hand, instructions resithe reorder buffer and
issue queues and need not be re-fetched, and, in additmmdfnuctions that are inde-
pendent of the blocking long-latency load need not be rexgeel, potentially saving
execution resources and energy consumption.

To combine the best of both worlds, we propd$eP-aware runahead threada
this paper. We distinguish two approaches to MLP-awarethraad threads.

Runahead threads based on binary MLP predictidhe first approach is to employ bi-
nary MLP prediction. We therefore use the MLP predictor megd by Mutlu et al. [13]
which was originally developed for limiting the number ofelesss runahead periods,
thereby reducing the number of speculatively executedungons under runahead ex-
ecution in order to save energy. The idea of employing the Mtdlictor is to enter
runahead mode only in case the MLP predictor predicts tlsefar-idistance MLP to be
exploited.



The MLP predictor by Mutlu et al. is a load-PC indexed tabléhwva two-bit sat-
urating counter per table entry. Runahead mode is enterlgdrogase the counter is
in the ‘10’ or ‘11’ states. A long-latency load which has nauater associated with
it, allocates a counter and resets the counter (to the 928t Runahead execution
is not entered in the ‘00" and ‘01’ states; instead, the ceuist incremented. During
runahead execution, the processor keeps track of the nushlmerg-latency loads gen-
erated. (Mutlu et al. count the number of loads generatedtwyhe reorder buffer; in
the SMT context with a shared reorder buffer, this translébethe reorder buffer size
divided by the number of hardware threads.) When exitingah&ad mode, if at least
one long-latency load was generated during runahead mioe@ssociated counter is
incremented; if not, the counter is decremented if in thé &tdte, and is reset if in the
‘10’ state.

Runahead threads based on MLP distance predictibime second approach to MLP-
aware runahead threads is to predict the MLP distance r#therto rely on a binary
MLP prediction. We first predict the MLP distance upon a Idatgncy load. In case
the predicted MLP distance is smaller than half the reordéfebsize for a two-thread
SMT processor and one fourth the reorder buffer size for aforead SMT processor
(i.e., this is what the MLP-aware flush policy can exploitg apply the MLP-aware
flush policy. In case the predicted MLP distance is largen thalf (or one fourth) the
reorder buffer size, we enter runahead mode. In other wdfrttsere is no MLP or if
there is exploitable MLP over a short distance only, we residthe MLP-aware flush
policy; if there is large-distance MLP to be exploited, wiiate runahead execution.

5 Experimental Setup

5.1 Benchmarks and Simulator

We use the SPEC CPU2000 benchmarks in this paper with tHeferee inputs. These
benchmarks are compiled for the Alpha ISA using the Compag@piler (cc) ver-
sion V6.3-025 with the O4 optimization option. For all of these benchmarks we se-
lect 200M instruction (early) simulation points using then8oint tool [15,18]. We
use a wide variety of randomly selected two-thread and thread workloads. The
two-thread and four-thread workloads are classified asitit®asive, MLP-intensive or
mixed ILP/MLP-intensive workloads.

We use the SMTSIM simulator v1.0 [20] in all of our experimerikhe processor
model being simulated is the 4-wide superscalar out-o&08MT processor shown in
Table 1. The default fetch policy is ICOUNT 2.4 [22] whichadls up to four instruc-
tions from up to two threads to be fetched per cycle. We addedte buffer to the
simulator’s processor model: store operations leave thielez buffer upon commit and
walit in the write buffer for writing to the memory subsystecommit blocks in case the
write buffer is full and we want to commit a store.

5.2 Performance Metrics

We use two system-level performance metrics in our evalnatsystem throughput
(STP) and average normalized turnaround time (ANTT) [7Et8sn throughput (STP)



parameter value

fetch policy ICOUNT 2.4

pipeline depth 14 stages

(shared) reorder buffer sizg128 entries

(shared) load/store queue |64 entries

instruction queues 64 entries in both IQ and FQ

rename registers 100 integer and 100 floating-point
processor width 4 instructions per cycle

functional units 4 int ALUs, 2 Id/st units and 2 FP units
branch misprediction penaltyl cycles

branch predictor 2K-entry gshare

branch target buffer 256 entries, 4-way set associative
write buffer 8 entries

L1 instruction cache 64KB, 4-way, 64-byte lines

L1 data cache 64KB, 4-way, 64-byte lines

unified L2 cache 512KB, 8-way, 64-byte lines

unified L3 cache 4MB, 16-way, 64-byte lines
instruction/data TLB 128/512 entries, fully-assoc, 8KB pages
cache hierarchy latencies |L2 (11), L3 (35), MEM (500)

Table 1. The baseline SMT processor configuration.

is a system-oriented metric which measures the number sfgompleted per unit of
time, and is defined as:

" CPIST

TE= 2 opry

=1

with CPI7T and CPIMT the cycles per instruction achieved for prograrduring
single-threaded and multi-threaded execution, respagtithere are: threads running
simultaneously. STP is a higher-is-better metric and expha weighted speedup metric
proposed by Snavely and Tullsen [19].

Average normalized turnaround time (ANNT) is a user-ogeimetric which quan-
tifies the average user-perceived slowdown due to mulaitireg. ANTT is computed
as
CPIMT

1 n

i=1

ANTT equals the reciprocal of the hmean metric proposed #j,[&nd is a lower-is-
better metric. Eyerman and Eeckhout [7] argue that both STPPANTT should be
reported in order to gain insight into how a given multithded architecture affects
system-perceived and user-perceived performance, resggc

When simulating a multi-program workload, simulation saghen 400 million in-
structions have been executed. At that point, programil have executed:; million
instructions. The single-thread€dP7°7 used in the above formulas equals single-
threaded CPI afte; million instructions. When we report average STP and ANTT
numbers across a number of multi-program workloads, we his@armonic and arith-
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metic mean for computing the average STP and ANTT, respagtifollowing the rec-
ommendations on the use of averages by John [10].

5.3 Hardware Cost

The performance numbers reported in the evaluation seatisume the following hard-
ware costs. For both the binary MLP predictor and the MLPadlise predictor we as-
sume a PC-indexed 2K-entry table. (We experimented withnalxau of predictor con-
figurations, including the tagged set-associative tabjgoization proposed by Mutlu
et al. [13] and we found the untagged 2K-entry to slightlypauform the tagged orga-
nization by Mutlu et al.) An entry in the binary MLP predictera 2-bit field following
Mutlu et al. [13]. An entry in the MLP distance predictor is-@Bfield; one bit encodes
whether long-distance MLP is to be predicted, and the otlertits encode the MLP
distance within the reorder buffer in buckets of 16 instioas. The hardware cost for a
run-length encoded LLSR equals 0.7Kbits in total: 32 (maxilTmnumber of outstand-
ing long-latency loads) times 22 bits (11 bits for keepiragkr of the load PC index in
the 2K-entry MLP distance predictor, plus 11 bits for theaded run length — max-
imum of 2048 instructions — since the prior long-latencydaniss). In summary, the
total hardware cost for the binary MLP predictor equals 4K lthe total hardware cost
for the MLP distance predictor (predictor table plus LLSRuals 6.7Kbits.

6 Evaluation

6.1 MLP distance predictor

Key to the success of MLP-aware runahead threads is theaycaf the MLP distance
predictor. The primary concern is whether the predictor aaourately estimate far-
distance MLP in order to decide whether or not to go in rundhmeade.

Figure 2 shows the accuracy of the MLP distance predictorud positive denotes
correctly predicted long-distance MLP and a true negatemodes correctly predicted
short-distance or no MLP; the false positives and false tivggadenote mispredictions.
The prediction accuracy equals 61% on average, and the ityagdrmispredictions



are false positives. In spite of this relatively low pre@ataccuracy, MLP-aware runa-
head threads are effective as will be demonstrated in thefeexparagraphs. Improv-
ing MLP distance prediction will likely lead to improved efftiveness of MLP-aware
runahead threads, i.e., reducing the number of false pesitvill reduce the number of
speculatively executed instructions and will thus incee@sergy saving opportunities
— this is left for future work though.

6.2 Two-program workloads
We compare the following SMT fetch policies and architeetur

— ICOUNT [22] which strives at having an equal number of instions from all
threads in the front-end pipeline and instruction queués. following fetch poli-
cies extend upon the ICOUNT policy.

— TheMLP-aware flustapproach [6] predicts the MLP distangefor a long-latency
load, and fetch stalls or flushes the thread afténstructions since the long-latency
load.

— Runahead threadshreads go in runahead mode when the oldest instructidmein t
reorder buffer is a long-latency load that is still beingvéeed [17].

— Binary MLP-aware runahead threads w/ ICOUN{Re binary MLP predictor by
Mutlu et al. [13] predicts whether there is far-distance Mibbe exploited, and a
thread only goes in runahead mode in case MLP is predictechde there is no
(predicted) MLP, we resort to ICOUNT.

— Binary MLP-aware runahead threads w/ flughis is the same policy as the one
above, except that in case of no (predicted) MLP, we perfofiunsh. The trade-off
between this policy and the latter is that ICOUNT may expsbivrt-distance MLP
whereas flush does not, however, flush prevents resourcgintpg

— MLP-distance-aware runahead threadee MLP distance predictor by Eyerman
and Eeckhout [6] predicts the MLP distance. If there is fatathce MLP to be
exploited, the thread goes in runahead mode. If there is simyt-distance MLP
to be exploited, the thread is fetch stalled and/or flushedraking to the predicted
MLP distance.

Figures 3 and 4 compare these six fetch policies in termsefSthP and ANTT
performance metrics, respectively, for the two-progranmmklaads. These results con-
firm the results presented in prior work by Ramirez et al. {¥@hahead threads im-
prove both system throughput and job turnaround time sicanitly over both ICOUNT
and MLP-aware flush: STP and ANTT improve by 70.1% and 43.8%pectively,
compared to ICOUNT; and STP and ANTT improve by 44.3% and %6.&spec-
tively, compared to MLP-aware flush. These results also sthavMLP-aware runa-
head threads (rightmost bars) achieve comparable perfarenas MLP-agnostic runa-
head threads. Moreover, MLP-aware runahead threads a&chialight improvement
in both STP and ANTT for some workloads over MLP-agnostiahead threads, e.g.,
mesa-galgel achieves a 3.3% higher STP and a 3.2% smaller ANTT under Midte
runahead threads compared to MLP-agnostic runahead threlae reason for this per-
formance improvementis that preventing one thread frorarérg runahead mode gives
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more resources to the co-executing thread thereby impgdtam performance of the co-
executing thread. For other workloads, on the other hand?Mivare runahead threads
result in slightly worse performance compared to MLP-agiegsnahead threads, e.g.,
the worst performance is observed fmt-mgrid: 3% reduction in STP and 0.3% in-
crease in ANTT. These performance degradations are duectoréct MLP distance
predictions.

Figures 3 and 4 also clearly illustrate the effectiveneddlbP distance prediction
versus binary MLP prediction. The MLP distance predictomigre effective than the
binary MLP predictor proposed by Mutlu et al. [13]: i.e., STRproves by 11% on
average and ANTT improves by 2.3% compared to the binary MisBre policy with
flush; compared to the binary MLP-aware policy with ICOUNTe tMLP distance pre-
dictor improves STP by 11.5% and ANTT by 10%. The reason iddlgo First, the
LLSR employed by the MLP distance predictor continuouslynitars the MLP dis-
tance for each long-latency load. The binary MLP predictoMutlu et al. only checks
for far-distance MLP through runahead execution; as ruadlegecution is not initiated
for each long-latency load, it provides partial MLP infortioa only. Second, the MLP
distance predictor releases resources allocated by thel&tency thread as soon as
the short-distance MLP (within half the reorder buffer) h@en exploited. The binary
MLP-aware policy on the other hand clogs resources (thrahghnCOUNT mecha-
nism) or does not exploit short-distance MLP (through thstflpolicy).

6.3 Four-program workloads

Figures 5 and 6 show STP and ANTT, respectively, for the fmagram workloads.

The overall conclusion is similar as for two-program woukdts: MLP-aware runahead
threads achieve similar performance as MLP-agnostic readtthreads. The perfor-
mance improvements are slightly higher though for the forogram workloads than
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ANTT for four-program workloads.

for the two-program workloads because the co-executingraras compete more for
the shared resources on a four-threaded SMT processor thartwo-threaded SMT

processor. Making the runahead threads MLP-aware prowides shared resources for
the co-executing programs which improves both single-pogperformance as well as
overall system performance.

6.4 Reduction in speculatively executed instructions

As mentioned before, the main motivation for making runahkt P-aware is to re-
duce the number of useless runahead executions, and thexgbge the number of
speculatively executed instructions under runahead ¢ixecim order to reduce energy
consumption. Figure 7 quantifies the normalized number e€slatively executed in-
structions compared to MLP-agnostic runahead threads.-Mi&re runahead threads
reduce the number of speculatively executed instructigns39% on average; this is
due to eliminating useless runahead execution periods.obiEn similar results for
the four-program workloads with an average 10.1% redudtidghe number of specu-
latively executed instructions; these results are not shibere because of space con-
straints.) Binary MLP-aware runahead threads with ICOUN® #lush achieve higher
reductions in the number of speculatively executed insisas (23.7% and 27%, re-
spectively), however, this comes at the cost of reducecdpmence (by 11% to 11.5%
in STP and 2.3% to 10% in ANTT) as previously shown.

7 Related Work

There are two ways of partitioning the resources in an SMT@ssor. One approach is
static partitioning [16] as done in the Intel Pentium 4 [@]which each thread gets an
equal share of the resources. Static partitioning solvedahg-latency load problem:
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Fig. 7. Normalized speculative instruction count compared to Mighostic runahead threads for
the two-program workloads.
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a long-latency thread cannot clog resources, howevergis et provide flexibility: a
resource that is not being used by one thread cannot be ugbeé byher thread(s).

The second approach, called dynamic partitioning, on therdtand provides flexi-
bility by allowing multiple threads to share resources, kwer, preventing long-latency
threads from clogging resources is a challenge. In dynaariitipning, the fetch policy
typically determines what thread to fetch instructiongrirmm each cycle and by con-
sequence, the fetch policy also implicitly manages theeshegsources. Several fetch
policies have been proposed in the recent literature. ICOURR] prioritizes threads
with fewer instructions in the pipeline. The limitation d@OUNT is that in case of a
long-latency load, ICOUNT may continue allocating resesréor the blocking long-
latency thread; by consequence, these resources will bielyghe blocking thread and
will prevent the other thread(s) from allocating these tgses. In response to this prob-
lem, Tullsen and Brown [21] proposed two schemes for hagdtmg-latency loads,
namely (i) fetch stall the long-latency thread, and (ii) flusstructions fetched passed
the long-latency load in order to deallocate resourcesoflaet al. [1] improved upon
the work done by Tullsen and Brown by predicting long-lateluads along with the
‘continue the oldest thread (COT)’ mechanism that pripei$i the oldest thread in case
all threads wait for a long-latency load. Eyerman and Eeckf®] made the flush pol-
icy MLP-aware in order to preserve the available MLP upon sHflar fetch stall on a
long-latency thread.

An alternative approach is to drive the fetch policy throwplicit resource par-
titioning. For example, Cazorla et al. [2] propose DCRA whinonitors the dynamic
usage of resources by each thread and strives at giving ahétpare of the available
resources to memory-intensive threads. The input to tledieisie consists of various
usage counters for the number of instructions in the intvnqueues, the number of
allocated physical registers and the number of L1 data ca$ses. Using these coun-
ters, DCRA dynamically determines the amount of resouregsired by each thread
and prevents threads from using more resources than thegraiteed to. However,
DCRA drives the resource partitioning mechanism using enje MLP information



and allocates a fixed amount of additional resources for nngsimbensive workloads
irrespective of the amount of MLP.

El-Moursy and Albonesi [5] propose to give fewer resourcethteads that experi-
ence many data cache misses in order to minimize issue queupancies for saving
energy. They propose two schemes for doing so, namely dats gaiting (DG) and
predictive data miss gating (PDG). DG drives the fetchinggoeon the number of ob-
served L1 data cache misses, i.e., by counting the numbet dfata cache misses in
the execute stage of the pipeline. When the number of L1 dathecmisses exceeds
a given threshold, the thread is fetch gated. PDG strivevetcoming the delay be-
tween observing the L1 data cache miss and the actual fetolgda the DG scheme
by predicting L1 data cache misses in the front-end pipeltages.

8 Conclusion

Runahead threads solve the long-latency load problem inMih Bocessor elegantly
by exposing (far-distance) memory-level parallelism whibt clogging shared proces-
sor resources. A limitation though of existing runahead StMé&cution proposals is that
runahead execution is initiated upon a long-latency loaspective of whether there is
far-distance MLP to be exploited. A useless runahead ek®tlte., one along which
there is no exploitable MLP, thus wastes execution ressuand energy.

This paper proposed MLP-aware runahead threads to redeceutmber of use-
less runahead periods. In case the MLP distance prediadiqis there is far-distance
MLP to be exploited, the long-latency thread enters rundle@acution. If not, the long-
latency thread is flushed or fetch stalled per the predicté® Mistance. By doing so,
runahead execution consumes resources only in case oflistayice MLP; if not, the
MLP-aware flush policy frees allocated resources while skppshort-distance MLP, if
available. Our experimental results report an averageatémtuof 13.9% in the number
of speculatively executed instructions compared to MLReatjc runahead threads for
two-program workloads while incurring no performance dettion; for four-program
workloads, we report a 10.1% reduction in the number of sjagively executed in-
structions. Previously proposed binary MLP predictioniaebs greater reductions in
the number of speculatively executed instructions (by 23t@ 27% on average) com-
pared to MLP-agnostic runahead threads, however, it inanr@verage 11% to 11.5%
reduction in system throughput and an average 2.3% to 10%ctied in average job
turnaround time.
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