
Datorarkitektur Fö 3 - 1

Petru Eles, IDA, LiTH

INSTRUCTION PIPELINING (I)

1. The Instruction Cycle

2. Instruction Pipelining

3. Pipeline Hazards

4. Structural Hazards

5. Data Hazards

6. Control Hazards

Datorarkitektur Fö 3 - 2

Petru Eles, IDA, LiTH

The Instruction Cycle

Fetch
instruction

Decode

Fetch
operand

Execute
instruction

FI

DI

- Calculate operand address (CO)
- Fetch operand (FO)

- Execute instruction (EI)
- Write back operand (WO)

Datorarkitektur Fö 3 - 3

Petru Eles, IDA, LiTH

Instruction Pipelining

• Instruction execution is extremely complex and
involves several operations which are executed
successively (see slide 2). This implies a large
amount of hardware, but only one part of this
hardware works at a given moment.

• Pipelining is an implementation technique whereby
multiple instructions are overlapped in execution.
This is solved without additional hardware but only
by letting different parts of the hardware work for
different instructions at the same time.

• The pipeline organization of a CPU is similar to an
assembly line: the work to be done in an instruction
is broken into smaller steps (pieces), each of which
takes a fraction of the time needed to complete the
entire instruction. Each of these steps is a pipe
stage (or a pipe segment).

• Pipe stages are connected to form a pipe:

• The time required for moving an instruction from
one stage to the next: a machine cycle (often this is
one clock cycle). The execution of one instruction
takes several machine cycles as it passes through
the pipeline.

Stage 1 Stage 2 Stage n

Datorarkitektur Fö 3 - 4

Petru Eles, IDA, LiTH

Acceleration by Pipelining

Two stage pipeline: FI: fetch instruction
EI: execute instruction

We consider that each instruction takes execution time Tex.

Execution time for the 7 instructions, with pipelining:
(Tex/2)*8= 4*Tex

FI EI

FI EI

FI EI

FI EI

FI EI

FI EI

FI EI

1 2 83 4 5 6 7Clock cycle →

Instr. i

Instr. i+1

Instr. i+2

Instr. i+3

Instr. i+4

Instr. i+5

Instr. i+6



Datorarkitektur Fö 3 - 5

Petru Eles, IDA, LiTH

Acceleration by Pipelining (cont’d)

Six stage pipeline (see also slide 2):
FI: fetch instruction FO: fetch operand
DI: decode instruction EI: execute instruction
CO: calculate operand address WO:write operand

Execution time for the 7 instructions, with pipelining:
(Tex/6)*12= 2*Tex

• After a certain time (N-1 cycles) all the N stages of
the pipeline are working: the pipeline is filled. Now,
theoretically, the pipeline works providing maximal
parallelism (N instructions are active simultaneously).

FI DI

1 2 83 4 5 6 7Clock cycle →

Instr. i

Instr. i+1

Instr. i+2

Instr. i+3

Instr. i+4

Instr. i+5

Instr. i+6

COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

9 10 11 12

Datorarkitektur Fö 3 - 6

Petru Eles, IDA, LiTH

Acceleration by Pipelining (cont’d)

• Apparently a greater number of stages always
provides better performance. However:

- a greater number of stages increases the over-
head in moving information between stages
and synchronization between stages.

- with the number of stages the complexity of the
CPU grows.

- it is difficult to keep a large pipeline at maximum
rate because of pipeline hazards.

80486 and Pentium: five-stage pipeline for integer instr.
eight-stage pipeline for FP instr.

PowerPC: four-stage pipeline for integer instr.
six-stage pipeline for FP instr.

Datorarkitektur Fö 3 - 7

Petru Eles, IDA, LiTH

Pipeline Hazards

• Pipeline hazards are situations that prevent the
next instruction in the instruction stream from
executing during its designated clock cycle. The
instruction is said to be stalled. When an instruction
is stalled, all instructions later in the pipeline than
the stalled instruction are also stalled. Instructions
earlier than the stalled one can continue. No new
instructions are fetched during the stall.

• Types of hazards:
1. Structural hazards
2. Data hazards
3. Control hazards

Datorarkitektur Fö 3 - 8

Petru Eles, IDA, LiTH

Structural Hazards

• Structural hazards occur when a certain resource
(memory, functional unit) is requested by more than
one instruction at the same time.

Instruction ADD R4,X fetches in the FO stage operand X
from memory. The memory doesn’t accept another
access during that cycle.

Penalty: 1 cycle

• Certain resources are duplicated in order to avoid
structural hazards. Functional units (ALU, FP unit)
can be pipelined themselves in order to support
several instructions at a time. A classical way to
avoid hazards at memory access is by providing
separate data and instruction caches.

FI DI

1 2 83 4 5 6 7Clock cycle →

ADD R4,X

Instr. i+1

Instr. i+2

Instr. i+3

Instr. i+4

COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

9 10 11 12

stall



Datorarkitektur Fö 3 - 9

Petru Eles, IDA, LiTH

Data Hazards

• We have two instructions, I1 and I2. In a pipeline
the execution of I2 can start before I1 has
terminated. If in a certain stage of the pipeline, I2
needs the result produced by I1, but this result has
not yet been generated, we have a data hazard.

I1: MUL R2,R3 R2 ← R2 * R3
I2: ADD R1,R2 R1 ← R1 + R2

Before executing its FO stage, the ADD instruction is
stalled until the MUL instruction has written the result
into R2.
Penalty: 2 cycles

FI DI

1 2 83 4 5 6 7Clock cycle →

MUL R2,R3

ADD R1,R2

Instr. i+2

COFO EI WO

FI DI CO FO EI WO

FI DI COFO EI WO

9 10 11 12

stall stall

Datorarkitektur Fö 3 - 10

Petru Eles, IDA, LiTH

Data Hazards (cont’d)

• Some of the penalty produced by data hazards can
be avoided using a technique called forwarding
(bypassing).

• The ALU result is always fed back to the ALU input.
If the hardware detects that the value needed for the
current operation is the one produced by the previous
operation (but which has not yet been written back)
it selects the forwarded result as the ALU input, in-
stead of the value read from register or memory.

After the EI stage of the MUL instruction the result is avail-
able by forwarding. The penalty is reduced to one cycle.

MUX MUX

ALU

to register or memory

from reg-
ister or
memory

from reg-
ister or
memory

bypass
path

bypass
path

FI DI

1 2 83 4 5 6 7Clock cycle →

MUL R2,R3

ADD R1,R2

COFO EI WO

FI DI CO

9 10 11 12

stall FO EI WO

Datorarkitektur Fö 3 - 11

Petru Eles, IDA, LiTH

Control Hazards

• Control hazards are produced by branch
instructions.

Unconditional branch
- - - - - - - - - - - - - -
BR TARGET
- - - - - - - - - - - - - -

TARGET - - - - - - - - - - - - - -

Penalty: 3 cycles

FI DI

1 2 83 4 5 6 7Clock cycle →

BR TARGET

target

target+1

COFO EI WO

FI

FI DI COFO EI WO

9 10 11 12

stall stall FI DI COFO EI WO

The instruction following the
branch is fetched; before
the DI is finished it is not
known that a branch is exe-
cuted. Later the fetched in-
struction is discarded

After the FO stage of the
branch instruction the
address of the target is
known and it can be fetched

Datorarkitektur Fö 3 - 12

Petru Eles, IDA, LiTH

Control Hazards (cont’d)

Conditional branch

ADD R1,R2 R1 ← R1 + R2
BEZ TARGET branch if zero
instruction i+1
- - - - - - - - - - - - -

TARGET - - - - - - - - - - - - -
Branch is taken

Penalty: 3 cycles

Branch not taken

Penalty: 2 cycles

FI DI

1 2 83 4 5 6 7Clock cycle →

ADD R1,R2

BEZ TARGET

target

COFO EI WO

FI DI COFO EI WO

9 10 11 12

FI stall stall FI DI COFO EI WO

At this moment, both the
condition (set by ADD) and
the target address are known.

FI DI

1 2 83 4 5 6 7Clock cycle →

ADD R1,R2

BEZ TARGET

instr i+1

COFO EI WO

FI DI COFO EI WO

9 10 11 12

FI stall stall DI COFO EI WO

At this moment the condition is
known and instr+1 can go on.



Datorarkitektur Fö 3 - 13

Petru Eles, IDA, LiTH

Control Hazards (cont’d)

• With conditional branch we have a penalty even if
the branch has not been taken. This is because we
have to wait until the branch condition is available.

• Branch instructions represent a major problem in
assuring an optimal flow through the pipeline.
Several approaches have been taken for reducing
branch penalties (see slides of the following
lecture).

Datorarkitektur Fö 3 - 14

Petru Eles, IDA, LiTH

Summary

• Instructions are executed by the CPU as a
sequence of steps. Instruction execution can be
substantially accelerated by instruction pipelining.

• A pipeline is organized as a succession of N
stages. At a certain moment N instructions can be
active inside the pipeline.

• Keeping a pipeline at its maximal rate is prevented
by pipeline hazards. Structural hazards are due to
resource conflicts. Data hazards are produced by
data dependencies between instructions. Control
hazards are produced as consequence of branch
instructions


