
Copyright © 2012 EMC Corporation. Published in the USA. License to copy this document is granted

provided that it is identified as “EMC Corporation Public-Key Cryptography Standards (PKCS)” in all

material mentioning or referencing this document.

PKCS #12 v1.1: Personal Information Exchange Syntax

RSA Laboratories

October 27, 2012

Table of Contents

1 INTRODUCTION ... 2

2 DEFINITIONS AND NOTATION .. 2

3 OVERVIEW .. 4

3.1 EXCHANGE MODES .. 4
3.2 MODE CHOICE POLICIES ... 5
3.3 TRUSTED PUBLIC KEYS ... 5
3.4 THE AUTHENTICATEDSAFE .. 6

4 PFX PDU SYNTAX ... 7

4.1 THE AUTHENTICATEDSAFE TYPE .. 8
4.2 THE SAFEBAG TYPE ... 8

4.2.1 The KeyBag type .. 9
4.2.2 The PKCS8ShroudedKeyBag type .. 9
4.2.3 The CertBag type ... 10
4.2.4 The CRLBag type ... 10
4.2.5 The SecretBag type .. 11
4.2.6 The SafeContents type .. 11

5 USING PFX PDUS .. 11

5.1 CREATING PFX PDUS ... 11
5.2 IMPORTING KEYS, ETC., FROM A PFX PDU.. 12

A. MESSAGE AUTHENTICATION CODES (MACS) .. 13

B. DERIVING KEYS AND IVS FROM PASSWORDS AND SALT ... 13

B.1 PASSWORD FORMATTING ... 13
B.2 GENERAL METHOD .. 14
B.3 MORE ON THE ID BYTE .. 16
B.4 KEYS AND IVS FOR PASSWORD PRIVACY MODE... 16
B.5 KEYS FOR PASSWORD INTEGRITY MODE ... 17

C. ASN.1 MODULE ... 17

D. INTELLECTUAL PROPERTY CONSIDERATIONS .. 21

E. REFERENCES .. 21

F. ACKNOWLEDGMENTS ... 23

G. ABOUT PKCS ... 23

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 2

Copyright © 2012 EMC Corporation.

1 Introduction

This standard describes a transfer syntax for personal identity information, including

private keys, certificates, miscellaneous secrets, and extensions. Machines, applications,

browsers, Internet kiosks, and so on, that support this standard will allow a user to import,

export, and exercise a single set of personal identity information.

This standard supports direct transfer of personal information under several privacy and

integrity modes. The most secure of the privacy and integrity modes require the source

and destination platforms to have trusted public/private key pairs usable for digital

signatures and encryption, respectively. The standard also supports lower security,

password-based privacy and integrity modes for those cases where trusted public/private

key pairs are not available.

This standard should be amenable to both software and hardware implementations.

Hardware implementations offer physical security in tamper-resistant tokens such as

smart cards and PCMCIA devices.

This standard can be viewed as building on PKCS #8 [18] by including essential but

ancillary identity information along with private keys and by instituting higher security

through public-key privacy and integrity modes.

2 Definitions and notation

AlgorithmIdentifier: An ASN.1 type that identifies an algorithm (by an object identifier)

and any associated parameters. This type is defined in [8].

ASN.1: Abstract Syntax Notation One, as defined in [2], [3], [4], [5].

Attribute: An ASN.1 type that identifies an attribute type (by an object identifier) and an

associated attribute value. The ASN.1 type Attribute is defined in [7].

Certificate: A digitally signed data unit binding a public key to identity information. A

specific format for identity certificates is defined in [8]. Another format is described in

[15].

Certificate Revocation List (CRL): A digitally signed list of certificates that should no

longer be honored, having been revoked by the issuers or a higher authority. One format

for CRLs is defined in [8].

ContentInfo: An ASN.1 type used to hold data that may have been cryptographically

protected. This type is defined in [17].

DER: Distinguished Encoding Rules, as defined in [6].

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 3

Copyright © 2012 EMC Corporation.

Destination platform: The ultimate, final target platform for the personal information

originating from the source platform. Even though certain information may be

transported from the destination platform to the source platform, the ultimate target for

personal information is always called the destination platform.

DigestInfo: An ASN.1 type used to hold a message digest. This type is defined in [17].

Encryption Key Pair (DestEncK): A public/private key pair used for the public-key

privacy mode of this standard. The public half is called PDestEncK (TPDestEncK when

emphasizing that the public key is “trusted”), and the private half is called VDestEncK.

Export time: The time that a user reads personal information from a source platform and

transforms the information into an interoperable, secure protocol data unit (PDU).

Import time: The time that a user writes personal information from a Safe PDU, to a

destination platform.

Message Authentication Code (MAC): A type of collision-resistant, “unpredictable”

function of a message and a secret key. MACs are used for data authentication, and are

akin to secret-key digital signatures in many respects.

Object Identifier: A sequence of integers that uniquely identifies an associated data

object in a global name space administrated by a hierarchy of naming authorities. This is

a primitive data type in ASN.1.

PFX: The top-level exchange PDU defined in this standard.

Platform: A combination of machine, operating system, and applications software within

which the user exercises personal identity. An application, in this context, is software that

uses personal information. Two platforms differ if their machine types differ or if their

applications software differs. There is at least one platform per user in multi-user

systems.

Protocol Data Unit (PDU): A sequence of bits in machine-independent format

constituting a message in a protocol.

Shrouding: Encryption as applied to private keys, possibly in concert with a policy that

prevents the plaintext of the key from ever being visible beyond a certain, well-defined

interface.

Signature Key Pair (SrcSigK): A platform-specific signature key pair used for the

public-key integrity mode of this standard. The public half is called PSrcSigK

(TPSrcSigK when emphasizing that the public key is “trusted”), and the private half is

called VSrcSigK.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 4

Copyright © 2012 EMC Corporation.

Source platform: The origin platform of the personal information ultimately intended for

the destination platform. Even though certain information may be transported from the

destination platform to the source platform, the platform that is the origin of personal

information is always called the source platform.

In this document, ASN.1 types, values and object sets are written in bold Helvetica.

3 Overview

3.1 Exchange modes

There are four combinations of privacy modes and integrity modes. The privacy modes

use encryption to protect personal information from exposure, and the integrity modes

protect personal information from tampering. Without protection from tampering, an

adversary could conceivably substitute invalid information for the user’s personal

information without the user being aware of the substitution.

The following are the privacy modes:

 Public-key privacy mode: Personal information is enveloped on the source platform

using a trusted encryption public key of a known destination platform (see Section

3.3). The envelope is opened with the corresponding private key.

 Password privacy mode: Personal information is encrypted with a symmetric key

derived from a user name and a privacy password, as in [16]. If password integrity

mode is used as well, the privacy password and the integrity password may or may

not be the same.

The following are the integrity modes:

 Public-key integrity mode: Integrity is guaranteed through a digital signature on the

contents of the PFX PDU, which is produced using the source platform’s private

signature key. The signature is verified on the destination platform by using the

corresponding public key (see Section 3.4).

 Password integrity mode: Integrity is guaranteed through a message authentication

code (MAC) derived from a secret integrity password. If password privacy mode is

used as well, the privacy password and the integrity password may or may not be the

same.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 5

Copyright © 2012 EMC Corporation.

3.2 Mode choice policies

All combinations of the privacy and integrity modes are permitted in this standard. Of

course, good security policy suggests that certain practices be avoided, e.g., it can be

unwise to transport private keys without physical protection when using password

privacy mode or when using public-key privacy mode with weak symmetric encryption.

In general, the public key modes for both privacy and integrity are preferable to the

password modes (from a security viewpoint). However, it is not always possible to use

the public key modes. For example, it may not be known at export time what the

destination platform is; if this is the case, then the use of the public-key privacy mode is

precluded.

3.3 Trusted public keys

Asymmetric key pairs may be used in this standard in two ways: public-key privacy

mode and public-key integrity mode. For public-key privacy mode, an encryption key

pair is required; for public-key integrity mode, a signature key pair is required.

It may be appropriate for the keys discussed in this section to be platform-specific keys

dedicated solely for the purpose of transporting a user’s personal information. Whether or

not that is the case, though, the keys discussed here should not be confused with the

user’s personal keys that the user wishes to transport from one platform to another (these

latter keys are stored within the PDU).

For public-key privacy mode, the private key from the encryption key pair is kept on the

destination platform, where it is ultimately used to open a private envelope. The

corresponding trusted public key is called TPDestEncK.

For public-key integrity mode, the private key from the signature pair is kept on the

source platform, where it is used to sign personal information. The corresponding trusted

public key is called TPSrcSigK.

For both uses of public/private key pairs, the public key from the key pair must be

transported to the other platform such that it is trusted to have originated at the correct

platform. Judging whether or not a public key is trusted in this sense must ultimately be

left to the user. There are a variety of methods for ensuring that a public key is trusted.

The processes of imbuing keys with trust and of verifying trustworthiness of keys are not

discussed further in this document. Whenever asymmetric keys are discussed in what

follows, the public keys are assumed to be trusted.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 6

Copyright © 2012 EMC Corporation.

3.4 The AuthenticatedSafe

Each compliant platform shall be able to import and export AuthenticatedSafe PDUs

wrapped in PFX PDUs.

For integrity, the AuthenticatedSafe is either signed (if public-key integrity mode is used)

or MACed (if password integrity mode is used) to produce a PFX PDU. If the

AuthenticatedSafe is signed, then it is accompanied by a digital signature, which was

produced on the source platform with a private signature key, VSrcSigK, corresponding

to a trusted public signature key, TPSrcSigK. TPSrcSigK must accompany the PFX to the

destination platform, where the user can verify the trust in the key and can verify the

signature on the AuthenticatedSafe. If the AuthenticatedSafe is MACed, then it is

accompanied by a Message Authentication Code computed from a secret integrity

password, salt bits, an iteration count and the contents of the AuthenticatedSafe.

The AuthenticatedSafe itself consists of a sequence of ContentInfo values, some of which

may consist of plaintext (data), and others which may either be enveloped (if public-key

privacy mode is used) or encrypted (if password privacy mode is used). If the contents

are enveloped, then they are encrypted with a symmetric cipher under a freshly generated

key, which is in turn encrypted with RSA asymmetric encryption. The RSA public key

used to encrypt the symmetric key is called TPDestEncK, and corresponds to an RSA

private key, VDestEncK, on the destination platform. TPDestEncK needs to be trusted by

the user when it is used at export time. If the contents are encrypted, then they are

encrypted with a symmetric cipher under a key derived from a secret privacy password,

salt bits and an iteration counter.

Each ContentInfo contains an arbitrary collection of private keys, PKCS #8 shrouded

private keys, certificates, CRLs, or opaque data objects, at the user's discretion, stored in

values of type SafeContents.

The raison d’être for the unencrypted option is that some governments restrict certain

uses of cryptography. Having several parts in an AuthenticatedSafe keeps implementers’

options open. For example, it may be the case that strong cryptography can be used to

make PKCS #8-shrouded keys, but then these shrouded keys should not be further

encrypted, because super-encryption can limit a product’s exportability. The multi-part

AuthenticatedSafe design permits this possibility.

Around the AuthenticatedSafe is the integrity-mode wrapper, which protects the entire

contents of the AuthenticatedSafe (including unencrypted parts, if they are present). This is

the reverse of the wrapping order in many protocols, in which privacy is the outermost

protection. This latter, more common wrapping order avoids signatures on encrypted

data, which are undesirable under certain circumstances; however, these circumstances

do not apply to this document, and it is therefore preferable to protect the integrity of as

much information as possible.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 7

Copyright © 2012 EMC Corporation.

4 PFX PDU syntax

This format corresponds to the data model presented above, with wrappers for privacy

and integrity. This section makes free reference to PKCS #7 [17], and assumes the reader

is familiar with terms defined in that document.

All modes of direct exchange use the same PDU format. ASN.1 and BER-encoding

ensure platform-independence.

This standard has one ASN.1 export: PFX. This is the outer integrity wrapper. Instances

of PFX contain:

1. A version indicator. The version shall be v3 for this version of this document.

2. A PKCS #7 ContentInfo, whose contentType is signedData in public-key integrity mode

and data in password integrity mode.

3. An optional instance of MacData, present only in password integrity. This object, if

present, contains a PKCS #7 DigestInfo, which holds the MAC value, a macSalt and an

iterationCount. As described in Appendix B, the MAC key is derived from the

password, the macSalt and the iterationCount; as described in Section 5, the MAC is

computed from the authSafe value and the MAC key via HMAC [9] [13]. The

password and the MAC key are not actually present anywhere in the PFX. The salt and

(to a certain extent) the iteration count thwarts dictionary attacks against the integrity

password. See FIPS Special Publication 800-132 [14] about how to choose a

reasonable value for the iteration count.

PFX ::= SEQUENCE {

 version INTEGER {v3(3)}(v3,...),

 authSafe ContentInfo,

 macData MacData OPTIONAL

}

MacData ::= SEQUENCE {

 mac DigestInfo,

 macSalt OCTET STRING,

 iterations INTEGER DEFAULT 1

 -- Note: The default is for historical reasons and its use is deprecated.

}

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 8

Copyright © 2012 EMC Corporation.

4.1 The AuthenticatedSafe type

As mentioned, the contentType field of authSafe shall be of type data or signedData. The

content field of the authSafe shall, either directly (data case) or indirectly (signedData case)

contain a BER-encoded value of type AuthenticatedSafe.

AuthenticatedSafe ::= SEQUENCE OF ContentInfo

 -- Data if unencrypted

 -- EncryptedData if password-encrypted

 -- EnvelopedData if public key-encrypted

An AuthenticatedSafe contains a sequence of ContentInfo values. The content field of these

ContentInfo values contains either plaintext, encrypted or enveloped data. In the case of

encrypted or enveloped data, the plaintext of the data holds the BER-encoding of an

instance of SafeContents. Section 5.1 of this document describes the construction of values

of type AuthenticatedSafe in more detail.

4.2 The SafeBag type

The SafeContents type is made up of SafeBags. Each SafeBag holds one piece of

information—a key, a certificate, etc.—which is identified by an object identifier.

SafeContents ::= SEQUENCE OF SafeBag

SafeBag ::= SEQUENCE {

 bagId BAG-TYPE.&id ({PKCS12BagSet})

 bagValue [0] EXPLICIT BAG-TYPE.&Type({PKCS12BagSet}{@bagId}),

 bagAttributes SET OF PKCS12Attribute OPTIONAL

}

PKCS12Attribute ::= SEQUENCE {

 attrId ATTRIBUTE.&id ({PKCS12AttrSet}),

 attrValues SET OF ATTRIBUTE.&Type ({PKCS12AttrSet}{@attrId})

} -- This type is compatible with the X.500 type 'Attribute'

PKCS12AttrSet ATTRIBUTE ::= {

 friendlyName | -- from PKCS #9

 localKeyId, -- from PKCS #9

 ... -- Other attributes are allowed

}

The optional bagAttributes field allows users to assign nicknames and identifiers to keys,

etc., and permits visual tools to display meaningful strings of some sort to the user.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 9

Copyright © 2012 EMC Corporation.

Six types of safe bags are defined in this version of this document:

bagtypes OBJECT IDENTIFIER ::= {pkcs-12 10 1}

BAG-TYPE ::= TYPE-IDENTIFIER

keyBag BAG-TYPE ::=

 {KeyBag IDENTIFIED BY {bagtypes 1}}

pkcs8ShroudedKeyBag BAG-TYPE ::=

 {PKCS8ShroudedKeyBag IDENTIFIED BY {bagtypes 2}}

certBag BAG-TYPE ::=

 {CertBag IDENTIFIED BY {bagtypes 3}}

crlBag BAG-TYPE ::=

 {CRLBag IDENTIFIED BY {bagtypes 4}}

secretBag BAG-TYPE ::=

 {SecretBag IDENTIFIED BY {bagtypes 5}}

safeContentsBag BAG-TYPE ::=

 {SafeContents IDENTIFIED BY {bagtypes 6}}

PKCS12BagSet BAG-TYPE ::= {

 keyBag |

 pkcs8ShroudedKeyBag |

 certBag |

 crlBag |

 secretBag |

 safeContentsBag,

 ... -- For future extensions

}

As new bag types become recognized in future versions of this standard, the

PKCS12BagSet may be extended.

4.2.1 The KeyBag type

A KeyBag is a PKCS #8 PrivateKeyInfo. Note that a KeyBag contains only one private key.

KeyBag ::= PrivateKeyInfo

4.2.2 The PKCS8ShroudedKeyBag type

A PKCS8ShroudedKeyBag holds a private key, which has been shrouded in accordance with

PKCS #8. Note that a PKCS8ShroudedKeyBag holds only one shrouded private key.

PKCS8ShroudedKeyBag ::= EncryptedPrivateKeyInfo

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 10

Copyright © 2012 EMC Corporation.

4.2.3 The CertBag type

A CertBag contains a certificate of a certain type. Object identifiers are used to distinguish

between different certificate types.

CertBag ::= SEQUENCE {

 certId BAG-TYPE.&id ({CertTypes}),

 certValue [0] EXPLICIT BAG-TYPE.&Type ({CertTypes}{@certId})

}

x509Certificate BAG-TYPE ::=

 {OCTET STRING IDENTIFIED BY {certTypes 1}}

 -- DER-encoded X.509 certificate stored in OCTET STRING

sdsiCertificate BAG-TYPE ::=

 {IA5String IDENTIFIED BY {certTypes 2}}

 -- Base64-encoded SDSI certificate stored in IA5String

CertTypes BAG-TYPE ::= {

 x509Certificate |

 sdsiCertificate,

 ... -- For future extensions

}

4.2.4 The CRLBag type

A CRLBag contains a certificate revocation list (CRL) of a certain type. Object identifiers

are used to distinguish between different CRL types.

CRLBag ::= SEQUENCE {

 crlId BAG-TYPE.&id ({CRLTypes}),

 crlValue [0] EXPLICIT BAG-TYPE.&Type ({CRLTypes}{@crlId})

}

x509CRL BAG-TYPE ::=

 {OCTET STRING IDENTIFIED BY {crlTypes 1}

 -- DER-encoded X.509 CRL stored in OCTET STRING

CRLTypes BAG-TYPE ::= {

 x509CRL,

 ... -- For future extensions

}

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 11

Copyright © 2012 EMC Corporation.

4.2.5 The SecretBag type

Each of the user’s miscellaneous personal secrets is contained in an instance of SecretBag,

which holds an object identifier-dependent value. Note that a SecretBag contains only one

secret.

SecretBag ::= SEQUENCE {

 secretTypeId BAG-TYPE.&id ({SecretTypes}),

 secretValue [0] EXPLICIT BAG-TYPE.&Type ({SecretTypes}{@secretTypeId})

}

SecretTypes BAG-TYPE ::= {

 ... -- For future extensions

}

Implementers can add values at their own discretion to this set.

4.2.6 The SafeContents type

The sixth type of bag that can be held in a SafeBag is a SafeContents. This recursive

structure allows for arbitrary nesting of multiple KeyBags, PKCS8ShroudedKeyBags,

CertBags, CRLBags and SecretBags within the top-level SafeContents.

5 Using PFX PDUs

This section describes creation and usage of PFX PDUs.

5.1 Creating PFX PDUs

1) It is somewhat clear from the ASN.1 how to make a number of instances of

SafeContents, each containing a number of (possibly nested) instances of SafeBag. Let

us assume, therefore, a number of instances SC1, SC2,..., SCn of SafeContents. Note that

there can be a more or less arbitrary number of instances of SafeContents in a PFX

PDU. As will be seen in step 2, each instance can be encrypted (or not) separately.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 12

Copyright © 2012 EMC Corporation.

2) For each SCI, depending on the chosen encryption option,

a) If SCi is not to be encrypted, make a ContentInfo CIi holding content type Data. The

contents of the Data OCTET STRING shall be a BER-encoding of SCi (including tag,

length, and value octets).

b) If SCi is to be encrypted with a password, make a ContentInfo CIi of type

EncryptedData. The encryptedContentInfo field of CIi has its contentType field set to

data and its encryptedContent field set to the encryption of the BER-encoding of SCi

(note that the tag and length octets shall be present).

c) If SCi is to be encrypted with a public key, make a ContentInfo CIi of type

EnvelopedData in essentially the same fashion as the EncryptedData ContentInfo was

made in b).

3) Make an instance of AuthenticatedSafe by stringing together the CIi's in a SEQUENCE.

4) Make a ContentInfo T holding content type Data. The contents of the Data OCTET STRING

shall be a BER-encoding of the AuthenticatedSafe value (including tag, length, and

value octets).

5) For integrity protection,

a) If the PFX PDU is to be authenticated with a digital signature, make a ContentInfo C

of type SignedData. The contentInfo field of the SignedData in C has T in it. C is the

ContentInfo in the top-level PFX structure.

b) If the PFX PDU is to be authenticated with HMAC, then an HMAC with SHA-1,

SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, or SHA-512/256 is

computed on the contents of the Data in T (i.e. excluding the OCTET STRING tag and

length bytes). This is exactly what would be initially digested in step 5a) if public-

key authentication were being used.

5.2 Importing keys, etc., from a PFX PDU

Importation from a PFX is accomplished essentially by reversing the procedure for

creating a PFX. In general, when an application imports keys, etc., from a PFX, it should

ignore any object identifiers that it is not familiar with. At times, it may be appropriate to

alert the user to the presence of such object identifiers.

Special care may be taken by the application when importing an item in the PFX would

require overwriting an item, which already exists locally. The behavior of the application

when such an item is encountered may depend on what the item is (i.e., it may be that a

PKCS #8-shrouded private key and a CRL should be treated differently here).

Appropriate behavior may be to ask the user what action should be taken for this item.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 13

Copyright © 2012 EMC Corporation.

A. Message Authentication Codes (MACs)

A MAC is a special type of function of a message (data bits) and an integrity key. It can

be computed or checked only by someone possessing both the message and the integrity

key. Its security follows from the secrecy of the integrity key. In this standard, MACing

is used in password integrity mode.

This document uses a particular type of MAC called HMAC [9] [13], which can be

constructed from any of a variety of hash functions. Note that the specifications in [9] and

[13] differ somewhat from the specification in [10]. The hash function HMAC is based

on is identified in the MacData which holds the MAC; for this version of this standard, the

hash function can be one of the following: SHA-1, SHA-224, SHA-256, SHA-384, SHA-

512, SHA-512/224, or SHA-512/256. As indicated in Section B.4, this structure implies

that the same hash algorithm must be used to derive the MAC key itself in password

integrity mode, and that the MAC key has either 160, 224, 256, 384, or 512 bits.

When password integrity mode is used to secure a PFX PDU, an HMAC with SHA-1,

SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, or SHA-512/256 is computed

on the BER-encoding of the contents of the content field of the authSafe field in the PFX

PDU (see Section 5.1).

B. Deriving keys and IVs from passwords and salt

We present here a general method for using a hash function to produce various types of

pseudo-random bits from a password and a string of salt bits. This method is used for

password privacy mode and password integrity mode in the present standard.

Note that this method for password privacy mode is no longer recommended. The

procedures and algorithms defined in PKCS #5 v2.1 [16] should be used instead.

Specifically, PBES2 should be used as encryption scheme, with PBKDF2 as the key

derivation function.

The method presented here is still used to generate the key in password integrity mode.

B.1 Password formatting

The underlying password-based encryption methods in PKCS #5 v2.1 views passwords

(and salt) as being simple byte strings. The underlying password-based encryption

methods and the underlying password-based authentication methods in this version of this

document are similar.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 14

Copyright © 2012 EMC Corporation.

What's left unspecified in the above paragraph is precisely where the byte string

representing a password comes from (this is not an issue with salt strings, since they are

supplied as a password-based encryption (or authentication) parameter). PKCS #5 v2.1

says: “[…] a password is considered to be an octet string of arbitrary length whose

interpretation as a text string is unspecified. In the interest of interoperability, however, it

is recommended that applications follow some common text encoding rules. ASCII and

UTF-8 are two possibilities.”

In this specification however, all passwords are created from BMPStrings with a NULL

terminator. This means that each character in the original BMPString is encoded in 2 bytes

in big-endian format (most-significant byte first). There are no Unicode byte order marks.

The 2 bytes produced from the last character in the BMPString are followed by two

additional bytes with the value 0x00.

To illustrate with a simple example, if a user enters the 6-character password "Beavis",

the string that PKCS #12 implementations should treat as the password is the following

string of 14 bytes:

0x00 0x42 0x00 0x65 0x00 0x61 0x00 0x76 0x00 0x69 0x00 0x73 0x00 0x00

B.2 General method

Let H be a hash function built around a compression function f: Z2
u Z2

v
 Z2

u
 (that is, H

has a chaining variable and output of length u bits, and the message input to the

compression function of H is v bits). The values for u and v are as follows:

Hash Function Value u Value v

MD2, MD5 128 512

SHA-1 160 512

SHA-224 224 512

SHA-256 256 512

SHA-384 384 1024

SHA-512 512 1024

SHA-512/224 224 1024

SHA-512/256 256 1024

Furthermore, let r be the iteration count.

We assume here that u and v are both multiples of 8, as are the lengths of the password

and salt strings (which we denote by p and s, respectively) and the number n of pseudo-

random bits required. In addition, u and v are of course non-zero.

The following procedure can be used to produce pseudo-random bits for a particular

“purpose” which is identified by a byte, ID. The meaning of this ID byte will be

discussed later.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 15

Copyright © 2012 EMC Corporation.

1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID.

2. Concatenate copies of the salt together to create a string S of length vs/v bits (the

final copy of the salt may be truncated to create S). Note that if the salt is the empty

string, then so is S.

3. Concatenate copies of the password together to create a string P of length vp/v bits

(the final copy of the password may be truncated to create P). Note that if the

password is the empty string, then so is P.

4. Set I=S||P to be the concatenation of S and P.

5. Set c=n/u.

6. For i=1, 2, …, c, do the following:

a) Set Ai=H
r
(D||I). (i.e. the r

th
 hash of D||I, H(H(H(…H(D||I))))

b) Concatenate copies of Ai to create a string B of length v bits (the final copy of Ai

may be truncated to create B).

c) Treating I as a concatenation I0, I1, …, Ik-1 of v-bit blocks, where k=s/v+p/v,

modify I by setting Ij=(Ij+B+1) mod 2
v
 for each j.

7. Concatenate A1, A2, …, Ac together to form a pseudo-random bit string, A.

8. Use the first n bits of A as the output of this entire process.

If the above process is being used to generate a DES key, the process should be used to

create 64 random bits, and the key’s parity bits should be set after the 64 bits have been

produced. Similar concerns hold for 2-key and 3-key triple-DES keys, for CDMF keys,

and for any similar keys with parity bits “built into them”.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 16

Copyright © 2012 EMC Corporation.

B.3 More on the ID byte

This standard specifies 3 different values for the ID byte mentioned above:

1. If ID=1, then the pseudo-random bits being produced are to be used as key material

for performing encryption or decryption.

2. If ID=2, then the pseudo-random bits being produced are to be used as an IV (Initial

Value) for encryption or decryption.

3. If ID=3, then the pseudo-random bits being produced are to be used as an integrity

key for MACing.

B.4 Keys and IVs for password privacy mode

When password privacy mode is used to encrypt a PFX PDU, a password (typically

entered by the user), a salt and an iteration parameter are used to derive a key (and an IV,

if necessary). The password is a Unicode string, and as such, each character in it is

represented by 2 bytes. The salt is a byte string, and so can be represented directly as a

sequence of bytes.

This standard does not prescribe a length for the password. As usual, however, too short a

password might compromise privacy. A particular application might well require a user-

entered privacy password for creating a PFX PDU to have a password exceeding some

specific length.

This standard also does not prescribe a length for the salt. Ideally, the salt is as long as the

output of the hash function being used, and consists of completely random bits.

The iteration count is recommended to be 1024 or more (see [16] for more information).

The PBES1 encryption scheme defined in PKCS #5 provides a number of algorithm

identifiers for deriving keys and IVs; here, we specify a few more, all of which use the

procedure detailed in Section B.2 and Section B.3 to construct keys (and IVs, where

needed). As is implied by their names, all of the object identifiers below use the hash

function SHA-1.

pkcs-12PbeIds OBJECT IDENTIFIER ::= {pkcs-12 1}

pbeWithSHAAnd128BitRC4 OBJECT IDENTIFIER ::= {pkcs-12PbeIds 1}

pbeWithSHAAnd40BitRC4 OBJECT IDENTIFIER ::= {pkcs-12PbeIds 2}

pbeWithSHAAnd3-KeyTripleDES-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 3}

pbeWithSHAAnd2-KeyTripleDES-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 4}

pbeWithSHAAnd128BitRC2-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 5}

pbewithSHAAnd40BitRC2-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 6}

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 17

Copyright © 2012 EMC Corporation.

Each of the six PBE object identifiers above has the following ASN.1 type for

parameters:

pkcs-12PbeParams ::= SEQUENCE {

 salt OCTET STRING,

 iterations INTEGER

}

The pkcs-12PbeParams holds the salt which is used to generate the key (and IV, if

necessary) and the number of iterations to carry out.

Note that the first two algorithm identifiers above (the algorithm identifiers for RC4) only

derive keys; it is unnecessary to derive an IV for RC4.

B.5 Keys for password integrity mode

When password integrity mode is used to protect a PFX PDU, a password and salt are

used to derive a MAC key. As with password privacy mode, the password is a Unicode

string, and the salt is a byte string. No particular lengths are prescribed in this standard

for either the password or the salt, but the general advice about passwords and salt that

was given in Section B.4 applies here, as well.

The hash function used to derive MAC keys is whatever hash function is going to be used

for MACing. The MAC keys that are derived have the same length as the hash function’s

output. In this version of this standard, SHA-1, SHA-224, SHA-256, SHA384, SHA-512,

SHA-512/224 or SHA/512/256 can be used to perform MACing, and so the MAC keys

can be 160, 224, 256, 384 or 512 bits. See Appendix A for more information on MACing.

C. ASN.1 module

This appendix documents all ASN.1 types, values and object sets defined in this

specification. It does so by providing an ASN.1 module called PKCS-12.

PKCS-12 {

 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-12(12) modules(0)

 pkcs-12(1)}

-- PKCS #12 v1.1 ASN.1 Module

-- Revised October 27, 2012

-- This module has been checked for conformance with the ASN.1 standard by

-- the OSS ASN.1 Tools

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL

-- All types and values defined in this module are exported for use in other

-- ASN.1 modules.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 18

Copyright © 2012 EMC Corporation.

IMPORTS

informationFramework

 FROM UsefulDefinitions {joint-iso-itu-t(2) ds(5) module(1)

 usefulDefinitions(0) 3}

ATTRIBUTE

 FROM InformationFramework informationFramework

ContentInfo, DigestInfo

 FROM PKCS-7 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-7(7)

 modules(0) pkcs-7(1)}

PrivateKeyInfo, EncryptedPrivateKeyInfo

 FROM PKCS-8 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-8(8)

 modules(1) pkcs-8(1)}

pkcs-9, friendlyName, localKeyId, certTypes, crlTypes

 FROM PKCS-9 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)

 modules(0) pkcs-9(1)};

-- ============================

-- Object identifiers

-- ============================

rsadsi OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840) rsadsi(113549)}

pkcs OBJECT IDENTIFIER ::= {rsadsi pkcs(1)}

pkcs-12 OBJECT IDENTIFIER ::= {pkcs 12}

pkcs-12PbeIds OBJECT IDENTIFIER ::= {pkcs-12 1}

pbeWithSHAAnd128BitRC4 OBJECT IDENTIFIER ::= {pkcs-12PbeIds 1}

pbeWithSHAAnd40BitRC4 OBJECT IDENTIFIER ::= {pkcs-12PbeIds 2}

pbeWithSHAAnd3-KeyTripleDES-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 3}

pbeWithSHAAnd2-KeyTripleDES-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 4}

pbeWithSHAAnd128BitRC2-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 5}

pbewithSHAAnd40BitRC2-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 6}

bagtypes OBJECT IDENTIFIER ::= {pkcs-12 10 1}

-- ============================

-- The PFX PDU

-- ============================

PFX ::= SEQUENCE {

 version INTEGER {v3(3)}(v3,...),

 authSafe ContentInfo,

 macData MacData OPTIONAL

}

MacData ::= SEQUENCE {

 mac DigestInfo,

 macSalt OCTET STRING,

 iterations INTEGER DEFAULT 1

 -- Note: The default is for historical reasons and its use is deprecated.

}

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 19

Copyright © 2012 EMC Corporation.

AuthenticatedSafe ::= SEQUENCE OF ContentInfo

 -- Data if unencrypted

 -- EncryptedData if password-encrypted

 -- EnvelopedData if public key-encrypted

SafeContents ::= SEQUENCE OF SafeBag

SafeBag ::= SEQUENCE {

 bagId BAG-TYPE.&id ({PKCS12BagSet}),

 bagValue [0] EXPLICIT BAG-TYPE.&Type({PKCS12BagSet}{@bagId}),

 bagAttributes SET OF PKCS12Attribute OPTIONAL

}

-- ============================

-- Bag types

-- ============================

keyBag BAG-TYPE ::=

 {KeyBag IDENTIFIED BY {bagtypes 1}}

pkcs8ShroudedKeyBag BAG-TYPE ::=

 {PKCS8ShroudedKeyBag IDENTIFIED BY {bagtypes 2}}

certBag BAG-TYPE ::=

 {CertBag IDENTIFIED BY {bagtypes 3}}

crlBag BAG-TYPE ::=

 {CRLBag IDENTIFIED BY {bagtypes 4}}

secretBag BAG-TYPE ::=

 {SecretBag IDENTIFIED BY {bagtypes 5}}

safeContentsBag BAG-TYPE ::=

 {SafeContents IDENTIFIED BY {bagtypes 6}}

PKCS12BagSet BAG-TYPE ::= {

 keyBag |

 pkcs8ShroudedKeyBag |

 certBag |

 crlBag |

 secretBag |

 safeContentsBag,

 ... -- For future extensions

}

BAG-TYPE ::= TYPE-IDENTIFIER

-- KeyBag

KeyBag ::= PrivateKeyInfo

-- Shrouded KeyBag

PKCS8ShroudedKeyBag ::= EncryptedPrivateKeyInfo

-- CertBag

CertBag ::= SEQUENCE {

 certId BAG-TYPE.&id ({CertTypes}),

 certValue [0] EXPLICIT BAG-TYPE.&Type ({CertTypes}{@certId})

}

x509Certificate BAG-TYPE ::=

 {OCTET STRING IDENTIFIED BY {certTypes 1}}

 -- DER-encoded X.509 certificate stored in OCTET STRING

sdsiCertificate BAG-TYPE ::=

 {IA5String IDENTIFIED BY {certTypes 2}}

 -- Base64-encoded SDSI certificate stored in IA5String

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 20

Copyright © 2012 EMC Corporation.

CertTypes BAG-TYPE ::= {

 x509Certificate |

 sdsiCertificate,

 ... -- For future extensions

}

-- CRLBag

CRLBag ::= SEQUENCE {

 crlId BAG-TYPE.&id ({CRLTypes}),

 crltValue [0] EXPLICIT BAG-TYPE.&Type ({CRLTypes}{@crlId})

}

x509CRL BAG-TYPE ::=

 {OCTET STRING IDENTIFIED BY {crlTypes 1}}

 -- DER-encoded X.509 CRL stored in OCTET STRING

CRLTypes BAG-TYPE ::= {

 x509CRL,

 ... -- For future extensions

}

-- Secret Bag

SecretBag ::= SEQUENCE {

 secretTypeId BAG-TYPE.&id ({SecretTypes}),

 secretValue [0] EXPLICIT BAG-TYPE.&Type ({SecretTypes}{@secretTypeId})

}

SecretTypes BAG-TYPE ::= {

 ... -- For future extensions

}

-- ============================

-- Attributes

-- ============================

PKCS12Attribute ::= SEQUENCE {

 attrId ATTRIBUTE.&id ({PKCS12AttrSet}),

 attrValues SET OF ATTRIBUTE.&Type ({PKCS12AttrSet}{@attrId})

} -- This type is compatible with the X.500 type 'Attribute'

PKCS12AttrSet ATTRIBUTE ::= {

 friendlyName |

 localKeyId,

 ... -- Other attributes are allowed

}

END

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 21

Copyright © 2012 EMC Corporation.

D. Intellectual property considerations

EMC Corporation makes no patent claims on the general constructions described in this

document, although specific underlying techniques may be covered.

RC2 and RC4 are trademarks of EMC Corporation.

License to copy this document is granted provided that it is identified as “EMC

Corporation Public-Key Cryptography Standards (PKCS)” in all material mentioning or

referencing this document.

EMC Corporation makes no representations regarding intellectual property claims by

other parties. Such determination is the responsibility of the user.

E. References

[1] H. Dobbertin. The status of MD5 after a recent attack. CryptoBytes, RSA

Laboratories. Vol.2, #2, 1996.

[2] ISO/IEC 8824-1:2008: Information technology — Abstract Syntax Notation One

(ASN.1) — Specification of basic notation. 2008.

[3] ISO/IEC 8824-2:2008: Information technology — Abstract Syntax Notation One

(ASN.1) — Information object specification. 2008.

[4] ISO/IEC 8824-3:2008: Information technology — Abstract Syntax Notation One

(ASN.1) — Constraint specification. 2008.

[5] ISO/IEC 8824-4:2008: Information technology — Abstract Syntax Notation One

(ASN.1) — Parameterization of ASN.1 specifications. 2008.

[6] ISO/IEC 8825-1:2008: Information Technology – ASN.1 Encoding Rules:

Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER),

and Distinguished Encoding Rules. 2008.

[7] ISO/IEC 9594-2:1997. Information technology — Open Systems Interconnection

— The Directory: Models. 1997.

[8] ISO/IEC 9594-8:1997. Information technology — Open Systems Interconnection

— The Directory: Authentication Framework. 1997.

[9] H. Krawczyk, M. Bellare, and R. Canetti. RFC 2104: HMAC: Keyed-Hashing for

Message Authentication. IETF, February 1997.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 22

Copyright © 2012 EMC Corporation.

[10] Microsoft Corporation. PFX: Personal Exchange Syntax and Protocol Standard.

Version 0.020, January 1997.

[11] National Institute of Standards and Technology (NIST). FIPS Special Publication

132: Recommendation for Password-Based Key Derivation Part 1: Storage

Applications. December 2010.

[12] National Institute of Standards and Technology (NIST). FIPS Publication 180-4:

Secure Hash Standard. March 2012.

[13] National Institute of Standards and Technology (NIST). FIPS Publication 198-1:

The Keyed-Hash Message Authentication Code (HMAC). July 2008.

[14] National Institute of Standards and Technology (NIST). Special Publication 800-

132: Recommendation for Password-Based Key Derivation, Part 1: Storage

Applications. December 2010.

[15] R. Rivest and B. Lampson. Simple Distributed Security Infrastructure,

http://theory.lcs.mit.edu/~rivest/sdsi.ps, 1996.

[16] RSA Laboratories. PKCS #5: Password-Based Encryption Standard. Version 2.1,

October 2012.

[17] RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version

1.5, November 1993.

[18] RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version

1.2, November 1993.

PKCS #12 V1.1: PERSONAL INFORMATION EXCHANGE SYNTAX 23

Copyright © 2012 EMC Corporation.

F. Acknowledgments

Many thanks to Dan Simon of Microsoft Corporation and Jim Spring of Netscape

Communications Corporation for their assistance in preparing early drafts of this

document. Especial thanks to Brian Beckman of Microsoft Corporation for writing the

specification that this document is based on.

G. About PKCS

The Public-Key Cryptography Standards are specifications produced by RSA

Laboratories in cooperation with secure systems developers worldwide for the purpose of

accelerating the deployment of public-key cryptography. First published in 1991 as a

result of meetings with a small group of early adopters of public-key technology, the

PKCS documents have become widely referenced and implemented. Contributions from

the PKCS series have become part of many formal and de facto standards, including

ANSI X9 documents, PKIX, SET, S/MIME, and SSL.

Further development of PKCS occurs through mailing list discussions and occasional

workshops, and suggestions for improvement are welcome. For more information,

contact:

PKCS Editor

RSA Laboratories

11 Cambridge Centre

Cambridge, MA 02142 USA

pkcs-editor@rsa.com

http://www.rsa.com/rsalabs/node.asp?id=2124

mailto:pkcs-editor@rsa.com
http://www.rsa.com/rsalabs/node.asp?id=2124

	PKCS #12 v1.1: Personal Information Exchange Syntax
	1 Introduction
	2 Definitions and notation
	3 Overview
	3.1 Exchange modes
	3.2 Mode choice policies
	3.3 Trusted public keys
	3.4 The AuthenticatedSafe

	4 PFX PDU syntax
	4.1 The AuthenticatedSafe type
	4.2 The SafeBag type
	4.2.1 The KeyBag type
	4.2.2 The PKCS8ShroudedKeyBag type
	4.2.3 The CertBag type
	4.2.4 The CRLBag type
	4.2.5 The SecretBag type
	4.2.6 The SafeContents type

	5 Using PFX PDUs
	5.1 Creating PFX PDUs
	5.2 Importing keys, etc., from a PFX PDU

	A. Message Authentication Codes (MACs)
	B. Deriving keys and IVs from passwords and salt
	B.1 Password formatting
	B.2 General method
	B.3 More on the ID byte
	B.4 Keys and IVs for password privacy mode
	B.5 Keys for password integrity mode

	C. ASN.1 module
	D. Intellectual property considerations
	E. References
	F. Acknowledgments
	G. About PKCS

