
Simplifying
Particle Swarm
Optimization

By
Magnus Erik Hvass Pedersen, Andrew John Chipperfield

School of Engineering Sciences, University of Southampton, UK
Published in Applied Soft Computing, 2009

http://dx.doi.org/10.1016/j.asoc.2009.08.029

Abstract

The general purpose optimization method known as Particle Swarm
Optimization (PSO) has received much attention in past years, with many
attempts to find the variant that performs best on a wide variety of opti-
mization problems. The focus of past research has been with making the
PSO method more complex, as this is frequently believed to increase its
adaptability to other optimization problems. This study takes the oppo-
site approach and simplifies the PSO method. To compare the efficacy
of the original PSO and the simplified variant here, an easy technique is
presented for efficiently tuning their behavioural parameters. The tech-
nique works by employing an overlaid meta-optimizer, which is capable
of simultaneously tuning parameters with regard to multiple optimization
problems, whereas previous approaches to meta-optimization have tuned
behavioural parameters to work well on just a single optimization prob-
lem. It is then found that the PSO method and its simplified variant not
only have comparable performance for optimizing a number of Artificial
Neural Network problems, but the simplified variant appears to offer a
small improvement in some cases.

Keywords: Numerical optimization, stochastic, swarm, tuning, sim-
plifying.

1 Introduction

The general purpose optimization method known as Particle Swarm Optimiza-
tion (PSO) is due to Kennedy and Eberhart [1], and works by maintaining
a swarm of particles that move around in the search-space influenced by the
improvements discovered by the other particles. The advantage of using an op-
timization method such as PSO is that it does not rely explicitly on the gradient
of the problem to be optimized, so the method can be readily employed for a
host of optimization problems. This is especially useful when the gradient is too
laborious or even impossible to derive. A good example of this is found in the
history of Artificial Neural Networks (ANN), which are dataflow-models that
can approximate arbitrary mappings between input and output by optimizing
various parameters of the ANN. The devising of the ANN model is reported
by Haykin [2, Section 1.9] to have taken several decades, apparently because
each change to the ANN model also required the mathematical deriving of its

1

http://dx.doi.org/10.1016/j.asoc.2009.08.029

gradient, thus making it difficult for the researchers to quickly try out new ideas
for the ANN model. Optimization methods such as PSO have an advantage in
such prototyping, as they do not require the mathematical gradient in order to
optimize a problem, but can be employed directly on the fitness measure to be
optimized. This versatility comes at a price, however, as the disadvantage of
general purpose optimization methods such as PSO is that they do not always
work well, and often require some form of tuning to the problem at hand [3] [4].

1.1 Parameter Selection

Numerous studies exist on how to make the PSO method perform better. A
traditional and easy way of trying to improve the PSO method is by manually
changing its behavioural parameters. Various studies have been reported in
the literature, for example one by Shi and Eberhart [5] [6] regarding the use
of velocity boundaries for the movement of the particles and the choice of the
so-called inertia weight which is believed to influence the degree of exploration
versus exploitation of the PSO particles. A comprehensive survey of such studies
is due to Carlisle and Dozier [7] on everything from the selection of behavioural
parameters to the neighbourhood topology determining how particles influence
each other, as well as other algorithmic details. However, such studies have
all been limited in scope by the fact that they are either conducted manually,
or at best in a systematic but very coarse way, in contrast to the automatic
fine-tuning made possible by the meta-optimization approach given later in this
paper.

1.2 Mathematical Analysis

Various attempts have been made by van den Bergh [3], Trelea [4], and Clerc
and Kennedy [8], at mathematically analyzing the PSO by considering how the
behavioural parameters influence contraction of its particles to a single point.
But there are questions about the wider validity of these analyses. First is
the preconceived notion that optimization performance and swarm contraction
are so tightly connected, as it is important to stress that convergence of the
optimizing particles to some point in the search-space, does not automatically
guarantee the point of convergence is also the actual optimum of the problem
at hand. A number of limiting assumptions are also made to facilitate the
mathematical analyses in [3] [4] [8]. The particles’ points of attraction are
assumed to remain constant. In other words, the improvements discovered by
particles have no influence on their further progress under this assumption. This
also means just a single particle is studied, and not an entire swarm of particles.
Stochasticity is also eliminated by using expectancies instead, thus considering
an averaged and deterministic behaviour of the particle. But do these features
not seem to be what makes the PSO work at all?

2

1.3 Optimizer Variants

Another approach often taken in an effort to improve the original PSO method
is the development of new variants. There are two common trends: Trying to
control contraction of the swarm’s particles (see e.g. [9] [10]), and combining
different optimization methods into a hybrid one (see e.g. [11]). Other variants
of the original PSO method have been developed specifically for ANN weight
optimization. For example a PSO variant that has its inertia weight decrease
linearly during an optimization run is used by Eberhart et al. [12] to not only op-
timize ANN weights, but also other features of the ANN. Another PSO variant
for optimizing ANN weights is introduced by Fan [13], and makes its particles
velocity-boundaries more narrow for each iteration of the algorithm, in an at-
tempt to focus the search more towards the end of the optimization run. Several
variants of the PSO method are developed by van den Bergh [3] and tested on
different kinds of ANNs. These PSO variants were developed under the notion
that contraction of the swarm’s particles is all-important. Although mathemat-
ical analysis was used to guide development of these PSO variants, the analysis
was argued above to be ill-founded and too limited in its assumptions. Another
PSO variant was introduced by Ge et al. [14] for optimizing a recurrent ANN,
in which the output of some ANN nodes feedback into the nodes of previous
layers, as opposed to the pure feedforward ANN studied here. The PSO vari-
ant in [14] tries to identify PSO particles that have become inactive, because
they have collapsed prematurely to a local optimum. Those particles are then
moved slightly in the search-space by adding Gaussian noise with zero mean
and a small fixed variance. While these PSO variants do show improvements
empirically they are also more complicated to describe and implement, which
is probably undesirable as the original version is not well understood to begin
with.

1.4 Optimizer Simplification & Meta-Optimization

This study takes a different approach altogether, in that it does not make any
assumptions about what causes an optimization method to work well, and in-
stead of devising more complex variants to the original PSO method, it is in-
stead sought simplified. This is more in accord with the original paradigm of
self-organization: That simple individuals cooperate and complex collective be-
haviour emerges. This is also in vein of Occam’s Razor; lex parsimoniae, or the
Law of Parsimony which popularly states that simplicity is usually better.

To compare the performance of optimization methods, it is important to
tune their behavioural parameters for the optimization problems at hand, so as
to make both optimization methods perform their best on that specific problem.
One can consider the task of finding the best performing behavioural param-
eters as an optimization task in its own right, and solve it by using another
overlaid optimization method. This is known as Meta-Optimization or Meta-
Evolution. But due to the vast requirements for computational power, only few
and limited studies have been conducted until recently, see for example Mercer

3

[15], Grefenstette [16], Bäck [17] [18], and Keane [19]. A more recent study
is due to Meissner et al. [20] who attempt to tune the PSO parameters by
using another instance of the PSO method as overlaid meta-optimizer as well.
But their study is limited in terms of the accuracy and quality of the results ob-
tained, as their approach lacks the proper choice of the overlaid meta-optimizer,
it lacks time-saving features, and it does not have the ability to meta-optimize
the PSO parameters with regard to their performance on multiple optimization
problems. The latter is important because the PSO method is particularly sus-
ceptible to overtuning of its behavioural parameters, making it perform well on
the problem for which the parameters were tuned, but perform poorly on prob-
lems for which the parameters were not specifically tuned. All of these issues
are addressed in this study, which in some regards is an extension to our earlier
work on meta-optimization [21], whose results are also compared to the work
presented here.

Another approach which might be called Meta-Adaptation is sometimes
taken for tuning behavioural parameters, where the parameters are being tuned
by an overlaid meta-optimizer during the optimization run in an online man-
ner. An example of meta-adaption is found in the study by Parsopoulos and
Vrahatis [22, Section 10]. However, meta-adaptation is not only more compli-
cated to implement, but also raises a number of open questions, such as how
many iterations should be made during each change of the behavioural param-
eters, how to rate the performance incurred by this change, etc. Instead, the
meta-optimization technique presented here is used for tuning the behavioural
parameters in an offline manner, by only altering the behavioural parameters
between the individual optimization runs of the PSO method. This is not only
simpler to describe and implement, but also has the added benefit that whatever
behavioural parameters are being discovered for the PSO, they can be used di-
rectly by other practitioners in their own implementation of the PSO algorithm,
without having to implement a more complicated meta-adaptive scheme such
as the one proposed in [22].

In short, the approach to meta-optimization taken here is generally simpler,
less time-consuming, and yields better results than previous approaches in the
literature. We have previously published work on meta-optimization [21] and
the technique presented here extends directly on the previous work. The main
difference is that meta-optimization with regard to multiple problems is now
supported, in an attempt to avoid overtuning the behavioural parameters to just
a single optimization problem, and thereby hopefully making the behavioural
parameters generalize better to other optimization problems as well.

Using the simple and efficient technique of meta-optimization presented here,
allows us to find the behavioural parameters of both the PSO method and its
simplified variant. It is found that the two methods have comparable perfor-
mance on a number of ANN problems, and that the simplified variant is even a
slight improvement in some cases.

The paper is organized as follows. Section 2 gives a brief overview of the
class of ANNs to be optimized. Section 3 describes the PSO method. Section 4
describes an optimization method especially suited for meta-optimization, and

4

section 5 describes how to employ it as an overlaid meta-optimizer. Section 6 de-
scribes the experimental settings and results, and conclusive remarks are found
in section 7.

2 Artificial Neural Networks

This section briefly introduces the particular kind of ANN that is to be used in
the study below, and is the actual problem the PSO method and its simplified
variant must ultimately be used for optimizing. An ANN is a dataflow model
inspired by the complex connections of cells in a biological brain. The type of
ANN used in this study is a fully connected feedforward network with a single
hidden layer having four nodes. This means the data flows from an input layer,
through a single hidden layer, and finally reaches the output layer. This kind
of ANN has its origin in research dating back several decades (see [2, Section
1.9] for a detailed historical account). More recent textbooks on this and other
kinds of ANN can be found in Haykin [2] and Bishop [23]. The ANN has
parameters, usually called weights, that can be adjusted to provide different
mappings from input to output. The optimization task is then to change these
weights so a desired correspondence between inputs and outputs of the ANN is
achieved. Under certain circumstances, and provided the input-output mapping
is well-behaved, this approximation can be achieved arbitrarily well [24] [25]
[26], simply by adding more hidden nodes to an ANN having a single hidden
layer whose nodes use bounded, compressive functions such as the Sigmoid
function described below. However, the datasets used in the experiments here
are not necessarily well-behaved as they may contain contradictory entries or
have missing features needed to properly distinguish them.

To briefly describe the computation of this kind of ANN, let the j’th node of
the i’th layer be denoted by nij . The node has a bias-value bij for offsetting the
influence of its inputs. The weight denoted by wijk connects the k’th node from
the previous layer to node nij . For an ANN having just a single hidden layer,
the computation of the j’th element of the ANN output ~o can be expressed as
a single, flattened formula:

oj = b3,j +
N2∑
k=1

w3,j,k · σ

(
b2,k +

N1∑
l=1

w2,k,l · n1,l

)
(1)

Where ~n1 ∈ RN1 is the first layer of the network containing its input, and N1

is the number of nodes in this first layer. The number of nodes in the hidden
layer is N2, and the number of nodes in the output layer is N3. The parameters
subject to optimization are all the bias-values and weights for the entire ANN,
that is, bij and wijk for all valid combinations of i, j, and k. The σ(·) part
of this formula represents the calculation of the k’th node in the hidden layer
of the ANN, where the compressive function used here is called the Sigmoidal
function σ : R→ (0, 1), defined as: σ(x) = 1/(1 + e−x)

A fitness measure must first be defined in order to optimize the weights and
bias-values of an ANN. Let T be the set of input-output data the ANN must be

5

trained to mimic. An element in the dataset T consists of input data ~ti and its
associated output data ~to. Passing the input data ~ti to the ANN and computing
the actual ANN output using Eq.(1) yields ~o. Accumulating the error between
desired and actual ANN output for all data pairs in T gives a measure for how
well the ANN mimics a desired input-output mapping. This is known as the
Mean Squared Error (MSE), defined as:

MSE =
1

N3 · |T |
∑

(~ti,~to)∈T

N3∑
j=1

(oj − toj)2 (2)

where normalization is done with both the number of input-output pairs |T |,
and the number of ANN output-nodes N3. This is not standard in the liter-
ature, but has the advantage of giving a uniform fitness measure that can be
compared independently of the given dataset and ANN sizes. The MSE mea-
sure is also sometimes halved in the literature to facilitate a cleaner derivation
of the gradient, but that is ignored here. It is customary to split the dataset T
and use one part during optimization (or training) of the ANN, and the other
part to test the generalization ability of the ANN, as a simple form of statistical
cross-validation [27]. However, this is ignored here as this study is primarily
concerned with the performance of PSO rather than that of the ANN.

The traditional way of optimizing ANN weights is to use a gradient-based
optimization method to follow the path of steepest descent of the MSE mea-
sure. This is known as BackPropagation (BP) because it first makes a forward
pass and computes the node values for the entire ANN, and then propagates
the MSE errors backwards through the ANN to determine adjustments for the
weights and bias-values. The BP method was developed independently by Wer-
bos and Rumelhart et al. [28] [29] [30]. The stochastic gradient is used in this
study, where a single input-output pair is picked randomly from the dataset T ,
and the gradient is computed for just that data pair. This requires much less
computational time than accumulating the gradient for all data pairs in T , and
taking small enough steps yields satisfactory results [31].

Once the ANN weights and bias-values have been optimized for the MSE
measure, the ANN can be used for classification tasks as well, as proven by
Richard and Lippmann [32]. This study uses 1-of-m classification [2] [31] [33],
where each ANN output represents a class, and the output with the highest value
is chosen as the classification. The Classification Error (CLS) is computed as
the number of data-pairs in T , for which the ANN output classification does
not match that of the desired output, divided by the total number of data pairs
|T |. This yields a CLS value in the range [0, 1], where a lower CLS value means
a better classification rate.

3 Particle Swarm Optimization

Another optimization method which can be used instead of BackPropagation
for optimizing ANN weights, is the population-based method known as Particle

6

Swarm Optimization (PSO) due to Kennedy and Eberhart [1]. The PSO method
was originally intended for simulating the social behaviour of a bird flock, but
the algorithm was simplified and it was realized that the individuals – here
typically called particles – were actually performing optimization.

In the PSO method the particles are initially placed at random positions
in the search-space, moving in randomly defined directions. The direction of a
particle is then gradually changed so it will start to move in the direction of
the best previous positions of itself and its peers, searching in their vicinity and
hopefully discovering even better positions with regard to some fitness measure
f : Rn → R.

Let the position of a particle be denoted by ~x ∈ Rn, and let ~v be its velocity.
Both are initially chosen randomly and then iteratively updated according to
two formulae. The following formula for updating the particle’s velocity is by
Shi and Eberhart [34]:

~v ← ω~v + φprp(~p− ~x) + φgrg(~g − ~x) (3)

Where the user-defined behavioural parameter ω ∈ R is called the inertia weight
and controls the amount of recurrence in the particle’s velocity. The particle’s
previous best position is ~p, and ~g is the swarm’s previous best position through
which the particles communicate implicitly with each other. These are weighted
by the stochastic variables rp, rg ∼ U(0, 1) and the user-defined behavioural
parameters φp, φg ∈ R. Adding the velocity to the particle’s current position
causes the particle to move to another position in the search-space, regardless
of any improvement to its fitness:

~x← ~x+ ~v (4)

In addition to enforcing search-space boundaries after updating a particle’s
position, it is also customary to impose limitations on the distance a particle
can move in a single step [35]. This is done by bounding a particle’s velocity ~v
to the full dynamic range of the search-space, so the particle can at most move
from one search-space boundary to the other in one step. The PSO algorithm
is shown in figure 1.

3.1 The Simplification

To simplify the PSO method one can informally start by considering what parts
of its mathematical description and algorithm can be eliminated. The veloc-
ity update formula in Eq.(3) is essentially a weighted sum of user-defined be-
havioural parameters and various vectors relating to the state of the swarm and
its indvidual particles. Eliminating the part containing the swarm’s best known
position ~g by setting φg = 0 would mean there is no longer any communication
amongst the particles. And setting the inertia weight ω to zero would eliminate
direct recurrence in Eq.(3), causing the particle to have no persistence in the
path it follows.

7

• Initialize the particles with random positions and velocities.

• Until a termination criterion is met (e.g. a given number of fitness evalua-
tions have been executed, observed fitness stagnates, or a fitness threshold
is met), repeat:

– For each particle with position ~x and velocity ~v do:

∗ Update the particle’s velocity using Eq.(3)
∗ Enforce velocity boundaries.
∗ Move the particle to its new position using Eq.(4)
∗ Enforce search-space boundaries on the particle’s position by

moving it back to the boundary value if it has been exceeded.
∗ If (f(~x) < f(~p)) then update the particle’s best known position:

~p← ~x

And similarly for the entire swarm’s best known position ~g.

Figure 1: The PSO algorithm.

Instead, the simplification that will be tested here consists of eliminating the
use of a particle’s own previous best known position ~p by setting φp = 0. The
velocity update formula from Eq.(3) thus becomes:

~v ← ω~v + φgrg(~g − ~x) (5)

Where ω is still the inertia weight, and rg ∼ U(0, 1) is a stochastic variable
weighted by the user-defined behavioural parameter φg. The particle’s current
position is still denoted by ~x and updated as in the PSO method, and the
entire swarm’s best known position is known as ~g as well. The algorithm is also
identical to that of the PSO in figure 1, with the exception that it too can be
simplified somewhat by randomly choosing the particle to update, instead of
iterating over the entire swarm. This simplified PSO is called Many Optimizing
Liaisons (MOL) to make it easy to distinguish from the original PSO.

A somewhat similar PSO simplification was studied by Clerc [36] on two
benchmark problems, although the algorithm had a number of other features
that made it more complicated in other ways, and it was also made to be
purely deterministic. Another PSO simplification that is more similar to the
MOL method has been suggested by Kennedy [37] who called it the “social
only” PSO, and used it for optimizing a small ANN. Kennedy’s results suggest
the simplification does improve on the performance of the basic PSO method,
something which shall be tested more rigorously in this study.

8

4 Local Unimodal Sampling

We introduced Local Unimodal Sampling (LUS) in [38], so named because it
was designed to deplete unimodal optima, although it has been found to work
well for harder optimization problems. The LUS method is used here as the
overlaying meta-optimizer for finding the behavioural parameters of PSO and
its variants in an offline manner. LUS is often able to locate the optimum in
comparatively few iterations, which is required due to the computational time
needed for each iteration in meta-optimization.

For the sampling done by the LUS method, the new potential solution ~y ∈
Rn is chosen randomly from the neighbourhood of the current solution ~x by
adding a random vector ~a. When the LUS method is used for meta-optimization
these vectors represent different choices of behavioural parameters for the PSO
method, meaning that the dimensionality is n = 4, and ~x = [S, ω, φp, φg] with
S being the number of particles in the PSO swarm, and ω, φp, and φg are the
behavioural parameters from Eq.(3). The potential new choice of behavioural
parameters ~y is hence found from the current choice ~x as follows:

~y = ~x+ ~a

where the vector ~a is picked randomly and uniformly from the hypercube bounded
by ±~d, that is:

~a ∼ U
(
−~d, ~d

)
with ~d being the current search-range, initially chosen as the full range of the
search-space and decreased during an optimization run as described next. The
search-space in meta-optimization constitutes the valid choices of behavioural
parameters, and will be detailed later.

When a sample fails to improve the fitness, the search-range ~d is decreased
for all dimensions simultaneously by multiplying with a factor q for each failure
to improve the fitness:

~d← q · ~d
with the decrease factor q being defined as:

q = n/β
√

1/2 = 2−β/n (6)

Here 0 < β < 1 causes slower decrease of the search-range, and β > 1 causes
more rapid decrease. Note that applying this n times yields a search-range
reduction of qn = 1/2β , and for β = 1 this would mean a halving of the search-
range for all dimensions. For the experiments in this paper, a value of β = 1/3
is used as it has been found to yield good results on a broad range of problems.
The algorithm for the LUS optimization method is shown in figure 2.

5 Meta-Optimization

There are a number of parameters controlling the behaviour and efficacy of the
PSO method. To properly compare the performance of the PSO method to that

9

• Initialize ~x to a random solution in the search-space:

~x ∼ U
(
~blo,~bup

)
Where ~blo and ~bup are the search-space boundaries.

• Set the initial sampling range ~d to cover the entire search-space:

~d← ~bup −~blo

• Until a termination criterion is met, repeat the following:

– Pick a random vector ~a ∼ U
(
−~d, ~d

)
– Add this to the current solution ~x, to create the new potential solu-

tion ~y:
~y = ~x+ ~a

– If (f(~y) < f(~x)) then update the solution:

~x← ~y

Otherwise decrease the search-range by multiplication with the factor
q from Eq.(6):

~d← q · ~d

Note that f : Rn → R is the meta-fitness algorithm from figure 5.

Figure 2: LUS algorithm.

of the MOL method, it is essential that good and fair choices of behavioural pa-
rameters can be made for both of these optimization methods. While a number
of studies have been presented in the literature for properly choosing behavioural
parameters for the PSO method, they have been disputed in the introductory
review above. Furthermore, no such studies exist for choosing behavioural pa-
rameters for the MOL method, so another technique is needed for choosing
well-performing behavioural parameters for both the PSO and MOL methods.

The problem of finding the best choice of behavioural parameters for a given
optimization method can be considered as an optimization problem in its own
right. This is called Meta-Optimization. In other words, the idea is to have an
optimization method act as an overlaying meta-optimizer, trying to find the best
performing behavioural parameters for another optimization method, which in
turn is used to optimize one or more ANN problems. The overall concept is
depicted in figure 3 for the PSO method having its behavioural parameters

10

Meta-Optimizer (LUS)

Optimizer (PSO)

ANN Cancer Problem

ANN Card Problem

+

Figure 3: The concept of meta-optimization. The LUS optimization method
is used as an overlaid meta-optimizer for finding good behavioural parameters
of the PSO method, when it is in turn used to optimize the ANN weights for
both the Cancer and Card problems. The same concept is used to find the
behavioural parameters of the MOL method.

tuned to perform well on both the ANN Cancer and Card problems. This
concept also works for tuning the behavioural parameters of the MOL method,
and can also be used with any number of ANN problems.

5.1 Meta Fitness Measure

The crux of automatically finding good behavioural parameters for an opti-
mization method, is to define an appropriate fitness measure that can be made
the subject of meta-optimization. The fitness measure must reflect how the
optimization method is ultimately to be used, but at the same time allow for
efficient meta-optimization, and also be simple to describe and implement.

A typical way of performing optimization with the PSO method is to let it
run for some predetermined number of iterations. This means the performance
of the PSO method and a given choice of behavioural parameters, can be rated in
terms of the ANN fitness that can be obtained within this number of iterations.
Since the PSO method is stochastic by nature, it will be likely that it gives a
different result for each optimization run, and a simple way of lessening this
stochastic noise is to perform a number of optimization runs in succession, and
use the average of the fitnesses obtained to guide the meta-optimization.

5.2 Tuning For Multiple Problems

Another important factor of using the PSO method in practice, is that its perfor-
mance must generalize well to other optimization problems. Some optimization

11

methods can have their behavioural parameters tuned to perform well on a sin-
gle optimization problem, and the parameters seem to automatically work well
for other problems [21]. However, from the experiments below it will be clear
that this is not the case with the PSO method, as its behavioural parameters
appear to easily get overtuned and only perform well on the one problem they
were tuned for. Some means of tuning the PSO parameters to perform well on
multiple problems is therefore needed, in an attempt to make the performance
generalize to other problems as well. This means that meta-optimizing the
PSO parameters now becomes a multi-objective optimization problem, which
introduces new challenges.

The difficulty with optimizing multiple objectives simultaneously is that the
objectives may be conflicting or contradictory. So when the meta-optimizer
improves the PSO performance on one problem, it may worsen its performance
on another. A number of optimization methods have been introduced to deal
with multi-objective optimization problems in general, see e.g. [39] [40] [41] [42].
But these techniques are not suited as the overlaid meta-optimizer because they
are more complicated than what is desired.

Instead, one of the simplest approaches to multi-objective optimization is
to combine the individual objectives into a single fitness measure, by weighting
their sum. It is not clear who is the original author of this technique, but it is
mentioned in [43] as having been popular for many years. The weighted-sum
approach also works well for meta-optimization, as it is merely the overall per-
formance that matters. So instead of tuning the PSO parameters to work well
on just a single ANN problem, each meta-fitness evaluation now consists of eval-
uating the performance of the PSO method with a given choice of behavioural
parameters on two or more ANN problems, and adding the results to create
the overall fitness measure used to guide the meta-optimizer. This also has the
advantage of being supported directly by the time-saving technique described
next.

5.3 Pre-Emptive Fitness Evaluation

The algorithm for computing the fitness of the PSO method with a given choice
of behavioural parameters, is now to perform optimization runs with PSO on
multiple problems, and each of these is repeated a number of times to de-
crease the influence of stochastic noise. This means each iteration of the meta-
optimizer is computationally expensive.

A simple way of saving computational time in meta-optimization is to pre-
emptively abort the meta-fitness evaluation once the meta-fitness becomes worse
than that needed for the overlaying meta-optimizer to accept the new parame-
ters as an improvement, and the meta-fitness is known not to get better for the
rest of the evaluation. This technique is termed Pre-Emptive Fitness Evalua-
tion and has been used by researchers for decades in other contexts, although
its original author is difficult to establish as the technique is seldom mentioned
in the literature.

12

Greedy optimization methods are generally compatible with pre-emptive fit-
ness evaluation because they only move their optimizing agents in the case of
strict improvement to the fitness. Take for example the LUS method from above,
which works by choosing a random point in the vicinity of the current position,
and moving to that position only in the case of improvement to the fitness.
Therefore the fitness evaluation of the new position can be aborted as soon as it
becomes known that it is actually worse than that of the current position; and
provided it will not improve later during computation of the fitness.

Pre-emptive fitness evaluation is also directly applicable to fitness func-
tions that are iteratively computed, and where the overhead of monitoring the
progress and consequently aborting the fitness evaluation, does not cancel out
the gain in computational time arising from only evaluating a part of the fitness
function.

The evaluation order of the individual ANN problems can be sorted to fur-
ther increase time-savings. The ANN problems are sorted according to their
last contributions to the overall meta-fitness. This means the ANN problems
which appear most likely to cause the meta-fitness evaluation to be aborted will
be optimized first.

5.4 Meta Fitness Algorithm

To employ pre-emptive fitness evaluation when meta-optimizing behavioural
parameters of the PSO method, the fitness measure must be ensured to be
non-decreasing and hence only able to grow worse. Since the global minimum
for the underlying ANN fitness measure is zero, the best performance of the
PSO method when optimizing ANN weights is also a meta-fitness value of zero.
The PSO method is used on a number of different ANN problems, and allowed
a number of repeated optimization runs on each of these to lessen the effect
of stochastic noise, but since the fitness result of each of these runs is non-
negative, then the overall fitness sum is non-decreasing and hence suitable for
meta-optimization using pre-emptive fitness evaluation.

To use pre-emptive fitness evaluation with other optimization problems than
the ANN problems here, it is again important that the fitness is non-negative
so the summation is ensured to be non-decreasing. For all practical purposes
one should be able to define a fitness boundary for all relevant optimization
problems. In the rare case where this is not possible because the fitness boundary
is virtually unknown, one can still employ pre-emptive fitness evaluation. This
is done by first guessing the boundary, and then adjusting both it and the
fitness stored in the overlaid meta-optimizer, whenever it becomes known that
the actual boundary is in fact lower. However, since this is not needed here, it
has been omitted in the algorithm descriptions to give a simpler presentation.

The overall algorithm for using the LUS method as the overlaid meta-
optimizer to find the behavioural parameters of the PSO method is shown in
figure 4, consisting of initializing LUS with a random choice of PSO parame-
ters and compute the associated fitness using the algorithm in figure 5. Then
a number of LUS iterations are performed trying to find the optimal choice of

13

PSO parameters. Again, the fitness of a given choice of PSO parameters is com-
puted by the algorithm in figure 5, where the pre-emptive fitness limit F is the
limit beyond which the fitness evaluation can be aborted. This fitness limit is
passed as an argument by the overlaying LUS meta-optimizer, so that F is the
fitness of the currently best known choice of parameters for the PSO method,
corresponding to f(~x) in the LUS algorithm from figure 2. For the initial fitness
computation using this algorithm, the pre-emptive fitness limit F is merely set
to inifinity.

• Initialize the LUS meta-optimizer with a random choice of PSO be-
havioural parameters.

• Perform a number of iterations of the LUS meta-optimizer, where each
iteration concists of the following:

– Determine a new choice of PSO parameters from the previously best
known parameters, according to the optimization methodology of the
LUS meta-optimizer.

– Compute a performance measure for how good these new potential
PSO parameters fare when PSO is used to optimize a number of ANN
problems. The algorithm for computing this meta-fitness measure is
shown in figure 5.

– Keep the new PSO parameters if the meta-fitness is an improvement,
otherwise discard the parameters.

Figure 4: Overall algorithm for performing meta-optimization of PSO be-
havioural parameters.

Depending on the experimental settings, the time-saving resulting from the
use of pre-emptive fitness evaluation in meta-optimization, ranges from approx-
imately 50% to 85%, and is therefore a significant contribution to the success
of this approach to meta-optimization.

6 Experimental Results

This section presents the experimental results of optimizing ANN weights us-
ing the PSO and MOL methods with meta-optimized behavioural parameters.
The results show that both methods are susceptible to overtuning of their be-
havioural parameters, so the performance increase that is achieved on the ANN
problems for which the behavioural parameters are tuned, does not generalize
that well to the remainder of the ANN problems. The experiments do show
however, that the simpler MOL method is a slight improvement over the orig-

14

• Initialize the problem-counter: i← 1, and the fitness-sum: s← 0

• While (i ≤M) and (s < F), do:

– Initialize the run-counter: j ← 1

– While (j ≤ L) and (s < F), do:

∗ Perform an optimization run on the i’th ANN problem using the
PSO method with the given choice of behavioural parameters.

∗ Add the best fitness obtained in the run (call it f̄) to the fitness-
sum: s← s+ f̄

∗ Increment the run-counter: j ← j + 1

– Increment the problem-counter: i← i+ 1

• Sort the ANN problems descendingly according to their contributions to
the overall fitness sum s. This will allow earlier pre-emptive abortion of
the fitness evaluation next time.

• Return s to the overlaying meta-optimizer as the fitness value of the PSO
method with the given choice of behavioural parameters.

Figure 5: Algorithm for performing a single fitness evaluation in meta-
optimization, for rating the performance of the PSO optimization method with
a given choice of behavioural parameters.

15

inal PSO method from which it was derived, at least on the ANN problems
tested here.

6.1 Datasets

Five ANN datasets are used in this study, and they are all taken from the
Proben1 library [33]. These particular datasets are chosen because they give
acceptable MSE results within a reasonable number of optimization iterations.
All five datasets are classification problems and their specifications are detailed
in table 1. The Cancer dataset diagnoses breast tumour as being either be-
nign or malignant from various microscopic measurements. The Card dataset
determines whether a credit-card can be granted an applicant by a financial
institute according to various data of that applicant. The Gene dataset detects
intron/exon boundaries in genetic sequences from a window of 60 DNA sequence
elements. The Soybean dataset recognizes diseases in soybeans according to var-
ious measurements on the soybean and the plant itself. The Thyroid dataset
diagnoses performance of the thyroid from patient query data.

Problem Inputs Classes Weights Data Pairs

Cancer 9 2 50 699
Card 51 2 218 690
Gene 120 3 499 3175
Soybean 35 19 427 683
Thyroid 21 3 103 7200

Table 1: ANN dataset specifications, giving for each dataset the number of
inputs, the number of possible classifications, the total number of ANN weights
and bias-values when using an ANN with a single hidden layer having 4 nodes,
and the number of input-output pairs in the dataset.

6.2 ANN Initialization & Boundaries

All ANN weights and bias-values are initially picked randomly and uniformly
from the range (−0.05, 0.05), which is common for classic BP and works well
for PSO also:

∀ i, j, k : wijk ∼ U(−0.05, 0.05), bij ∼ U(−0.05, 0.05)

Boundaries for the weights and bias-values are used to limit the search for
optima. These boundaries were chosen from experiments with several different
optimization methods, suggesting they are applicable in general. Although clas-
sic BP does not require such boundaries, the values chosen do not impair the
performance for the class of problems considered here. The boundaries are as
follows:

∀ i, j, k : wijk ∈ [−7, 7], bij ∈ [−7, 7]

When an optimizing agent steps outside the boundaries of the search-space, it
will be moved back to the boundary value.

16

6.3 Optimization Runs And Iterations

To lessen the effect of stochastic variation a number of optimization runs must
be performed and their results averaged, so as to give a more truthful measure
of the performance that can be expected from a single optimization run. But as
some of the ANN problems are very large and time-consuming 10 optimization
runs of each ANN problem will have to suffice. For each ANN optimization
run a number of iterations are executed, equal to 20 times the total number
of weights and bias-values for the problem in question. So for instance, as the
ANN Cancer problem can be seen from table 1 to have 50 weights, it means
1000 iterations are performed. An iteration is here taken to mean a single fitness
evaluation of the MSE measure.

6.4 Meta-Optimization Settings

The experimental settings for meta-optimization with ANN problems are as
follows. Six meta-optimization runs are conducted with the LUS method as
the overlaying meta-optimizer, trying to find the best performing behavioural
parameters of the PSO method. Each meta-optimization run has a number of
iterations which equals 20 times the number of parameters to be optimized. So
for the PSO method which has four behavioural parameters, 80 iterations will
be performed for each meta-optimization run of the overlaying LUS method.
The PSO method is in turn made to perform ten optimization runs on each of
a number of ANN problems. First these experiments are conducted with the
ANN Cancer problem, and then with both the ANN Cancer and Card problems.
These problems are used because they are the fastest to compute. These meta-
optimization settings are also used for finding the behavioural parameters of the
MOL method.

It takes roughly the same amount of time to perform these meta-optimization
experiments on the PSO and MOL methods. In particular, when tuning for just
the ANN Cancer problem it takes less than 6 hours1 of computation time to
tune the PSO or MOL parameters. When tuning for both the ANN Cancer
and Card problems it takes around 136 hours2 to tune either the PSO or MOL
parameters. These measures come from running the experiments on an Intel
Pentium M 1.5 GHz laptop computer using an implementation in the ANSI C
programming language. It may seem strange that the time usage is similar for
tuning both the PSO and MOL methods, when less iterations are performed
in meta-optimizing the MOL method, due to it having one less behavioural
parameter than the PSO method. The reason is the use of pre-emptive fitness
evaluation which tries to limit the number of optimization runs repeated by the
PSO and MOL methods. When the time usage is similar it therefore indicates
the overlaid meta-optimizer had more success tuning the behavioural parameters

1This was because of a slow implementation of the ANN in the NeuralOps source-code
library. Using a faster implementation on the same computer brought down the computation
time to less than 15 minutes.

2Around 3 hours using the new implementation.

17

of the MOL method than it had with the PSO method, because the LUS meta-
optimizer was unable to abort the meta-fitness evaluations as early for the MOL
method as it was for the PSO method. This suggests the MOL may even perform
better than the PSO method, which is indeed confirmed below.

6.5 Meta-Optimized PSO Parameters

The boundaries for the PSO parameters are chosen to be broader than usual, see
e.g., the extensive survey and manually conducted experiments in [7]. The PSO
parameter boundaries in these meta-optimization experiments are as follows:

S ∈ {1, · · · , 200}, ω ∈ [−2, 2], φp ∈ [−4, 4], φg ∈ [−4, 4]

Where S is the swarm-size, and ω, φp, and φg are the parameters of the velocity
update in Eq.(3). Using these parameter boundaries and the above settings for
meta-optimization, the best performing parameters found for the PSO method,
when used to optimize just the ANN Cancer problem, are as follows:

S = 138, ω = 0.055290, φp = 0.112175, φg = 1.749212 (7)

Another choice of PSO parameters that was discovered during meta-optimization
and performed almost as well, is the following:

S = 189, ω = 0.027790, φp = −1.630695, φg = 1.505282

Tuning the PSO parameters to perform well on both the ANN Cancer and Card
problems instead, resulted in the following PSO parameters:

S = 148, ω = −0.046644, φp = 2.882152, φg = 1.857463 (8)

And another choice of PSO parameters resulting from this tuning on two ANN
problems and which performed almost as well, are the following:

S = 63, ω = 0.549836, φp = 1.957720, φg = 1.156836

Comparing these four sets of behavioural parameters for the PSO method,
to the advice given after the extensive and manually conducted experiments by
Carlisle and Dozier [7], it is clear that meta-optimization discovers some unusual
parameter choices. First is the swarm-size which is commonly recommended to
be around 30 particles [7] [6], where the meta-optimized parameters are fre-
quently closer to 150. Then is the inertia weight ω which is close to zero for all
but one of the parameter choices listed above. This would suggest the recur-
rence of a particle’s velocity could be eliminated altogether, and is suggested as
a topic for future research. There does not seem to be a consensus in what con-
stitutes a good choice of the weight φp, which is indeed also the part of the PSO
formula that is sought to be eliminated in the MOL method. But the weight φg
appears to yield best performance when taken from the range φg ∈ [1, 2]. It is
however suggested in [7] that φp = 2.8 and φg = 1.3, or at least that their sum

18

is φp+φg = 4.1. But neither of these conditions are satisfied in the PSO param-
eters discovered through meta-optimization, perhaps with exception of Eq.(8)
which approximates this choice of weights; but then has an inertia weight of
nearly zero. A different recommendation for PSO parameters is found in [44],
where the swarm-size is suggested to be 50, φp = φg = 1.49445, and the inertia
weight ω = 0.729, which are also far from the parameters discovered through
meta-optimization.

Furthermore, the above parameters that were found using meta-optimization,
generally do not satisfy the conditions derived through mathematical analysis
[3] [4], which was supposed to determine the parameters that would yield good
contractive behaviour of the swarm’s particles, and hence believed to yield good
optimization performance. This confirms that the mathematical analyses of
PSO parameters were oversimplified and based on the seemingly ill-founded
notion that swarm contraction and optimization performance are tightly con-
nected.

Since there is no consensus view amongst researchers who have experimented
with manual selection of PSO parameters, and since the mathematical analysis
is lacking, the behavioural parameters that have been found by way of meta-
optimization are considered more accurate and reliable in giving good perfor-
mance for the PSO method, on the problems for which the parameters were
tuned.

6.6 Meta-Optimized MOL Parameters

Although it is possible for meta-optimization to uncover the MOL simplification
by finding a set of PSO parameters having φp = 0, it appears from the above
that the influence of φp on the PSO performance is somewhat irregular, so it
is perhaps unlikely that φp = 0 should be discovered as an optimal choice for
the PSO parameters, even though it may perfectly well be so. It therefore still
makes sense to manually eliminate the φp parameter from the PSO method as
done in the MOL method, and see if this simplified variant can be tuned to
perform well.

The question then arises of which behavioural parameters to use for the MOL
method. But since the method has not received much attention in the literature,
there does not exist any guidance for selecting its behavioural parameters. The
study on the “social only” PSO by Kennedy [37] appears to merely use the same
behavioural parameters as for the PSO. The most sensible course of action is
therefore to use meta-optimization to discover good MOL parameters.

The boundaries for the behavioural parameters of the MOL method are
chosen similarly to those for the PSO method, because the intrinsic meaning
of the parameters are probably related somewhat to their meaning in the PSO
method. The boundaries for the MOL method are thus:

S ∈ {1, · · · , 200}, ω ∈ [−2, 2], φg ∈ [−4, 4]

Using these boundaries to meta-optimize the behavioural parameters of the
MOL method, when it is in turn used to optimize the ANN Cancer problem,

19

yields the following MOL parameters:

S = 74, ω = −0.265360, φg = 1.612467 (9)

Another choice of MOL parameters performing almost as well, is the following:

S = 55, ω = −0.250734, φg = 2.119994

When instead tuning the MOL parameters to perform well on both the ANN
Cancer and Card problems, the best found parameters are as follows:

S = 153, ω = −0.289623, φg = 1.494742 (10)

And another choice of MOL parameters with almost equal performance, is the
following:

S = 144, ω = −0.172554, φg = 2.497806

The meta-optimized MOL parameters show clear tendencies of what causes
good performance for that method. Namely an inertia weight around ω ' −0.25,
and the attraction weight to the swarm’s best known position must be in the
range φg ∈ [1.5, 2.5], with the optimal MOL performance occurring around
φg ' 1.5. The number of particles S that yields a good performance on the ANN
Cancer problem is well below 100, yet when the MOL method must perform
well on both the ANN Cancer and Card problems, it appears the swarm-size
must be around 150. These parameter choices are far from those commonly
suggested for the original PSO method [7] [44], and without the simple and
efficient technique of meta-optimization presented here, it would have been a
laborious task to have to manually find the MOL parameters giving such good
performance.

6.7 Results of ANN Weight Optimization

Table 2 shows the results of optimizing ANN weights using the PSO and MOL
methods with the behavioural parameters from Eqs.(7) and (9) respectively,
which were tuned to perform well on the ANN Cancer problem. Both methods
approach the MSE performance of the classic BP method on this problem, but
not on the remainder of the ANN problems for which the PSO and MOL pa-
rameters were not specifically tuned. This suggests the behavioural parameters
are overtuned to the ANN Cancer problem, and demonstrates the necessity of
tuning the parameters with regard to multiple ANN problems, so as to make
the performance generalize better.

The behavioural parameters from Eqs.(8) and (10) were tuned for both the
ANN Cancer and Card problems, and using these when optimizing the weights of
all the ANN problems gives the results in table 3. The performance has worsened
slightly on the ANN Cancer problem compared to table 2, where the parameters
were tuned specifically for just that one problem. But the performance on the
ANN Card problem has improved, especially for the MOL method which now
approaches the performance of the classic BP method. While performance for

20

Problem MSE CLS

P
S
O

Cancer 0.043 (0.007) 0.041 (0.005)
Card 0.153 (0.021) 0.185 (0.026)
Gene 0.188 (0.006) 0.442 (0.021)
Soybean 0.048 (1.9e-4) 0.858 (0.026)
Thyroid 0.047 (5.2e-4) 0.074 (1.4e-17)

M
O

L

Cancer 0.046 (0.006) 0.042 (0.004)
Card 0.147 (0.015) 0.173 (0.025)
Gene 0.187 (0.007) 0.447 (0.023)
Soybean 0.048 (8.4e-5) 0.850 (0.045)
Thyroid 0.047 (4.0e-4) 0.074 (1.4e-17)

B
P

Cancer 0.035 (0.004) 0.036 (0.001)
Card 0.108 (0.002) 0.142 (0.003)
Gene 0.073 (0.004) 0.136 (0.010)
Soybean 0.030 (2.3e-4) 0.477 (0.022)
Thyroid 0.047 (3.8e-5) 0.074 (1.4e-17)

Table 2: PSO and MOL optimization of ANN weights. The behavioural pa-
rameters have been tuned for just the ANN Cancer problem. Table shows the
average best MSE and corresponding CLS obtained over 10 runs. Numbers in
parentheses are the standard deviations.

the PSO and MOL methods have also improved somewhat on the ANN Gene
problem for which their parameters were not specifically tuned, the performance
is far from that of the BP method. Performance with regard to the MSE fitness
measure is almost unchanged on the ANN Soybean and Thyroid problems.

Regarding the CLS fitness measure that is computed by using the ANN
weights that were optimized for the MSE measure, the same performance ten-
dencies are evident, only on a greater scale. Again the CLS performance im-
proves on the ANN problems for which the PSO and MOL parameters are tuned,
but the CLS performance on the Gene and Soybean problems are far from the
performance of the classic BP method, although they do improve somewhat
when the PSO and MOL parameters are tuned for more than just one ANN
problem.

It can be concluded from these experiments that both the PSO and MOL
methods are susceptible to overtuning, as parameters that are tuned to perform
well on one or even two ANN problems, do not necessarily generalize well to
other ANN problems. Future research must seek a way to alleviate this, per-
haps by making meta-optimization for multiple problems even more efficient.
However, the MOL method does perform slightly better overall than the PSO
method on these ANN problems, and the topic of this study is therefore found
to be viable, namely that even the basic PSO method does offer room for sim-
plification.

Figures 6, 7, 8, 9 and 10 show the averaged fitness traces for the optimization
runs that led to the results in table 3. It can be seen from these fitness traces,
that the classic BP method is generally more rapid than the PSO and MOL

21

Problem MSE CLS

P
S
O

Cancer 0.051 (0.008) 0.046 (0.008)
Card 0.143 (0.011) 0.170 (0.019)
Gene 0.183 (0.004) 0.436 (0.016)
Soybean 0.048 (1.4e-4) 0.844 (0.037)
Thyroid 0.047 (2.5e-4) 0.074 (1.4e-17)

M
O

L

Cancer 0.059 (0.013) 0.056 (0.015)
Card 0.117 (0.006) 0.145 (0.010)
Gene 0.174 (0.005) 0.405 (0.011)
Soybean 0.047 (4.9e-4) 0.770 (0.047)
Thyroid 0.047 (2.1e-4) 0.074 (1.4e-17)

B
P

Cancer 0.035 (0.004) 0.036 (0.001)
Card 0.108 (0.002) 0.142 (0.003)
Gene 0.073 (0.004) 0.136 (0.010)
Soybean 0.030 (2.3e-4) 0.477 (0.022)
Thyroid 0.047 (3.8e-5) 0.074 (1.4e-17)

Table 3: PSO and MOL optimization of ANN weights. The behavioural pa-
rameters have been tuned for both the ANN Cancer and Card problems. Table
shows the average best MSE and corresponding CLS obtained over 10 runs.
Numbers in parentheses are the standard deviations.

methods in approaching the optimum of these ANN problems. The PSO and
MOL methods do sometimes have an advantage though, for example midways
during optimization of the ANN Cancer problem where they outperform the
BP method for a while. But the troubling tendencies of overtuning that were
demonstrated above are also prevalent in these fitness traces, as the PSO and
MOL methods have a performance comparable to that of the BP method on
the ANN problems for which their behavioural parameters were tuned, but this
does not generalize to the problems for which the parameters were not tuned.
However, the simpler MOL method also appears to be a slight improvement on
the PSO method from looking at these fitness traces.

6.8 Comparison To Differential Evolution

The advantage of using the PSO or MOL method over the classic BP method
in general, is that the gradient is not required by the PSO and MOL methods.
This makes it easier to devise new mathematical models requiring optimization,
because the gradient is typically laborious to derive.

Another optimization method which also does not rely on the gradient is
known as Differential Evolution (DE) and was originally introduced by Storn
and Price [45]. The DE method had its behavioural parameters tuned to perform
well on the ANN Cancer problem by us [21]. Since the experimental settings
were exactly the same as those used in this study, it is possible to compare the
performance of the DE method with that of the PSO and MOL methods.

The results of using the DE method to optimize ANN weights are reprinted
from [21] in table 4, and should be compared to the results of the PSO, MOL, and

22

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 100 200 300 400 500 600 700 800 900 1000

F
it

ne
ss

(M
SE

)

Iteration

BP
PSO

MOL

Figure 6: Cancer-problem fitness trace. Plot shows the average fitness obtained
at each iteration of the 10 optimization runs. Both PSO and MOL parameters
are tuned for the Cancer and Card problems. Note how MOL leads over PSO
until around iteration 160, after which MOL is outperformed by PSO, which also
outperforms the BP until all three methods have somewhat similar performance
towards the end, with the BP winning slightly.

23

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

F
it

ne
ss

(M
SE

)

Iteration

BP
PSO

MOL

Figure 7: Card-problem fitness trace. Plot shows the average fitness obtained at
each iteration of the 10 optimization runs. Both PSO and MOL parameters are
tuned for the Cancer and Card problems. Note how MOL performs significantly
better than PSO from around iteration 1100. Both methods are outperformed
by BP from around iteration 600 though.

24

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
it

ne
ss

(M
SE

)

Iteration

BP
PSO

MOL

Figure 8: Gene-problem fitness trace. Plot shows the average fitness obtained
at each iteration of the 10 optimization runs. Both PSO and MOL parameters
are tuned for the Cancer and Card problems. Note how MOL already early
outperforms PSO. Although BP performs vastly better on this Gene problem,
perhaps because the PSO and MOL parameters were not specifically tuned for
this problem.

25

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

F
it

ne
ss

(M
SE

)

Iteration

BP
PSO

MOL

Figure 9: Soybean-problem fitness trace. Plot shows the average fitness obtained
at each iteration of the 10 optimization runs. Both PSO and MOL parameters
are tuned for the Cancer and Card problems. Note how PSO and MOL have
somewhat similar performance, although MOL slightly outperforms PSO from
around iteration 1000. But BP performs vastly better on this Soybean problem,
perhaps because the PSO and MOL parameters were not specifically tuned for
this problem.

26

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500

F
it

ne
ss

(M
SE

)

Iteration

BP
PSO

MOL

Figure 10: Thyroid-problem fitness trace. Plot shows the average fitness ob-
tained at each iteration of the 10 optimization runs. Both PSO and MOL pa-
rameters are tuned for the Cancer and Card problems. Note how PSO, MOL,
and BP have similar performance from around a third way into the optimization
run. But BP is more rapid in approaching the optimum, while PSO and MOL
are clearly slower than BP, but with PSO being slightly better than MOL.

27

Problem MSE CLS

D
E

Cancer 0.033 (0.004) 0.033 (0.003)
Card 0.091 (0.005) 0.118 (0.008)
Gene 0.123 (0.009) 0.223 (0.039)
Soybean 0.038 (0.001) 0.576 (0.058)
Thyroid 0.042 (0.001) 0.074 (0.001)

Table 4: DE optimization of ANN weights. The behavioural parameters have
been tuned for just the ANN Cancer problem. Table shows the average best
MSE and corresponding CLS obtained over 10 runs. Numbers in parentheses
are the standard deviations. These results are reprinted from [21].

BP methods from table 3. The PSO and MOL methods had their behavioural
parameters tuned to perform well on both the ANN Cancer and Card problems,
while the DE method had its parameters tuned for just the Cancer problem. It is
obvious from comparing these tables that the DE method performs much better
on these ANN problems, and that it also generalizes well to ANN problems for
which it was not specifically tuned. The DE method does not only approach
the performance of the classic BP method, it often exceeds it. The DE method
therefore appears to be preferable over the PSO and MOL methods in optimizing
ANN problems in general.

7 Conclusion

This was a study on simplifying the PSO method without impairing its perfor-
mance on a number of ANN weight optimization problems. To achieve this a
technique for tuning the behavioural parameters of an optimizer was presented,
in which an overlaid meta-optimizer was used. This meta-optimization tech-
nique was able to tune the behavioural parameters to perform well on several
ANN problems simultaneously, in an attempt to make the performance increase
generalize to ANN problems for which the behavioural parameters were not
specifically tuned. This was necessary because the PSO method and its sim-
plification, the MOL method, both appear highly susceptible to overtuning of
their behavioural parameters, if just a single ANN problem was used in meta-
optimization. Two ANN problems were therefore used during meta-optimization
of PSO and MOL parameters, and while more ANN problems would have been
desirable, it would have meant an impractical increase in computation time.

Even with these limitations of meta-optimization, it was still found that the
simplified MOL method was a viable variant, as it had performance comparable
to that of the PSO method from which it was derived; and provided the be-
havioural parameters were properly tuned through the use of meta-optimization.
In fact, the MOL method sometimes even exceeded the original PSO method
on some of these ANN problems. However, both the PSO and MOL methods
could not have their behavioural parameters tuned so as to perform on par
with the classic gradient-based BP method on all these ANN problems. This

28

might be possible as computational power increases in the future, and meta-
optimization can be carried out on all five ANN problems simultaneously. The
meta-optimization technique presented here readily supports this.

Additionally the experimental results of the PSO and MOL methods were
compared to the results of Differential Evolution (DE), from which it can be
concluded that the DE method is probably a better choice for optimizing ANN
problems, not only in terms of performance but also in terms of how well the
DE parameters generalize to ANN problems for which they were not specifically
tuned.

Source-Code

Source-code implemented in the ANSI C programming language and used in
the experiments in this paper, can be found in the SwarmOps library on the
internet address: http://www.Hvass-Labs.org/

References

[1] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of IEEE International Conference on Neural Networks, volume IV, pages
1942–1948, Perth, Australia, 1995.

[2] S. Haykin. Neural Networks: a comprehensive foundation. Prentice Hall,
2nd edition, 1999.

[3] F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD the-
sis, University of Pretoria, Faculty of Natural and Agricultural Science,
November 2001.

[4] I.C. Trelea. The particle swarm optimization algorithm: convergence anal-
ysis and parameter selection. Information Processing Letters, 85:317 – 325,
2003.

[5] Y. Shi and R.C. Eberhart. Parameter selection in particle swarm optimiza-
tion. In Proceedings of Evolutionary Programming VII (EP98), pages 591
– 600, 1998.

[6] R.C. Eberhart and Y. Shi. Comparing inertia weights and constriction
factors in particle swarm optimization. Proceedings of the 2000 Congress
on Evolutionary Computation, 1:84 – 88, 2000.

[7] A. Carlisle and G. Dozier. An off-the-shelf PSO. In Proceedings of the
Particle Swarm Optimization Workshop, pages 1 – 6, 2001.

[8] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and
convergence in a multidimensional complex space. IEEE Transactions on
Evolutionary Computation, 6:58 – 73, 2002.

29

http://www.Hvass-Labs.org/

[9] M. Løvbjerg and T. Krink. Extending particle swarm optimisers with self-
organized criticality. In Proceedings of the Fourth Congress on Evolutionary
Computation (CEC-2002), volume 2, pages 1588 – 1593, 2002.

[10] J. Riget and J.S. Vesterstrøm. A diversity-guided particle swarm optimizer
– the ARPSO. Technical Report 2002-02, Department of Computer Science,
University of Aarhus, 2002.

[11] M. Løvbjerg and T. Krink. The lifecycle model: combining particle swarm
optimisation, genetic algorithms and hillclimbers. In Proceedings of Parallel
Problem Solving from Nature VII (PPSN), pages 621 – 630, 2002.

[12] R.C. Eberhart and Y. Shi. Evolving artificial neural networks. In Proceed-
ings of International Conference on Neural Networks and Brain, pages PL5
– PL13, Beijing, China, 1998.

[13] H. Fan. A modification to particle swarm optimization algorithm. Engineer-
ing Computations: International Journal for Computer-Aided Engineering,
19:970–989, 2002.

[14] H-W. Ge, Y-C. Liang, and M. Marchese. A modified particle swarm
optimization-based dynamic recurrent neural network for identifying and
controlling nonlinear systems. Computers and Structures, 85(21-22):1611–
1622, 2007.

[15] R.E. Mercer and J.R. Sampson. Adaptive search using a reproductive meta-
plan. Kybernetes (The International Journal of Systems and Cybernetics),
7:215–228, 1978.

[16] J.J. Grefenstette. Optimization of control parameters for genetic algo-
rithms. IEEE Transactions Systems, Man, and Cybernetics, 16(1):122–128,
1986.

[17] T. Bäck. Parallel optimization of evolutionary algorithms. In Proceedings
of the International Conference on Evolutionary Computation. The Third
Conference on Parallel Problem Solving from Nature (PPSN), pages 418–
427, London, UK, 1994. Springer-Verlag.

[18] T. Bäck. Evolutionary Algorithms in Theory and Practice: evolution strate-
gies, evolutionary programming, genetic algorithms. Oxford University
Press, Oxford, UK, 1996.

[19] A.J. Keane. Genetic algorithm optimization in multi-peak problems: stud-
ies in convergence and robustness. Artificial Intelligence in Engineering,
9:75–83, 1995.

[20] M. Meissner, M. Schmuker, and G. Schneider. Optimized particle swarm
optimization (OPSO) and its application to artificial neural network train-
ing. BMC Bioinformatics, 7(125), 2006.

30

[21] M.E.H. Pedersen and A.J. Chipperfield. Tuning differential evolution for
artificial neural networks. Technical Report HL0803, Hvass Laboratories,
2008.

[22] K.E. Parsopoulos and M.N. Vrahatis. Recent approaches to global opti-
mization problems through particle swarm optimization. Natural Comput-
ing, 1:235–306, 2002.

[23] C.M. Bishop. Neural Networks For Pattern Recognition. Oxford University
Press, 1995.

[24] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2:303–314, 1989.

[25] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359–366, 1989.

[26] A.R. Barron. Universal approximation bounds for superpositions of a sig-
moidal function. IEEE Transactions on Information Theory, 39(3):930–
945, 1993.

[27] L.K. Hansen and P. Salamon. Neural network ensembles. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 12(10):993–1001,
1990.

[28] P.J. Werbos. Beyond Regression: new tools for prediction and analysis in
the behavioural sciences. PhD thesis, Harvard University, Cambridge, MA,
1974.

[29] P.J. Werbos. The Roots of Backpropagation: from ordered derivatives to
neural networks and political forecasting. Wiley-Interscience, 1994.

[30] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal rep-
resentations by error propagation. In Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, vol. 1: foundations, pages
318–362. MIT Press, 1986.

[31] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[32] M.D. Richard and R.P. Lippmann. Neural network classifiers estimate
bayesian a-posteriori probabilities. Neural Computation, 3(4):461–483,
1991.

[33] L. Prechelt. Proben1 – a set of neural network benchmark problems and
benchmarking rules. Technical Report 21/94, Faculty of Informatics, Uni-
versity of Karlsruhe, Germany, 1994.

[34] Y. Shi and R.C. Eberhart. A modified particle swarm optimizer. In Proceed-
ings of 1998 IEEE International Conference on Evolutionary Computation,
pages 69–73, Anchorage, AK, USA, 1998.

31

[35] R.C. Eberhart and Y. Shi. Comparing inertia weights and constriction
factors in particle swarm optimization. In Proceedings of the 2000 Congress
on Evolutionary Computation (CEC), pages 84–88, San Diego, CA, USA,
2000.

[36] M. Clerc. The swarm and the queen: towards a deterministic and adaptive
particle swarm optimization. In Proceedings of the Congress of Evolutionary
Computation, volume 3, pages 1951–1957, Washington D.C., USA, 1999.

[37] J. Kennedy. The particle swarm: social adaptation of knowledge. In Pro-
ceedings of the IEEE International Conference on Evolutionary Computa-
tion, pages 303–308, Indianapolis, USA, 1997.

[38] M.E.H. Pedersen and A.J. Chipperfield. Local unimodal sampling. Tech-
nical Report HL0801, Hvass Laboratories, 2008.

[39] D.E. Goldberg. Genetic Algorithms in Search Optimization and Machine
Learning. Addison-Wesley, 1989.

[40] J. Horn, N. Nafpliotis, and D.E. Goldberg. A niched pareto genetic algo-
rithm for multiobjective optimization. In Proceedings of the First IEEE
International Conference on Evolutionary Computation, volume 1, pages
82–87, New Jersey, USA, 1994.

[41] N. Srinivas and K. Deb. Multiobjective optimization using nondominated
sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248,
1994.

[42] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[43] C.M. Fonseca and P.J. Fleming. Multiobjective optimization. In T. Bäck,
D.B. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary Com-
putation, pages C4.5:1 – 9. IOP Publishing and Oxford University Press,
1997.

[44] R.C. Eberhart and Y. Shi. Particle swarm optimization: developments,
applications and resources. In Proceedings of the Congress on Evolutionary
Computation, volume 1, pages 81 – 86, 2001.

[45] R. Storn and K. Price. Differential evolution - a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of Global Opti-
mization, 11:341 – 359, 1997.

32

	Introduction
	Parameter Selection
	Mathematical Analysis
	Optimizer Variants
	Optimizer Simplification & Meta-Optimization

	Artificial Neural Networks
	Particle Swarm Optimization
	The Simplification

	Local Unimodal Sampling
	Meta-Optimization
	Meta Fitness Measure
	Tuning For Multiple Problems
	Pre-Emptive Fitness Evaluation
	Meta Fitness Algorithm

	Experimental Results
	Datasets
	ANN Initialization & Boundaries
	Optimization Runs And Iterations
	Meta-Optimization Settings
	Meta-Optimized PSO Parameters
	Meta-Optimized MOL Parameters
	Results of ANN Weight Optimization
	Comparison To Differential Evolution

	Conclusion

