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Abstract. Threads experiencing long-latency loads on a simultaneousmultithread-
ing (SMT) processor may clog shared processor resources without making for-
ward progress, thereby starving other threads and reducingoverall system through-
put. An elegant solution to the long-latency load problem inSMT processors is
to employ runahead execution. Runahead threads do not blockcommit on a long-
latency load but instead execute subsequent instructions in a speculative execu-
tion mode to expose memory-level parallelism (MLP) throughprefetching. The
key benefit of runahead SMT threads is twofold: (i) runahead threads do not clog
resources on a long-latency load, and (ii) runahead threadsexploit far-distance
MLP.
This paper proposes MLP-aware runahead threads: runahead execution is only
initiated in case there is far-distance MLP to be exploited.By doing so, useless
runahead executions are eliminated, thereby reducing the number of speculatively
executed instructions (and thus energy consumption) whilepreserving the perfor-
mance of the runahead thread and potentially improving the performance of the
co-executing thread(s). Our experimental results show that MLP-aware runahead
threads reduce the number of speculatively executed instructions by 13.9% and
10.1% for two-program and four-program workloads, respectively, compared to
MLP-agnostic runahead threads while achieving comparablesystem throughput
and job turnaround time.

1 Introduction

Long-latency loads (last D-cache level misses and D-TLB misses) have a big perfor-
mance impact on simultaneous multithreading (SMT) processors [23]. In particular, in
an SMT processor with dynamically shared resources, a thread experiencing a long-
latency load will eventually stall while holding resources(reorder buffer entries, issue
queue slots, rename registers, etc.), thereby potentiallystarving the other thread(s) and
reducing overall system throughput.

Tullsen and Brown [21] recognized this problem and proposedto limit the amount
of resources allocated by threads that are stalled due to long-latency loads. In theirflush
policy, fetch is stalled as soon as a long-latency load is detected and instructions are
flushed from the pipeline in order to free resources allocated by the long-latency thread.
The flush policy by Tullsen and Brown, however, does not preserve memory-level par-
allelism (MLP) [3,8], but instead serializes independent long-latency loads. This may
hurt the performance of memory-intensive (or, more precisely, MLP-intensive) threads.



Eyerman and Eeckhout [6] therefore proposed theMLP-aware flushpolicy which first
predicts the MLP distance for a long-latency load, i.e., it predicts the number of instruc-
tions one needs to go down the dynamic instruction stream forexposing the available
MLP. Subsequently, based on the predicted MLP distance, MLP-aware flush decides to
(i) flush the thread in case there is no MLP, or (ii) continue allocating resources for the
long-latency thread for as many instructions as predicted by the MLP predictor. The key
idea is to flush a thread only in case there is no MLP; in case there is MLP, MLP-aware
flush allocates as many resources as required to expose the available memory-level par-
allelism.

Ramirez et al. [17] proposed runahead threads in an SMT processor which avoid
resource clogging on long-latency loads while exposing memory-level parallelism. The
idea of runahead execution [14] is to not block commit on a long-latency load, but to
speculatively execute instructions ahead in order to expose MLP through prefetching.
Runahead threads are particularly interesting in the context of an SMT processor be-
cause they solve two issues: (i) they do not clog resources onlong-latency loads, and
(ii) they preserve MLP, and even allow for exploiting far-distance MLP (beyond the
scope of the reorder buffer).

A limitation of runahead threads in an SMT processor though is that they consume
execution resources (functional unit slots, issue queue slots, reorder buffer entries, etc.)
even if there is no MLP to be exploited, i.e., runahead execution does not contribute to
the performance of the runahead thread in case there is no MLPto be exploited, and
in addition, may hurt the performance of the co-executing thread(s) and thus overall
system performance. In this paper, we proposeMLP-aware runahead threads. The key
idea of MLP-aware runahead threads is to enter runahead execution only in case there
is far-distance MLP to be exploited. In particular, the MLP distance predictor first pre-
dicts the MLP distance upon a long-latency load, and in case the MLP distance is large,
runahead execution is initiated. If not, i.e., in case the MLP distance is small, we fetch
stall the thread after having fetched as many instructions as predicted by the MLP dis-
tance predictor, or we (partially) flush the long-latency thread if more instructions have
been fetched than predicted by the MLP distance predictor.

MLP-aware runahead threads reduce the number of speculatively executed instruc-
tions significantly over MLP-agnostic runahead threads while not affecting overall SMT
performance. Our experimental results using the SPEC CPU2000 benchmarks on a 4-
wide superscalar SMT processor configuration report that MLP-aware runahead threads
reduce the number of speculatively executed instructions by 13.9% and 10.1% on av-
erage for two-program and four-program workloads, respectively, compared to MLP-
agnostic runahead threads, while yielding comparable system throughput and job turn-
around time. Binary MLP prediction (using the previously proposed MLP predictor by
Mutlu et al. [13]) along with an MLP-agnostic flush policy, further reduces the num-
ber of speculatively executed instructions under runaheadexecution by 13% but hurts
system throughput (STP) by 11% and job turnaround time (ANTT) by 2.3% on average.

This paper is organized as follows. We first revisit the MLP-aware flush policy (Sec-
tion 2) and runahead SMT threads (Section 3). Subsequently,we propose MLP-aware
runahead threads in Section 4. After detailing our experimental setup in Section 5, we
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Fig. 1. Updating the MLP distance predictor.

then present our evaluation in Section 6. Finally, we describe related work (Section 7),
and conclude (Section 8).

2 MLP-Aware Flush

The MLP-aware flush policy proposed in [6] consists of three mechanisms: (i) it iden-
tifies long-latency loads, (ii) it predicts the load’s MLP distance, and (iii) it stalls fetch
or flushes the long-latency thread based on the predicted MLPdistance. The first step
is trivial (i.e., a load instruction is labeled as a long-latency load as soon as the load is
found out to be an off-chip memory access, e.g., an L3 miss or aD-TLB miss). We now
discuss the second and third steps in more detail.

2.1 MLP Distance Prediction

Once a long-latency load is identified, the MLP distance predictor predicts theMLP
distance, or the number of instructions one needs to go down the dynamic instruction
stream in order to expose the maximum exploitable MLP for thegiven reorder buffer
size. The MLP distance predictor consists of a table indexedby the load PC, and each
entry in the table records the MLP distance for the corresponding load. There is one
MLP distance predictor per thread.

Updating the MLP distance predictor is done using a structure called thelong-
latency shift register(LLSR), see Figure 1. The LLSR has as many entries as there
are reorder buffer entries divided by the number of threads (assuming a shared reorder
buffer), and there are as many LLSRs as there are threads. Upon committing an instruc-
tion from the reorder buffer, the LLSR is shifted over one bitposition from tail to head,
and one bit is inserted at the tail of the LLSR. A ‘1’ is inserted in case the committed
instruction is a long-latency load, and a ‘0’ is inserted otherwise. Along with inserting
a ‘0’ or a ‘1’ we also keep track of the load PCs in the LLSR. In case a ‘1’ reaches the
head of the LLSR, we update the MLP distance predictor table.This is done by com-
puting the MLP distance which is the bit position of the last appearing ‘1’ in the LLSR
when reading the LLSR from head to tail. In the example given in Figure 1, the MLP
distance equals 6. The MLP distance predictor is updated by inserting the computed
MLP distance in the predictor table entry pointed to by the long-latency load PC. In



other words, the MLP distance predictor is a simple last value predictor, i.e., the most
recently observed MLP distance is stored in the predictor table.

2.2 MLP-Aware Fetch Policy

The best performing MLP-aware fetch policy reported in [6] is the MLP-aware flush
policy and operates as follows. Say the predicted MLP distance equalsm. Then, if more
thanm instructions have been fetched since the long-latency load, sayn instructions,
we flush the lastn - minstructions fetched. If less thanm instructions have been fetched
since the long-latency load, we continue fetching instructions untilm instructions have
been fetched, and we then fetch stall the thread.

The flush mechanism requires checkpointing support by the microarchitecture. Com-
mercial processors such as the Alpha 21264 [11] effectivelysupport checkpointing at
all instructions. If the microprocessor would only supportcheckpointing at branches
for example, the flush mechanism could flush the instructionspast the first branch af-
ter the nextm instructions. The MLP-aware flush policy resorts to the ICOUNT fetch
policy [22] in the absence of long-latency loads. The MLP-aware flush policy also im-
plements the ‘continue the oldest thread’ (COT) mechanism proposed by Cazorla et
al. [1]. COT means that in case all threads stall because of a long-latency load, the
thread that stalled first gets priority for allocating resources. The idea is that the thread
that stalled first is likely to be the first thread to get the data back from memory and
continue execution.

3 Runahead Threads

Runahead execution [4,14] avoids the processor from stalling when a long-latency load
hits the head of the reorder buffer. When a long-latency loadthat is still being serviced,
reaches the reorder buffer head, the processor takes a checkpoint (which includes the
architectural register state, the branch history registerand the return address stack),
records the program counter of the blocking long-latency load, and initiates runahead
execution. The processor then continues to execute instructions in a speculative way
past the long-latency load: these instructions do not change the architectural state. Long-
latency loads executed during runahead send their requeststo main memory but their
results are identified as invalid; and an instruction that uses an invalid argument also
produces an invalid result. Some of the instructions executed during runahead execu-
tion (those that are independent of the long-latency loads)may miss in the cache as
well. Their latencies then overlap with the long-latency load that initiated runahead
execution. And this is where the performance benefit of runahead comes from: it ex-
ploits memory-level parallelism (MLP) [3,8], i.e., independent memory accesses are
processed in parallel. When, eventually, the initial long-latency load returns from mem-
ory, the processor exits runahead execution, flushes the pipeline, restores the check-
point, and resumes normal execution starting with the load instruction that initiated
runahead execution. This normal execution will make fasterprogress because some of
the data has already been prefetched in the caches during runahead execution.



Whereas Mutlu et al. [14] proposed runahead execution for achieving high perfor-
mance on single-threaded superscalar processors, Ramirezet al. [17] integrate runahead
threads in an SMT processor. The reason for doing so is twofold. First, runahead threads
seek for exploiting MLP thereby improving per-thread performance. Second, runahead
threads do not stall on commit and thus do not clog resources in an SMT processor.
This appealing solution to the shared resource partitioning problem in SMT processors
yields substantial SMT performance improvements, especially for memory-intensive
workloads according to Ramirez et al. (and we confirm those results in our evaluation).
The runahead threads proposal by Ramirez et al., however, initiates runahead execu-
tion upon a long-latency load irrespective of whether thereis MLP to be exploited. As
a result, in case there is no MLP, runahead execution will consume resources without
contributing to performance, i.e., the runahead executionis useless because it does not
exploit MLP. This is the problem being addressed in this paper and for which we pro-
pose MLP-aware threads as described in the next section.

4 MLP-Aware Runahead Threads

An MLP-aware fetch policy as well as runahead threads come with their own benefits
and limitations. The limitation of an MLP-aware fetch policy is that it cannot exploit
MLP over large distances, i.e., the exploitable MLP is limited to (a fraction of) the
reorder buffer size. Runahead threads on the other hand can exploit MLP at large dis-
tances, beyond the scope of the reorder buffer, which improves performance substan-
tially for memory-intensive workloads. However, if MLP-agnostic — as in the original
description of runahead execution by Mutlu et al. [14] as well as in the follow-on work
by Ramirez et al. [17] — runahead execution is initiated uponevery in-service long-
latency load that hits the reorder buffer head irrespectiveof whether there is MLP to be
exploited. As a result, runahead threads may consume execution resources without any
performance benefit for the runahead thread. Moreover, runahead execution may even
hurt the performance of the co-executing thread(s). Another disadvantage of runahead
execution compared to the MLP-aware flush policy is that moreinstructions need to
be re-fetched and re-executed upon the return of the initiating long-latency load. In the
MLP-aware flush policy on the other hand, instructions reside in the reorder buffer and
issue queues and need not be re-fetched, and, in addition, the instructions that are inde-
pendent of the blocking long-latency load need not be re-executed, potentially saving
execution resources and energy consumption.

To combine the best of both worlds, we proposeMLP-aware runahead threadsin
this paper. We distinguish two approaches to MLP-aware runahead threads.

Runahead threads based on binary MLP prediction.The first approach is to employ bi-
nary MLP prediction. We therefore use the MLP predictor proposed by Mutlu et al. [13]
which was originally developed for limiting the number of useless runahead periods,
thereby reducing the number of speculatively executed instructions under runahead ex-
ecution in order to save energy. The idea of employing the MLPpredictor is to enter
runahead mode only in case the MLP predictor predicts there is far-distance MLP to be
exploited.



The MLP predictor by Mutlu et al. is a load-PC indexed table with a two-bit sat-
urating counter per table entry. Runahead mode is entered only in case the counter is
in the ‘10’ or ‘11’ states. A long-latency load which has no counter associated with
it, allocates a counter and resets the counter (to the state ‘00’). Runahead execution
is not entered in the ‘00’ and ‘01’ states; instead, the counter is incremented. During
runahead execution, the processor keeps track of the numberof long-latency loads gen-
erated. (Mutlu et al. count the number of loads generated beyond the reorder buffer; in
the SMT context with a shared reorder buffer, this translates to the reorder buffer size
divided by the number of hardware threads.) When exiting runahead mode, if at least
one long-latency load was generated during runahead mode, the associated counter is
incremented; if not, the counter is decremented if in the ‘11’ state, and is reset if in the
‘10’ state.

Runahead threads based on MLP distance prediction.The second approach to MLP-
aware runahead threads is to predict the MLP distance ratherthan to rely on a binary
MLP prediction. We first predict the MLP distance upon a long-latency load. In case
the predicted MLP distance is smaller than half the reorder buffer size for a two-thread
SMT processor and one fourth the reorder buffer size for a four-thread SMT processor
(i.e., this is what the MLP-aware flush policy can exploit), we apply the MLP-aware
flush policy. In case the predicted MLP distance is larger than half (or one fourth) the
reorder buffer size, we enter runahead mode. In other words,if there is no MLP or if
there is exploitable MLP over a short distance only, we reside to the MLP-aware flush
policy; if there is large-distance MLP to be exploited, we initiate runahead execution.

5 Experimental Setup

5.1 Benchmarks and Simulator

We use the SPEC CPU2000 benchmarks in this paper with their reference inputs. These
benchmarks are compiled for the Alpha ISA using the Compaq C compiler (cc) ver-
sion V6.3-025 with the-O4 optimization option. For all of these benchmarks we se-
lect 200M instruction (early) simulation points using the SimPoint tool [15,18]. We
use a wide variety of randomly selected two-thread and four-thread workloads. The
two-thread and four-thread workloads are classified as ILP-intensive, MLP-intensive or
mixed ILP/MLP-intensive workloads.

We use the SMTSIM simulator v1.0 [20] in all of our experiments. The processor
model being simulated is the 4-wide superscalar out-of-order SMT processor shown in
Table 1. The default fetch policy is ICOUNT 2.4 [22] which allows up to four instruc-
tions from up to two threads to be fetched per cycle. We added awrite buffer to the
simulator’s processor model: store operations leave the reorder buffer upon commit and
wait in the write buffer for writing to the memory subsystem;commit blocks in case the
write buffer is full and we want to commit a store.

5.2 Performance Metrics

We use two system-level performance metrics in our evaluation: system throughput
(STP) and average normalized turnaround time (ANTT) [7]. System throughput (STP)



parameter value
fetch policy ICOUNT 2.4
pipeline depth 14 stages
(shared) reorder buffer size128 entries
(shared) load/store queue 64 entries
instruction queues 64 entries in both IQ and FQ
rename registers 100 integer and 100 floating-point
processor width 4 instructions per cycle
functional units 4 int ALUs, 2 ld/st units and 2 FP units
branch misprediction penalty11 cycles
branch predictor 2K-entry gshare
branch target buffer 256 entries, 4-way set associative
write buffer 8 entries
L1 instruction cache 64KB, 4-way, 64-byte lines
L1 data cache 64KB, 4-way, 64-byte lines
unified L2 cache 512KB, 8-way, 64-byte lines
unified L3 cache 4MB, 16-way, 64-byte lines
instruction/data TLB 128/512 entries, fully-assoc, 8KB pages
cache hierarchy latencies L2 (11), L3 (35), MEM (500)

Table 1.The baseline SMT processor configuration.

is a system-oriented metric which measures the number of jobs completed per unit of
time, and is defined as:

STP =

n∑

i=1

CPIST
i

CPIMT
i

,

with CPIST
i andCPIMT

i the cycles per instruction achieved for programi during
single-threaded and multi-threaded execution, respectively; there aren threads running
simultaneously. STP is a higher-is-better metric and equals the weighted speedup metric
proposed by Snavely and Tullsen [19].

Average normalized turnaround time (ANNT) is a user-oriented metric which quan-
tifies the average user-perceived slowdown due to multithreading. ANTT is computed
as

ANTT =
1

n

n∑

i=1

CPIMT
i

CPIST
i

.

ANTT equals the reciprocal of the hmean metric proposed in [12], and is a lower-is-
better metric. Eyerman and Eeckhout [7] argue that both STP and ANTT should be
reported in order to gain insight into how a given multithreaded architecture affects
system-perceived and user-perceived performance, respectively.

When simulating a multi-program workload, simulation stops when 400 million in-
structions have been executed. At that point, programi will have executedxi million
instructions. The single-threadedCPIST

i
used in the above formulas equals single-

threaded CPI afterxi million instructions. When we report average STP and ANTT
numbers across a number of multi-program workloads, we use the harmonic and arith-
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Fig. 2.Quantifying the accuracy of the MLP distance predictor.

metic mean for computing the average STP and ANTT, respectively, following the rec-
ommendations on the use of averages by John [10].

5.3 Hardware Cost

The performance numbers reported in the evaluation sectionassume the following hard-
ware costs. For both the binary MLP predictor and the MLP distance predictor we as-
sume a PC-indexed 2K-entry table. (We experimented with a number of predictor con-
figurations, including the tagged set-associative table organization proposed by Mutlu
et al. [13] and we found the untagged 2K-entry to slightly outperform the tagged orga-
nization by Mutlu et al.) An entry in the binary MLP predictoris a 2-bit field following
Mutlu et al. [13]. An entry in the MLP distance predictor is a 3-bit field; one bit encodes
whether long-distance MLP is to be predicted, and the other two bits encode the MLP
distance within the reorder buffer in buckets of 16 instructions. The hardware cost for a
run-length encoded LLSR equals 0.7Kbits in total: 32 (maximum number of outstand-
ing long-latency loads) times 22 bits (11 bits for keeping track of the load PC index in
the 2K-entry MLP distance predictor, plus 11 bits for the encoded run length — max-
imum of 2048 instructions — since the prior long-latency load miss). In summary, the
total hardware cost for the binary MLP predictor equals 4Kbits; the total hardware cost
for the MLP distance predictor (predictor table plus LLSR) equals 6.7Kbits.

6 Evaluation

6.1 MLP distance predictor

Key to the success of MLP-aware runahead threads is the accuracy of the MLP distance
predictor. The primary concern is whether the predictor canaccurately estimate far-
distance MLP in order to decide whether or not to go in runahead mode.

Figure 2 shows the accuracy of the MLP distance predictor. A true positive denotes
correctly predicted long-distance MLP and a true negative denotes correctly predicted
short-distance or no MLP; the false positives and false negatives denote mispredictions.
The prediction accuracy equals 61% on average, and the majority of mispredictions



are false positives. In spite of this relatively low prediction accuracy, MLP-aware runa-
head threads are effective as will be demonstrated in the next few paragraphs. Improv-
ing MLP distance prediction will likely lead to improved effectiveness of MLP-aware
runahead threads, i.e., reducing the number of false positives will reduce the number of
speculatively executed instructions and will thus increase energy saving opportunities
— this is left for future work though.

6.2 Two-program workloads

We compare the following SMT fetch policies and architectures:

– ICOUNT [22] which strives at having an equal number of instructions from all
threads in the front-end pipeline and instruction queues. The following fetch poli-
cies extend upon the ICOUNT policy.

– TheMLP-aware flushapproach [6] predicts the MLP distancem for a long-latency
load, and fetch stalls or flushes the thread afterm instructions since the long-latency
load.

– Runahead threads: threads go in runahead mode when the oldest instruction in the
reorder buffer is a long-latency load that is still being serviced [17].

– Binary MLP-aware runahead threads w/ ICOUNT: the binary MLP predictor by
Mutlu et al. [13] predicts whether there is far-distance MLPto be exploited, and a
thread only goes in runahead mode in case MLP is predicted. Incase there is no
(predicted) MLP, we resort to ICOUNT.

– Binary MLP-aware runahead threads w/ flush: this is the same policy as the one
above, except that in case of no (predicted) MLP, we perform aflush. The trade-off
between this policy and the latter is that ICOUNT may exploitshort-distance MLP
whereas flush does not, however, flush prevents resource clogging.

– MLP-distance-aware runahead threads: the MLP distance predictor by Eyerman
and Eeckhout [6] predicts the MLP distance. If there is far-distance MLP to be
exploited, the thread goes in runahead mode. If there is onlyshort-distance MLP
to be exploited, the thread is fetch stalled and/or flushed according to the predicted
MLP distance.

Figures 3 and 4 compare these six fetch policies in terms of the STP and ANTT
performance metrics, respectively, for the two-program workloads. These results con-
firm the results presented in prior work by Ramirez et al. [17]: runahead threads im-
prove both system throughput and job turnaround time significantly over both ICOUNT
and MLP-aware flush: STP and ANTT improve by 70.1% and 43.8%, respectively,
compared to ICOUNT; and STP and ANTT improve by 44.3% and 26.8%, respec-
tively, compared to MLP-aware flush. These results also showthat MLP-aware runa-
head threads (rightmost bars) achieve comparable performance as MLP-agnostic runa-
head threads. Moreover, MLP-aware runahead threads achieve a slight improvement
in both STP and ANTT for some workloads over MLP-agnostic runahead threads, e.g.,
mesa-galgel achieves a 3.3% higher STP and a 3.2% smaller ANTT under MLP-aware
runahead threads compared to MLP-agnostic runahead threads. The reason for this per-
formance improvement is that preventing one thread from entering runahead mode gives
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Fig. 4. Comparing MLP-aware runahead threads against other fetch SMT policies in terms
of ANTT for two-program workloads: ILP-intensive workloads are shown on the left, MLP-
intensive workloads are shown in the middle and mixed ILP/MLP-intensive workloads are shown
on the right.
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Fig. 5. Comparing MLP-aware runahead threads against other fetch SMT policies in terms of
STP for four-program workloads.

more resources to the co-executing thread thereby improving the performance of the co-
executing thread. For other workloads, on the other hand, MLP-aware runahead threads
result in slightly worse performance compared to MLP-agnostic runahead threads, e.g.,
the worst performance is observed forart-mgrid: 3% reduction in STP and 0.3% in-
crease in ANTT. These performance degradations are due to incorrect MLP distance
predictions.

Figures 3 and 4 also clearly illustrate the effectiveness ofMLP distance prediction
versus binary MLP prediction. The MLP distance predictor ismore effective than the
binary MLP predictor proposed by Mutlu et al. [13]: i.e., STPimproves by 11% on
average and ANTT improves by 2.3% compared to the binary MLP-aware policy with
flush; compared to the binary MLP-aware policy with ICOUNT, the MLP distance pre-
dictor improves STP by 11.5% and ANTT by 10%. The reason is twofold. First, the
LLSR employed by the MLP distance predictor continuously monitors the MLP dis-
tance for each long-latency load. The binary MLP predictor by Mutlu et al. only checks
for far-distance MLP through runahead execution; as runahead execution is not initiated
for each long-latency load, it provides partial MLP information only. Second, the MLP
distance predictor releases resources allocated by the long-latency thread as soon as
the short-distance MLP (within half the reorder buffer) hasbeen exploited. The binary
MLP-aware policy on the other hand clogs resources (throughthe ICOUNT mecha-
nism) or does not exploit short-distance MLP (through the flush policy).

6.3 Four-program workloads

Figures 5 and 6 show STP and ANTT, respectively, for the four-program workloads.
The overall conclusion is similar as for two-program workloads: MLP-aware runahead
threads achieve similar performance as MLP-agnostic runahead threads. The perfor-
mance improvements are slightly higher though for the four-program workloads than
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Fig. 6. Comparing MLP-aware runahead threads against other fetch SMT policies in terms of
ANTT for four-program workloads.

for the two-program workloads because the co-executing programs compete more for
the shared resources on a four-threaded SMT processor than on a two-threaded SMT
processor. Making the runahead threads MLP-aware providesmore shared resources for
the co-executing programs which improves both single-program performance as well as
overall system performance.

6.4 Reduction in speculatively executed instructions

As mentioned before, the main motivation for making runahead MLP-aware is to re-
duce the number of useless runahead executions, and therebyreduce the number of
speculatively executed instructions under runahead execution in order to reduce energy
consumption. Figure 7 quantifies the normalized number of speculatively executed in-
structions compared to MLP-agnostic runahead threads. MLP-aware runahead threads
reduce the number of speculatively executed instructions by 13.9% on average; this is
due to eliminating useless runahead execution periods. (Weobtain similar results for
the four-program workloads with an average 10.1% reductionin the number of specu-
latively executed instructions; these results are not shown here because of space con-
straints.) Binary MLP-aware runahead threads with ICOUNT and flush achieve higher
reductions in the number of speculatively executed instructions (23.7% and 27%, re-
spectively), however, this comes at the cost of reduced performance (by 11% to 11.5%
in STP and 2.3% to 10% in ANTT) as previously shown.

7 Related Work

There are two ways of partitioning the resources in an SMT processor. One approach is
static partitioning [16] as done in the Intel Pentium 4 [9], in which each thread gets an
equal share of the resources. Static partitioning solves the long-latency load problem:
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Fig. 7.Normalized speculative instruction count compared to MLP-agnostic runahead threads for
the two-program workloads.

a long-latency thread cannot clog resources, however, it does not provide flexibility: a
resource that is not being used by one thread cannot be used bythe other thread(s).

The second approach, called dynamic partitioning, on the other hand provides flexi-
bility by allowing multiple threads to share resources, however, preventing long-latency
threads from clogging resources is a challenge. In dynamic partitioning, the fetch policy
typically determines what thread to fetch instructions from in each cycle and by con-
sequence, the fetch policy also implicitly manages the shared resources. Several fetch
policies have been proposed in the recent literature. ICOUNT [22] prioritizes threads
with fewer instructions in the pipeline. The limitation of ICOUNT is that in case of a
long-latency load, ICOUNT may continue allocating resources for the blocking long-
latency thread; by consequence, these resources will be hold by the blocking thread and
will prevent the other thread(s) from allocating these resources. In response to this prob-
lem, Tullsen and Brown [21] proposed two schemes for handling long-latency loads,
namely (i) fetch stall the long-latency thread, and (ii) flush instructions fetched passed
the long-latency load in order to deallocate resources. Cazorla et al. [1] improved upon
the work done by Tullsen and Brown by predicting long-latency loads along with the
‘continue the oldest thread (COT)’ mechanism that prioritizes the oldest thread in case
all threads wait for a long-latency load. Eyerman and Eeckhout [6] made the flush pol-
icy MLP-aware in order to preserve the available MLP upon a flush or fetch stall on a
long-latency thread.

An alternative approach is to drive the fetch policy throughexplicit resource par-
titioning. For example, Cazorla et al. [2] propose DCRA which monitors the dynamic
usage of resources by each thread and strives at giving a higher share of the available
resources to memory-intensive threads. The input to their scheme consists of various
usage counters for the number of instructions in the instruction queues, the number of
allocated physical registers and the number of L1 data cachemisses. Using these coun-
ters, DCRA dynamically determines the amount of resources required by each thread
and prevents threads from using more resources than they areentitled to. However,
DCRA drives the resource partitioning mechanism using imprecise MLP information



and allocates a fixed amount of additional resources for memory-intensive workloads
irrespective of the amount of MLP.

El-Moursy and Albonesi [5] propose to give fewer resources to threads that experi-
ence many data cache misses in order to minimize issue queue occupancies for saving
energy. They propose two schemes for doing so, namely data miss gating (DG) and
predictive data miss gating (PDG). DG drives the fetching based on the number of ob-
served L1 data cache misses, i.e., by counting the number of L1 data cache misses in
the execute stage of the pipeline. When the number of L1 data cache misses exceeds
a given threshold, the thread is fetch gated. PDG strives at overcoming the delay be-
tween observing the L1 data cache miss and the actual fetch gating in the DG scheme
by predicting L1 data cache misses in the front-end pipelinestages.

8 Conclusion

Runahead threads solve the long-latency load problem in an SMT processor elegantly
by exposing (far-distance) memory-level parallelism while not clogging shared proces-
sor resources. A limitation though of existing runahead SMTexecution proposals is that
runahead execution is initiated upon a long-latency load irrespective of whether there is
far-distance MLP to be exploited. A useless runahead execution, i.e., one along which
there is no exploitable MLP, thus wastes execution resources and energy.

This paper proposed MLP-aware runahead threads to reduce the number of use-
less runahead periods. In case the MLP distance predictor predicts there is far-distance
MLP to be exploited, the long-latency thread enters runahead execution. If not, the long-
latency thread is flushed or fetch stalled per the predicted MLP distance. By doing so,
runahead execution consumes resources only in case of long-distance MLP; if not, the
MLP-aware flush policy frees allocated resources while exposing short-distance MLP, if
available. Our experimental results report an average reduction of 13.9% in the number
of speculatively executed instructions compared to MLP-agnostic runahead threads for
two-program workloads while incurring no performance degradation; for four-program
workloads, we report a 10.1% reduction in the number of speculatively executed in-
structions. Previously proposed binary MLP prediction achieves greater reductions in
the number of speculatively executed instructions (by 23.7% to 27% on average) com-
pared to MLP-agnostic runahead threads, however, it incursan average 11% to 11.5%
reduction in system throughput and an average 2.3% to 10% reduction in average job
turnaround time.
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