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 Although it has been almost ten years since the death of SOPHUS LIE, only a few 
people have been able to appreciate the grand program of research into which he invested 
the full measure of his powers of invention and inquiry in a cohesive, well-coordinated, 
and connected theory.  We shall choose not to consider the problems of integration 
completely, in order to consider just the theory of continuous groups.  Here, we shall also 
show that the theory of finite continuous groups at the time LIE’s death could now be 
regarded as essentially complete, but as for the theory of infinite groups (i.e., ones that 
depend upon more than a finite number of arbitrary parameters), LIE did not leave to us a 
summary treatise of the fundamentals of the theory, but only a scarce and fragmentary 
mention of some further general considerations that he also knew were hard to overcome 
in that field. 
 Be that as it may, as of this decade very few people have ventured into the field of 
infinite groups, while the theory of finite, continuous groups has taken on the appeal of 
an eminently brilliant concept and the attraction of a structure that is well-defined and 
complete by now, and can claim a veritable multitude of devotees. 
 However, while this host of researchers has left out almost all of the broader and 
more advanced problems, as they have endeavored, above all, to illustrate the theory of 
finite, continuous groups in its many geometric and analytical applications, almost to 
compensate, the much fewer devotees of the theory of infinite, continuous groups have 
confronted the more comprehensive and salient questions with a variety of expedients 
and with lofty viewpoints, so today it is in this field that we can observe the more 
significant progress in the theory of continuous groups. 
 Under these conditions, it will be very easy task for me to summarize the new results 
that have been obtained in theory of infinite groups; however, as far as finite continuous 
groups are concerned, I would not possibly presume that nothing from that vast body of 
research has escaped my attention.  Neither, in other respects, on a very different subject, 
is it legitimate for me to hope to be able to quickly and clearly reach a synthesis that 
might serve to compensate for the suspicion and probable deficiencies in the information.  

                                                
 (*) Report read to the Congress of the “Società Italiana per il progresso della scienze,” in Parma, 
September 1907.  
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Rather, I have sought to group together the latter research according to the affinity of the 
problems and results considered.  However, this affinity will often be so weak and formal 
that I must enumerate, instead of classify. 
 
 

GENERAL THEORY OF FINITE CONTINUOUS GROUPS 
 

 Considering the movement towards work of a general nature on the theory of finite, 
continuous groups, we also recall some of the research that was concerned with the 
formal, symbolic approach that Lie had given an entirely secondary status to in his 
constructions. 
 One should note that in a certain neighborhood of the identity transformation the 
transformations of a continuous group with r parameters can be regarded as having been 
obtained by the infinite iteration of certain ∞r−1 infinitesimal transformations that, when 
represented in the manner of LIE by means of linear differential operators, give rise to a 
linear family that contains, along with any copies of its operators, their POISSON 
brackets, as well.  One can consider this family to be a system of numbers in r units that 
is closed with respect to all sums and to certain particular operations of multiplication 
that are non-commutative, but alternating.  In their studies of such systems of complex 
numbers, J. E. CAMPBELL (1), POINCARÉ (2), PASCAL (3), and ultimately 
HAUSSDORFF (4) sought to arrive at LIE’s fundamental theorems along different paths 
and with singular algorithmic virtuosity, and, above all, to attain the effective 
construction of r infinitesimal transformations of a group when the composition constants 
are fixed. 
 This analysis has clarified the operator and symbolic aspects of the theory of finite, 
continuous groups and made it more precise in its limits and its strengths.  Even so, the 
constructive viewpoint of the theory implied that this theory, for the most part, led to 
conclusions whose validity was exclusively formal, and otherwise led one to very nearly 
repeat the procedures of LIE and SCHUR, other than that of the synthetic view and those 
of geometric representations that might make the path bright and pleasant.  In substance, 
all of the aforementioned investigations seemed to be somewhat rooted in a generic 

                                                
 (1) “Proof of the third fundamental theorem in Lie’s theory of continuous groups,” Proc. math. Soc. 
London 33 (1901). This paper, which established CAMPBELL as the principal contributor along this line 
of research, was at the end of the decade that we occupy: “On a law of Combination of Operators,” Proc. 
math. Soc. London, 28 (1907); it is reproduced in Theory of Continuous Groups (Oxford, 1903), Chapter 
IV.  
 (2) “Sur les groupes continus,” Comptes rendus 128 (1899); in extenso in Memoirs presented to the 
Cambridge Philosophical Society on the occasion of the Jubilee of Sir G. G. Stokes, Cambridge, 1900. 
“Quelques remarques sur les groupes continus,”  Rend. del Circ. mat. di Palermo 15 (1901).  
 (3) “Sopra alcuna identità fra i simboli operativi rappresentanti trasformazioni infinitesime,” Rend. Ist. 
Lombardi (2) 34 (1901).  − “Sulla formola del prodotto di due trasformazioni finite e sulle dimostrazione 
dei cosidetto secondo teorema fondamentale di LIE nella teoria dei gruppi,” ibid., ibid. – “Sopra i numeri 
Bernoulliani,” ibid., 35 (1902). – “Del terzo teorema di LIE sull’esistenza di dara stuttura,” ibid., ibid. – 
“Altre ricerche sulla formola del prodotto di due trasformazioni finite, e sul gruppo parametrico di un 
dato,” ibid., ibid. – The preceding research is summarized in: “Resumé de quelques-uns de mes récents 
travaux sur la théorie des groupes de LIE,” Prac matematyczno fizycznych 14 (1903), Warsaw.  
 (4) “Die symbolische Exponentialformel in der Gruppentheorie,” Leipz. Berichte 58 (1906).  
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interest along the lines of the algorithmic theory of complex numbers with more units, as 
well as its specific importance with respect to the theory of continuous groups (1). 
 Truly, POINCARÉ, taking his symbolic developments as a starting point, arrived at 
noteworthy expressions, in the form of curvilinear integrals, for the infinitesimal 
transformations of the adjoint group and the parameter groups; however, it is easy to see 
how all of this resulted almost immediately by starting with the equations of definition 
that are assigned to LIE groups. 
 Nonetheless, the idea that originated in POINCARÉ’s paper in Circ. Mat. (1900) 
remains noteworthy.  He pointed out how upon starting with the composition constants, 
all of the constructions of a group could be achieved either across (traverso) the adjoint 
group or across the parameter group, and proposed to study and interpret the relations 
that give rise to a confrontation between the results of these two procedures.  However, as 
POINCARÉ himself warned, this path is, to be sure, hampered by major analytical 
difficulties, but he pressed onward, so that the results obtained would not differ 
substantially from conclusions that were known to KILLING, ENGEL, UMLAUFF, and 
CARTAN. 
 
 A second group of papers of a general nature come from all of the American 
mathematicians, such as TABER (2), NEWSON (3), SLOCUM (4), and RETTGER (5), 
and which were based in the observation of ENGEL that related to the possibility that a 
finite, continuous group might contain singular transformations that were not generated 
by means of the infinite repetition of an infinitesimal transformation.  The problem of the 
existence of such singular transformations and their effective study obviously falls with 
the purview of the theory of functions, in which the determination of the singularity 
depends, in substance, on its effect on the general solutions of the equations of definition 
of the group considered, such that the exceptional difficulty in this line of questioning 
should seem obvious, which indeed, at the present state of our knowledge, seems to be 
posed in a form that is too indeterminate and general.  Certainly, the work that we just 
now recalled sheds very little light on the problem, which has its roots in the fact that 
they provide no particular examples of groups that contain singular transformations that 
are substantial and uniform. 
 

                                                
 (1) Along with the aforementioned research, we must compare that of H. F. BAKER, who has applied 
the symbolic calculus of matrices to the deduction of some results in the theory of finite, continuous 
groups: “On the exponential theorem for a simple transitive continuous group, and the calculation of the 
finite equations from the constants of structure,” Proc. math. Soc. London 34 (1902). – “Further 
applications of matrix notation to integration problems,” ibid., ibid. – “On the calculation of the finite 
equations of a continuous group,” ibid., 35 (1903). – “Alternants and continuous groups,” ibid., (2) 3 
(1905).  The result of the penultimate paper has already been asserted by KLEIN.  
 (2) “On the singular transformations of groups generated by infinitesimal transformations,” Proc. Amer. 
Acad. 35 (1900); Bull. Amer. Math. Soc. (2) 6 (1900).   
 (3) “On singular transformations in real projective groups,” Bull. Amer. Soc. (2) 6 (1900).  
 (4) “Note on the chief theorem of Lie’s theory of continuous groups,” Proc. Amer. Acad. 35 (1900). – 
“Supplementary note on the chief theorem of Lie’s theory of finite continuous groups,” ibid., ibid. – “On 
the continuity of groups generated by infinitesimal transformations,” ibid., 36 (1900).  These last two notes 
are weak in content.  
 (5) “On Lie’s theory of continuous groups,” Amer. J. Math. 22 (1900).  This note contains some 
interesting considerations on the possibility of infinitesimal transformations with broken trajectories.  
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 Concerning the research on the new analogy between the substitution groups of finite 
order and finite continuous groups, MAILLET was led to ultimately study the 
decomposibility of finite continuous groups, that was already known on the basis of LIE’s 
fundamental theorems (1), and to generalize, in some sense, the concept of the 
composition series of a finite, continuous group (2). 
 BURNSIDE has proved that any discontinuous group of finite order g can be 
associated with a linear continuous group G, a consideration that facilitates the search for 
properties of discontinuous groups; in particular, the determination of what KLEIN called 
the degree of the normal problem that is connected with g, which is to find the minimum 
number of variables in which g is representable as a group of linear substitutions (3). 
 Finally, in the theory of substitution groups of finite order, BIANCHI has transported 
the concept of complementary group or factor group into the theory of finite, continuous 
groups, which illuminates the essential place that this concept occupies implicitly in the 
determination that was given by LIE of transitive groups of given composition (4). 
 In particular, he has established a new characteristic property of the derived group of 
a given group G, showing how it is the smallest invariant subgroup Σ of G for which the 
complementary group G / Σ is Abelian.  This happens in the same way that the 
commutator subgroup (5) coincides with the derived group (6) for a continuous group. 
 E. E. LEVI has obtained noteworthy results for transitive groups of a space of as 
many dimensions as one would desire, for which he succeeded, in particular, in reducing 
to 4 the maximum order of 2n + 1 that was given by LIE for the infinitesimal 
transformations of a generic group (7).  After another step, one will ascertain the 
observation of LIE concerning when this maximum order will be equal to 2. 
 
 In a final group, we can collect some research that is related to structure (8). 

                                                
 (1) “Sur la décomposition des groupes finis continus de transformations de Lie,” Comptes rendus 130 
(1900).   A group G is called decomposable if it contains two subgroups G1, G2 such that any 
transformation of G is equal to the product of one in G1 and one in G2 . – An example of a singular group in 
the degree of decomposability of its finite transformations was highlighted by FRATTINI: “Di un gruppo 
continuo di trasformazioni decomponibili finitamente,” Rend. della R. Acc. dei Lincei (5) 12 (1903).  
 (2) “Sur des suites remarquables de sous-groupes d’un groupe de substitutions ou de trasformations de 
Lie,” Comptes rendus 130 (1900). – “Sur de nouvelles analogies entre la théorie des groupes de 
substitutions et celle des groupes finis continus de transformations de Lie,” J. de Math. (5) 7 (1901). 
 (3) “On the continuous group that is defined by any given group of finite order,” Proc. math. Soc. 
London 23 (1898).  
 (4) “Sulla nozione di gruppo complementare e di gruppo derivato nella teoria dei gruppi finiti di 
transformazioni,” Rend. dell’Acc. dei Lincei (5) 12 (1903).   
 (5) This is the group that is defined by all transformations of the form STS−1T−1.  
 (6) This also gives one a new proof of a known theorem of KILLING (LIE-ENGEL: Theorie der 
Transformationsgruppen, Bd. III, pp. 770.   
 (7) “Sui gruppi transitivi dello spazio a n dimensioni,” Rend. dell’Acc. dei Lincei (5) 14 (1905).  For 
some theorems on transitive groups that are intended, above all, to make the concept of class more precise, 
in analogy to the substitution groups, see: MAILLET, “Sur la classe des groupes finie continus primitifs de 
transformations de Lie,” Comptes rendus 130 (1900). 
 (8) E. E. LEVI has rigorously established the noteworthy theorem of KILLING on the decomposability 
of any finite, continuous group that is not semi-simple that is integrable into an integrable invariant group 
and a semi-simple group: “Sulla struttura dei gruppi finiti e continui,” Atti della R. Acc. delle Sc. di Torino 
40 (1905).  Also note the following Dissertation of MÜNSTER, which he could not have seen: W. 
BRÜSER, “Untersuchungen über die sechsgliedrige halbeinfache Transformationsgruppe” (1904). 
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 A SÜSS, in his Dissertation at GREIFSWALD, has determined all of the point 
groups that have the structure of the full projective group of the plane, and has studied a 
class of groups of contact transformations that have the same structure, which sheds more 
light on some general considerations that permit one to say what type of group of contact 
transformations is represented by an arbitrary type of point-like transitive group of given 
composition (1). 
 KILLING responded with a brief note on the theory of composition in which, to a 
great degree, he classified the structure of the groups of rank 0, based upon a new 
invariant numerical character (2). 
 LOEWY has given a new characteristic property of groups of rank 0 and proved that 
for such groups − and only for them − any arbitrary subgroup belongs to some 
composition series (3). 
 AHRENS has determined the groups for which any subgroup is invariant (4).  Finally, 
ZINDLER has studied the commutable groups (which are particular case of groups of 
rank 0) in general, and in particular, he has classified their types in the case of four 
parameters (5). 
 
 Upon taking a quick look at the investigations that were carried out since the death of 
LIE on the general theory of finite, continuous groups, one can see that in the past decade 
there have not been any substantial changes.  When one thinks about that theory, which is 
already ten years old, what other opinion would be natural than that it constitutes a closed 
set of results and procedures? 
 On the other hand, it is also true that there exists a profound and singular contrast 
between the systematically analytical form in which LIE and his collaborators ultimately 
published the theory of finite, continuous groups and the essential, boldly synthetic, 
conception of it that LIE first had.  Immediately after the initial fervid period of 
investigation and discovery, he felt upset with the state of isolation in which he lived 
scientifically, and reproached the mathematicians of the time for the coolness that they 
showed to his program of study, which was so bold, so new, and to be sure, so obscure.  I 
think that perhaps, without a doubt, one should overlook the sin of his impatience and 
consider the ultimate scope of his work: the theory of integration.  Certainly, he was 
induced to translate, and almost to disguise (6), his thoughts into the analytical form that 
seemed more appropriate and facilitated the publication of his discovery.  Moreover, 
before his death, he could also be regarded as having answered to an ineluctable 
necessity, since only in the newer form of his theory does one recognize the approval and 
admiration that he had originally desired.  However, it is certain that in the present theory 
of finite, continuous groups one can follow the simple and bold course that was first 

                                                
 (1) “Die Gruppen, die mit der allgemeinen projectiven Gruppe die Ebene gleiche Zusammensetzen 
haben,” Dissertation, Greifswald (1905).  
 (2) “Der Bau einer besonderen Klasse von Transformationsgruppen,” Festschrift dedicated to L. 
BOLTZMANN, Leipzig (1904). 
 (3) “Zur Theorie der endlichen kontinuierlichen Transformationsgruppen,” Math. Ann. 55 (1901). 
 (4) “Ueber kontinuierlichen Involutionsgruppen,” Wien. Berichte 110 (1901).  
 (5) “Ueber Transformationsgruppen, deren sämtliche Untergruppen invariant sind,” Mittheil. der math. 
Gesell. in Hamburg 4 (1902).  These groups reduce to the groups of rank 0 with three parameters and 
commutable groups. 
 (6) “Ueber kontinuierliche Involutionsgruppen,” Wien. Berichte 110 (1901).  
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outlined by LIE, and feel the boredom and regret that he saw as spoiling and 
misinterpreting the restoration of the original beauty of a work of art. 
 I think that LIE, accepting the isolation that was initially appropriate to the originality 
of his thoughts and the enduring novelty of his methods, did not, in his passion to 
discover, deviate in his compulsion to follow a path that he had blazed, so by now we 
perhaps possess the complete and organic synthetic theory of finite, continuous groups.  
Today, the reconstruction, remounting, and traversing of the obscure hints in LIE’s first 
papers, in the original form of his ideas, seems to be tedious work; however, I believe 
that the same impulse by which this idea became more ingenious and more alive, 
suggests that the synthetic theory must be constructed in such a form one day. 
 Meanwhile, one can, with good reason, presume that projective groups must occupy a 
fundamental and almost preponderant place in this, and in this sense a considerable step 
will be made when one manages to establish (as LIE was always convinced, even after 
recognizing the fallacy in his old proof) that for any finite, continuous group there exists 
a projective group that has the same structure. 
 Along this same order of ideas, it will be particularly desirable that, also only for 
projective groups, one can blaze a less indirect and obscure path than the notes that 
arrived at ENGEL’s theorem, which characterizes the non-integrable groups as the ones 
that contain a simple ∞3 group that is holohedrally isomorphic to the full projective 
group of the line. 
 Perhaps there has not be enough attention given to the fundamental place that this 
noteworthy theorem undoubtedly occupies in the theory of composition, which indeed 
remains isolated and weakly connected to the rest of the theory. 
 As far as I know, only KRATZI and KOWALEWSKI have taken the opportunity to 
study, at least, some particular kind of groups in relation to their simple ∞3 subgroups, or 
as one can say, their ENGEL subgroups. 
 KRATZI, in his Dissertation at Greifswald (1), has systematically studied the groups 
of an n-dimensional space that contained an ENGEL subgroup, and did not belong to any 
larger subgroup, and proved that such a group has n + 3 parameters, in general, and that 
its stability subgroup with respect to a generic point leaves a normal rational cone of 
directions fixed, in such a way that the group is equivalent, by means of a point-like 
transformation, to a projective group that contains all of the simple ∞n translations of Sn 
and leaves a normal rational curve in the improper plane fixed.  There is another 
composition that satisfies the conditions above in just four cases: For n = 3, one has the 
group of the quadric.  For n = 5, there is the ∞n group of Sn , which is induced by the full 
planar projective group on the ∞5 conics of the plane.  For n = 7, there is the ∞10 group of 
S7, which is such that the  twisted (gobbe) cubics of a (non-special) linear complex are 
permuted by the projective group of the complex, and finally, for n = 11, one has a simple 
∞14 group of S11 that has the structure that was discovered by KILLING in his memorable 
research on composition. 

                                                
 (1) “Gruppen mit einer dreigliedrige Untergruppe, die in keiner grösseren Untergruppe steckt,” Leipzig 
(1904).  
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 Meanwhile, KOWALEWSKI (1) has considered the projective groups of Sn that do 
not leave any linear variety fixed and contain either the (simple, ∞3) group of a normal 
rational Cn or the simple, ∞3 group that admits a Sn−h−1 with united points and a skew Sh 
in which a normal rational Ch is invariant (2). – For n even and h odd, there exists no 
group that satisfies the conditions above.  However, in some other cases one has, in 
general, a unique type of projective group, which, for h even, is the full projective group 
of a non-special quadric in Sn, and for h (and n) odd it is the full projective group of a null 
system in Sn .  Another group that satisfies the conditions above exists only in S4, S7, and 
S11: For n = 5 (and h = 4), there is just the ∞8 group that is induced by the planar 
projective group on the ∞5 conics.  For n = 6 (and h = 6), one has the ∞14 projective group 
that transforms a non-special quadric in it (CLIFFORD quadric of normal rational C6) 
and on it, an ENGEL complex (3).  Finally, for n = 7 (and h = 6), there is the ∞21 
projective group that is induced by the full projective group of the quadric on the ∞21 
ENGEL complexes that lie on a non-special quadric in S6 . – To these results of 
KOWALEWSKI, one adds that, when evaluated by a “Gewichtsmethode,” in its 
fundamental principles it can be traced back to LIE, and has its basis in a classification of 
the infinitesimal projective transformations (in homogeneous coordinates) of weight two, 
suitably defined. 
 

* 
*    * 

 
 This only begins to review the research that was directed to the determination of the 
particular classes of finite, continuous groups. 

 We can now advance into this field; however, the multiplicity and variety of the 
questions considered will lead one to their enumeration, instead of a true classification. 

 
 

 PROJECTIVE GROUPS 
 
 We shall now address the projective groups. 
 In this field, we first review the research of NEWSON (4), who has constructed, on 
the basis of elementary synthetic considerations, all of the types of continuous, projective 

                                                
 (1) “Ueber die projektive Gruppe der Normkurve und eine charakteristische Eigenschaft des 
sechsdimensionalen Raumes,” Leipz. Ber. 54 (1902). – “Ueber projektive Transformationsgruppen,” ibid. 
55 (1903). – “Eine charackteristische Eigenschaft der projektiven Gruppe des Nullsystems,” ibid. 58 
(1906). – “Ueber die projektive Gruppe einer Mannigfaltigkeit zweiten Grades,” ibid., ibid. 
 (2) These are, in a certain sense, the less complex types of simple ∞3 projective groups of Sn .  In regard 
to this, one remembers the beautiful theorem of STUDY [LIE-ENGEL, Theorie der Trans.-gr., t. III, pp. 
785], which has not been published, except for the proof of FANO [Mem. della R. Acc. delle Sc.di Torino 
(2) 46 (1896). 
 (3) “Ein neues, dem linearen Komplexe analoges Gebilde,” Note 2, Leipz. Ber. 52 (1900).  The ∞14 
group that was just now pointed out has the simple composition that was discovered by KILLING. 
 (4) “Continuous groups of projective transformations treated synthetically,” Kansas Univ. Quart. 4 
(1895-96). – “Supplementary notes,” ibid. – “Projective Transformations in One Dimension and their 
Continuous Groups,” The Kansas University Science Bulletin 1 (1902).  In this last note, the complex 
projective groups of the complex line are classified in the same way as the real conformal groups of the 
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groups of the line and plane (1) and some types of projective groups of space.  He has 
grasped the majority of homology groups and, by combining them in all possible ways, 
has constructed larger groups by hand that are characterized by means of their respective 
invariant configurations (2). 
 As for the classification of the projective groups of space, which, as was noted, has 
not been successful, moreover (although, on the basis of LIE’s method, this does not 
present any great difficulty), there has been a contribution to this in that all of the types of 
line complexes that admit a projective, continuous group have been determined (3); in 
particular, that determination is predicated on the classification of the three-parameter 
projective groups. 
 R. LE VAVASSEUR has classified the subgroups with one and two parameters of the 
homogeneous linear group in four variables (4). 
 BEMPORAD, E. E. LEVI, and MEDICI were occupied with the groups of motions in 
linear spaces.  The first of them has classified them in S3, S4, and partially in S5 (

5).  The 
second of them has applied some general considerations to the derived group of the group 
of motion in Sn that were, above all, directed to the determination of the groups of two 
and three parameters (6).  Finally, MEDICI has determined all of the possible types of 
rotation groups (7) in a space of any desired dimension, and has shown the benefit that 
the knowledge of such groups can contribute to the general theory of groups of motions 
(8). 
 Along with this research on the projective groups, one can further mention the brief 
investigation that was carried out by EPSTEIN on the groups that coincide with their 
respective adjoint groups (9). 
 However, nothing substantially new has been published on the problem that has 
merited the attention of some geometers (and which already gave rise to some important 

                                                                                                                                            
plane. – “Types of Projective Transformations in the Plane and in Space,” Kansas Univ. Quart. 6 (1899). – 
The five Types of Projective Transformations in the Plane,” ibid., 8 (1899).  This, and other research, is 
discussed systematically in: “A New Theory of Collineations and their Lie Groups,” Amer. J. Math. 24 
(1904).  For space, cf., “On the Group and Subgroups of real Collineations leaving a Tetrahedron 
invariant,” Kansas Univ. Quart. (A) 10 (1901); “A new Theory of Collineations in Space,” ibid., ibid.  
Finally, cf., “Report on the Theory of Collineations,” Proc. of the Amer. Assoc. for the Adv. of Sc. 51 
(1902). 
 (1) FANO (art. cited in the Encyklopädie) noted that the research of NEWSON does not lead to an 
effective classification of the projective groups in the plane insofar as he did not prove to have exhausted 
all of the possible types of groups.  This result leads to a contradiction between his results and LIE’s table. 
 (2) By this same elementary synthetic method of NEWSON, H. B. BREWSTER has constructed the 
projective groups of S3 that leave a non-special quadric fixed: “On Collineations in Space which leave 
invariant a Quadric Surface,” Kans. Univ. Bull. (2) 1 (1903). 
 (3) “Sui complessi di rette, che ammettono un gruppo continuo proiettivo,” Rend. del Cir. mat. di 
Palermo 23 (1907). 
 (4) “Sur l’enumération des sous-groupes du groupe linéaire, homogène, à quatre variables: sous-groupes 
à un et à deux paramétres,” Bulletin des sc. math. (2) 29 (1905). – “Les sous-groupes du groupe linéaire à 
quatre variables: sous-groupes à un et à deux paramétres,” Ann. de la Fac. des sc. de Toulouse (2) 8 (1906). 
 (5) “Sui gruppi di movimenti e similitudini nello spazio a 3, 4 e 5 dimensioni,” Ann. della R. Scuola 
Norm. Sup. di Pisa 8 (1898). 
 (6)  “Sui gruppi di movimenti,” Rend. della R. Acc. dei Lincei (5) 141 (1905). 
 (7)  “Sui gruppi di rotazioni,” Ann. della R. Scuola Norm. Sup. di Pisa 10 (1907). 
 (8) “Sui gruppi di movimenti,” Rend. della R. Acc. dei Lincei (5) 162 (1907). 
 (9) “Les groupes qui coincident avec leurs groupes adjoints,” Math. Ann. 56 (1902). 
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observations of STUDY) on projective groups that are projectively equivalent to their 
respective parameter groups (1). 
 On the theory of invariants of projective groups (2), we mention the contributions of 
KASNER, who has studied the invariants of a curve traced on a non-special quadric in S3 
with respect to the ∞6 mixed projective group of that quadric (3), and, from a more 
general viewpoint, MAURER has extended the theorem on HILBERT on the finite 
number of invariants of a complete system of a linear, continuous group in the case where 
the variables are subject to a system of algebraic equations (4). 
 
 Before we leave the field of projective groups, we must give a nod to the research of 
STUDY on the (differential) elements of second order in the plane, each of which can be 
defined as the totality of all (analytic) curves that have three given, infinitely close, non-
collinear points in common (5).  STUDY made the set of these second-order elements 
closed in various ways by means of the agency of suitably chosen improper elements, 
and established that it results in a system of projective coordinates on a ∞4 variety 
(namely, one that is characterized by being invariant with respect to the planar projective 
group), and based upon this, he has developed the invariant theory of the ∞4 variety of 
second-order elements with respect to a ∞9 group that is obtained by combining the ∞8 
group that is induced by the planar projective group with a ∞1 group (which is linear in 
the coordinates of the second-order elements) that transforms any set of ∞1 second-order 
elements that pertain to the same second-order element into itself (6). 
 Moreover, STUDY has considered the one, two, or three-dimensional varieties of 
second-order elements, which is obviously of interest in the theory of second-order, 
ordinary differential equations, and has determined the varieties V4 in a space of any 
desired dimension that are representable as the set of all ∞4 second-order elements in the 
plane, in such a way that the group on them that corresponds to the planar projective 
group is seen to be induced by a projective group of the respective space. 
 In this manner, it results that one establishes, in particular, a noteworthy relation 
between the projective geometry of second-order elements in the plane and the ordinary 
geometry of the line. 
 However, I will not go further in that direction.  From the strictly group-theoretic 
viewpoint to which I must cleave, this almost cripples, or at least misrepresents, the 
                                                
 (1) Cf., BURNSIDE, “On groups which are linear and homogeneous in both variables and parameters,” 
Proc. math. Soc. London 35 (1903). – “On reciprocal linear homogeneous groups,” Quart. J. 34 (1903). 
 (2) The work of ENRIQUES and FANO on the varieties that admit a projective group is previous to the 
decade that we are concerned with, except for the note of FANO” “Un teorema sulle varietà algebraiche a 
due dimensioni con infinite trasformazioni proiettive in sè,” Rend. della R. Acc. dei Lincei (5) 12 (1899).  
In this note, he proves the remarkable theorem that any three-dimensional algebraic variety that admits a 
transitive, continuous group of projective transformations is rational. 
 (3) “The invariant theory of the inversion group; Geometry upon a quadric surface,” Trans. Amer. Math. 
Soc. 1 (1900).  
 (4) “Ueber die Endlichkeit der Invarianten Systeme,” Math. Ann. 57 (1903).  
 (5) “Die Elemente zweiter Ordnung in die ebenen projectiven Geometrie,” Leipz. Ber. 53 (1901).  
Regarding the systems of coordinates that are needed in order to determine the elements of order higher 
than two, see ENGEL: “Die höheren Differentialquotienten,” Leipz. Ber. 46 (1893), 54 (1902). 
 (6) Any second-order element admits three orientations, and accordingly, if one considers oriented or 
unoriented elements then one obtains two different ∞2 groups that are in [3, 1] correspondence with each 
other. 
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interest and the importance of this research of STUDY, which cannot be separated from 
the other previous and subsequent investigations of that author, starting with his early 
research on complex numbers and continuous groups and the Methoden der ternären 
Formen (Leipzig, 1889) and concluding with the ponderous Geometrie der Dynamen 
(Leipzig, 1903) and his many papers on non-Euclidian geometry.  For us, it will be 
enough to recall how the theory of continuous groups has been a fruitful “transport 
principle” for STUDY, by which he has, as it were, augmented the efficacy of the 
SEGRE process for the analytic continuation of the parameters and variables in a real 
field to ones in a complex field more extensively by hand, by superimposing it with the 
classical method of the construction of “fields” of geometrical entities with respect to a 
given group (1).  It was from this precise origin that STUDY systematically presented the 
various geometries (dual and radial projective geometry, the projective and pseudo-
conformal geometry of “somas”) in the Geometrie der Dynamen that we cited (2). 
 However, we shall now turn our attention to the groups of birational transformations. 
 
 

CREMONA GROUPS 
 

 In principle, it is possible to review the research of H. STENDER (3), myself (4), and 
NEWSON (5) on real conformal groups of space, as well as on curves and surfaces, 
which admit an infinitude of conformal transformations. 
 However, at a more elevated level of research that relates to this field, there is the 
work of FANO on finite continuous groups of Cremona transformations of space (6) and 
their classification, concluding with the generalized JONQUIÈRES groups, or groups of 
birational transformations that transform a sheaf of planes or a pencil of lines into itself 
(7). 
 These works complete the line of research that ENRIQUES initiated into the 
determination of the continuous Cremona groups of the plane and was continued with 
that of ENRIQUES and FANO in the masterly papers in which they proved that the 
continuous, birational groups of space are birationally equivalent to either projective 
groups, conformal groups, generalized Jonquières groups, or finally, to two well-defined 

                                                
 (1) We can also recall the following research: E. v. WEBER: “Zur Theorie der Kreisverwandschaften,” 
Münch. Ber. 31 (1901).  “Die komplexen Bewegungen,” Leipz. Ber. 55 (1903).  
 (2) A clear and complete review of STUDY’s views and investigations can be found in nos. 16-20 of the 
cited article by FANO. 
 (3) “Invariante Flächen und Kurven bei conformen Gruppen des Raumes,” Disseration, Leipzig (1899).  
This dissertation was briefly brought to my attention, and I have only recently been informed, after the 
release of the manuscript of this report (19 January 1908), of the existence of a mention that was made of 
my cited paper in the subsequent note of ENGEL in the fascicle that was just now brought to light in the 
Jahrbuch über die Fortschr. der Math. 36 (1907). 
 (4) “La superficie con infinite trasformazioni conformi in sè stesse,” Rend. della R. Accad. dei Lincei 
(5) 10 (1901). – “I gruppi continui reali di trasformazioni conformi dello spazio,” Mem. della R. Acc. delle 
Sc. di Torino (2) 55) (1905). 
 (5) “Types and continuous Groups of real conformal Transformations in S2 ,” Giorn. di Mat. 45 (1907). 
 (6) “I gruppi continui primitivi di trasformazioni cremoniane dello spazio,” Atti della R. Accad. delle 
Sc. di Torino 33 (1908).  “Le trasformazioni infinitesime dei gruppi cremoniani tipici dello spazio,” two 
notes in Rend. della R. Accad. dei Lincei (5) 71 (1898). 
 (7) “I gruppi di Jonquières generalizzati,” Mem. della R. Acc. delle Sc. di Torino 48 (1898). 
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∞3 simple, transitive, groups for which the transformations that leave a generic point 
fixed constitute a group of finite order that is holohedrally isomorphic to the group of 
either the octahedron or the icosahedron. 
 In an affine context, ENRIQUES has, more recently, recovered the results of the 
profound analysis of PICARD, PAINLEVÉ, and CASTELNUOVO, and the same 
ENRIQUES has classified the surfaces with a continuous birational group into three 
families: ruled surfaces, elliptical surfaces that contain two sheaves of curves of equal 
moduli, and hyperelliptic surfaces that are coupled to the points of a curve of genus two, 
and he succeeded in characterizing these three families, either separately or collectively, 
by means of the values of its invariant characters (genera and plenigenera) (1). 
 These two cycles of results, thus completed, on the continuous, Cremona groups, on 
the one hand, and on surfaces that admit such a group, on the other, undoubtedly 
constitute one of the more beautiful chapters in the theory of continuous groups, not just 
for the importance and singular difficulty of the problem’s solution, but also for the 
profundity of the vision and the richness and genius of the expedients that are so profuse.  
However, one can say that while the primary basis for this algebraic geometry of finite, 
continuous groups has been defined − at least, implicitly – by now, the work of LIE has 
been left completely in the shadows. 
 Along these same algebraic lines, one can even recall the systematic research of 
CARDA on the algebraic groups of the line and plane (2).  He has confirmed that, other 
than a type of ∞1 groups of the line (3), the algebraic groups that he considered already 
appear among LIE’s representative types in his table of groups of the line and plane. 
 Moreover, CARDA has drawn attention to an interesting class of algebraically 
integrable differential equations.  The equation Xξ = 1, where X is the symbol of an 
arbitrary algebraic infinitesimal transformation in just one variable, admits only algebraic 
integral curves of genus 0.  The direct integration, which CARDA has carried out 
explicitly for n = 3, leads to the consideration of pseudo-Abelian integrals, which 
represent algebraic functions, for n > 2. 

 
 

SPACES THAT ADMIT GROUPS OF MOTIONS 
 

 Another fruitful line of new and important results traces its origin to the research and 
conclusions of BIANCHI on three-dimensional spaces with a continuous group of 
motions (4).  Such research is immediately linked with the Dissertation of RIMINI, in 

                                                
 (1) “Sulle superficie algebraiche che ammetono un gruppo continuo do trasformazioni birazionale in sè 
stesse,” Rend. del Circ. nat. di Palermo 20 (1905).  
 (2) “Zur Theorie der algebraischen Gruppen der Geraden und der Ebene,” Monats. f. Math. u. Phys. 11 
(1900). – “Ueber eine Schar dreigliedriger algebraischer Gruppen der Ebene,”  Monats. f. Math. u. Phys. 17 
(1906). 
 (3) As CARDA himself observed, the ∞1 algebraic groups of the line were already determined implicitly 
by WEIERSTRASS: cf., BOHLMANN, “Ueber eine gewisse Klasse continuierlicher Gruppen und ihren 
Zusammenhang mit den Additionstheoremen,” Diss. Halle a. S. (1892). 
 (4) “Sugli spazi a tre dimensioni, che ammettono un gruppo continuo di movimenti,” Mem. Soc. it. delle 
Sc. (3) 11 (1897).  
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which he pointed out some noteworthy and elegant properties of the three BIANCHI 
spaces with variable curvature that admit a four-parameter group of motions (1). 
 From another viewpoint, the same problem of three-dimensional spaces with a 
continuous group of motions was the object of the investigations of RICCI, on the one 
hand, who, based upon his methods of the absolute differential calculus, posed the 
following question: Given the linear elements of an arbitrary three-dimensional variety in 
general coordinates, determine whether rigid motions are possible in it, and in the 
affirmative case, determine the group by means of the defining equations (2). – More 
recently, RICCI has extended some of the fundamental results that were established for 
V3 in his early research to a variety of as many dimensions as one desires (3). 
 From the same line of research that commenced with the cited papers of BIANCHI, 
one can further derive a large and complex body of research of FUBINI, of which I can 
only illustrate just one aspect, and by limiting oneself to conclusions that are of interest in 
the theory of continuous groups, one must leave unmentioned the very important 
arithmetic and analytical results to which the investigations have arrived. 
 FUBINI, attacking the general problem of n-dimensional spaces with a continuous 
group of motions, has given, in a remarkable synthetic form, the necessary and sufficient 
conditions for a group to be admitted as a group of motions of such a space, and upon the 
basis of that result, he has shown how for the solution to the algebraic equations, it 
suffices to determine all of the groups that can be considered to be groups of motions by 
means of their infinitesimal transformations, and how, with just one quadrature, one can 
obtain the linear elements of the corresponding space.  Upon the basis of his general 
method and another quicker special procedure, he then exhausted the search for the 
groups of motions that contain no more than four independent infinitesimal 
transformations, and then, the four-dimensional spaces with groups of motions.  Some 
observations on discontinuous groups that are contained in the continuous groups of 
motions of three-dimensional spaces (4) are noteworthy in this research, by their novelty 
and perhaps for their greater importance. 
 As a first generalization of the BIANCHI problem, FUBINI has studied the spaces 
that admit a conformal group, while splitting the problem into two: 
 1. Determine the groups that are susceptible to being considered as conformal 
groups of such spaces. 
 2. Effectively construct the corresponding linear elements. 
 He has thus, on the one hand, pointed to the intimate connection between the theory 
of conformal groups and the theory of groups of motions (5) and, on the other hand, 
                                                
 (1)  “Sugli spazi a tre dimensioni, che ammettono un gruppo a quattro parametri do movimenti,” Ann. 
della R. Sc. Norm. Sup. di Pisa 9 (1907). 
 (2) “Sui gruppi continui di movimenti in una varietà qualunque a tre dimensioni,” Mem. della Soc. it. 
delle Sc. (3) 12 (1899).  Cf., also, RICCI-LEVI CIVITA: “Méthodes de Calcul différentiel absolu et leurs 
applications,” Math. Ann. 54 (1900). 
 (3)  “Sui gruppi continui di movimenti rigidi negli iperspazi,” Rend. della R. Acc. dei Lincei (5) 14 
(1905). 
 (4) “Sugli spazi che ammetono un gruppo continuo do movimento,” Rend. della R. Acc. dei Lincei (5) 
112 (1902); Ann. di Mat. (3) 8 (1902). – “Sugli spazi a quattro dimensioni che ammetono un gruppo 
continuo di movimento,” Ann. di Mat. (3) 9 (1903). – “Sulla teoria delle forme quadratiche Hermitiane e 
dei sistemi do tali forme,” Atti dell’Acc. Gioenia (4) 17 (1904). 
 (5) “Sulla teoria degli spazi che ammettono un gruppo conforme,” Atti delle R. Acc. delle Sc. di Torino 
38 (1903). 



Amaldi – On the principal results obtained in the theory of continuous groups                13 

generalized those groups of point-like or contact transformations that preserve the 
hypersphere in an arbitrary metric (1)in various directions. 
 However, the more important contribution that was made by FUBINI along this line 
of research was the determination of the spaces that admit a continuous group that 
permutes the geodesics.  By means of an analysis that was truly perspicacious, he 
succeeded, so to speak, in decomposing the difficulty of the problem by reducing the 
discussion that pertained directly to the second-order partial differential equations to the 
successive study of systems of first-order partial differential equations or to just ordinary 
differential equations.  He showed how one can rapidly solve the problem in the case of 
surfaces that was already treated, in part, by LIE and substantially exhausted by the 
research of KOENIGS and RAFFY.  He explicitly arrived at the determination of the 
three-dimensional varieties that admitted a continuous group of geodesic transformations 
and has shown how − except for some special cases – his method of discussion also 
serves to exhaust the problem in a space of as many dimensions as one desires (2). 
 These group-theoretic questions that were solved by FUBINI come down, as 
particular cases, to the general questions of determining all of the dynamical problems for 
which there exists a continuous group that permutes the trajectories.  Along with that 
dynamical question, FUBINI successfully addressed, studied in general, and determined, 
in the case of three free coordinates, the conservative dynamical problems that admit 
continuous groups of DARBOUX transformations (viz., transformation groups that 
permute an ∞1 sheaf of trajectories that correspond to the various values of the constant 
of vis viva), and solved the problem in its generality for the dynamical problems in just 
two variables (3). 

 
 

OTHER PARTICULAR FINITE CONTINUOUS GROUPS 
 
 Now, in order to complete our review of the results that were obtained in the last 
decade in the theory of finite, continuous groups, all that remains is for us to mention 
some widely-varied determinations of the arguments. 
 BIANCHI has studied the finite subgroups of two infinite, continuous groups of 
equivalence transformations and proportional transformations by abstracting from the 
determination in the planar case (4). 
 Then, in order to complete the classification of the point-like finite, continuous 
groups of space, based upon a procedure that was already pointed out by LIE, I have 
determined the groups that transform a congruence of curves into itself and operate on it 
imprimitively (5). 

                                                
 (1) “Sulla teoria delle ipersfere e dei gruppi conformi in una metrica qualunque,” Rend. del R. Ist. 
Lomb. (2) 38 (1905).  
 (2) “Sui gruppi di trasformazioni geodetiche,” Mem. della R. Acc. delle Sc. di Torino (2) 53 (1903).  
 (3) “Ricerche gruppali relative alle equazione delle dinamica,” Three notes in: Rend. della R. Acc. dei 
Lincei (5) 121 and 122 (1904). – “Sulle traiettorie di un problem dinamico,” Rend. de Circ. mat. di Palermo 
18 (1905). 
 (4) “Sui gruppi continui finiti trasformazioni che conservano le aree od i columi,” Atti della R. Acc. 
della Sc. di Torino 38 (1903). – “Sui gruppi continui finiti di trasformazioni proporzionali,” ibid., ibid.  
 (5) “Contributo alla determinazione dei gruppi continui finiti dello spazio ordinario,” Giorn. di 
Matematiche (2) 9 (1901).  
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 We now note how LIE, in his classical research on the fundamental of geometry was 
led to classify those point-like groups of S3, with respect to which, two points admit one 
and only one invariant and two or more points that do not have any essential invariants 
(viz., independent of the invariants of the pair).  This group-theoretic problem has given 
rise to two different generalizations: On the one hand, BLICHFELDT has determined the 
groups in S3 that operate transitively on the pair and possess one or more essential 
invariants for the trio of points (1).  On the other hand, KOWALEWSKI has solved the 
same problem of LIE in S4 and, without any limitations with regard to reality, in S5 (

2), 
and then, expanding upon the research, has taken the lead by determining all of the 
primitive groups in the spatial case of five dimensions (3). 
 
 The finite, continuous groups of contact transformations were already stated by LIE, 
all of the planar types and three groups that exist in any space, only one of which is 
primitive (4).  ENGEL, searching for a representative of the simple 14-parameter 
composition that was discovered by KILLING, has constructed a noteworthy type of ∞14 
groups of contact transformations of S3 that operate primitively on the surface elements in 
S5 (

5), and SCHEFFERS, in his dissertation, has classified those finite, continuous groups 
of contact transformations of space that transform ∞1 first-order partial differential 
equations into each other (6). 
 While determining the primitive groups of S5 , KOWALEWSKI (7) then confirmed 
that in S3 there exist no other primitive, finite, continuous groups of contact 
transformations than the two types of LIE and ENGEL, and OSEEN has determined 
some new classes of contact transformations of S3 (that operate imprimitively only on S3) 
(8).  In order to complete the classification in S3, we are now missing only the types of a 
category of groups that that is well-defined and, to be sure, not devoid of interest for the 

                                                
 (1) “On a certain class of Groups of Transformations in Space of three Dimensions,” Amer. J. Math.  22 
(1900).  We can recall that the same author has also repeated the determination of the primitive, finite, 
continuous groups of the plane (Trans. Amer. Math. Soc. 2 (1901). 
 (2) “Ueber eine Kategorie von Transformationsgruppen einer vierdimensionalen Mannigfaltigkeit,”  
Leipz. Ber 50 (1898). 
 (3) “Die primitiven Transformationsgruppen in fünf Veranderlichen,” Leipz. Ber. 51 (1899).  
 (4) Cf., e.g., LIE-ENGEL, Theorie der Transformationsgruppen, v. II, chap. 23-25, which deserved to 
be mentioned in the note of SCHEFFERS, “Synthetische Bestimmung aller Berührungstransformationen 
der Kreise in die Ebene,” Leipz. Ber. 51 (1899). – For other geometric considerations in regard to this, see 
W. DE TANNENBERG, “Sur quelques transformations de contact,” Comptes rendus 134 (1902). – 
LUDWIG, “Ueber den Zusammenhang der Berührungstransformationen der Kreise einer Ebene mit der 
conformen Abbildungen des Raumes,” Rend. del Circ. mat. di Palermo 23 (1907).  LUDWIG has then also 
studied the ∞10 group of algebraic contact transformations on a sphere that transform circles into circles: 
“Ueber die Berührungstransformationen der Kreise auf eine Kugel,” Deutsche Math. Ver. 14 (1905). 
 (5) This group, which was pointed out by ENGEL at the end of 1888, was made known in mathematical 
publications only in 1893 (“Sur un groupe simple à quatorze paramétres,” Comptes rendus, t. 116).  It was 
simultaneously discovered by CARTAN (Comptes rendus, ibid.).  There is a reference to that group in the 
recent paper of ENGEL that was cited on pp. 7. 
 (6) “Bestimmung einer Klasse von Berührungstransformationsgruppen des dreifach ausgedehnten 
Raumes,” Acta math. 14 (1891). 
 (7) “Die primitiven Transformationsgruppen in fünf Veränderlichen,” Leipz. Ber. 51 (1899).  
 (8) “Ueber einige irreduciblen Gruppen von Berührungstransformationsgruppen im Raume, Oefr. af k. 
Vetenskaps-Akad. Förhandl. (1901). –  “Ueber die endlichen, continuierlichen, irreduciblen 
Berührungstransformationsgruppen im Raume,” Disseratation, Lund, 1901. 
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problems of integration: It is the category of contact transformations that multiply the 
single Pfaffian: 

dz − p dx – q dy 
 
by a constant and transform the variables x, y, p, q between them imprimitively (1). 
 To these determinations of the groups of contact transformations, one can add the 
research of KOWALEWSKI on Pfaffian systems that admit a finite, continuous group of 
transformations.  The consideration of such systems presents itself naturally in the 
investigations into the primitive point-like groups of an arbitrary space. – The results of 
ENGEL on the invariant theory of Pfaffian systems (2) are fundamental in this line of 
reasoning, results that perhaps have not attracted the attention of mathematicians that 
they deserve.  On the basis of this, KOWALEWSKI has established some general 
conclusions that go beyond the scope of this survey on Pfaffian systems that are 
connected invariantly with indefinitely integrable systems.  In regard to the theory of 
groups, she has determined all of the Pfaffian systems in (3) and six (4) variables that 
admit a primitive, finite, continuous groups of point-like transformations and has proved, 
as a corollary to her general theorem, that in eight variables there exists no Pfaffian 
system that is invariant with respect to a point-like group of transformations (5). 

 
 

FINITE CONTINUOUS GROUPS AND DIFFERENTIAL EQUATIONS 
 

 We will now enter into that line of investigation that was directed towards 
determining and studying equations and differential systems that admit a finite, 
continuous group of transformations (6). 

                                                
 (1) In regard to the theory of contact transformations, one can mention the research of LIEBMANN 
[“Zur Theorie der erweiterten Berührungstransformationen,” Leipz. Ber. 51 (1899)], in which he proved the 
fundamental theorem of BÄCKLUND and ENGEL on the osculatory transformations of arbitrary order of 
the variety Vm into some Sn .  On the basis of that theorem, these transformations reduce to contact 
transformations when m = n – 1 and to point-like transformations when m < n – 1.  PASCAL has also given 
a direct verification of BÄCKLUND’s theorem in the plane [Rend. del Circ. mat. di PALERMO 18 (1904). 
– Also in the theory of contact transformations, but along different lines, one can mention the disseratation 
(at GREIFSWALD) of F. J. DOHMEN (“Darstellung der Berührungstransformationen in 
Konnexkoordinaten,” Leipzig, 1905), in which he systematically studied the various way in which a contact 
transformation of Sn is representable as a transformation of the 2n + 2 homogeneous coordinates of the 
point and the plane. 
 (2) “Zur Invariantentheorie der Systeme von Pfaff’schen Gleichungen,” Leipz. Ber. 41 (1899) and 42 
(1890).  
 (3) “Die primitiven Transformationsgruppen in fünf Veränderlichen,” Leipz. Ber. 51 (1899).  
 (4) “Ueber Systeme von Pfaff’schen Gleichungen mit einer primitiven Transformationsgruppen,” Leipz. 
Ber. 51 (1899). 
 (5) “Ueber Systeme von Pfaff’schen Gleichungen,” Leipz. Ber. 53 (1901). 
 (6) It would not be out of place here to mention the “Vorläufiger Bericht” of SCHEFFERS, “Ueber 
Integrationstheorien von Sophus Lie,” Jahresber. der deutschen Math.-Ver. 12 (1903), in which he 
discussed the gradual development of LIE’s views and conclusions relating to the integration of complete 
systems that admit distinguished infinitesimal transformations, so it was highly desirable that this definitive 
“Bericht” be published quickly. 
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 CZUBER has systematically revised, along a somewhat different path from that of 
LIE, the theory of one-parameter groups of the plane and their application to the theory of 
the integration of first-order, ordinary differential equations (1). 
 BOULANGER has proved that the third-order, ordinary differential equations that 
have the form: 

y″′ = R(x, y, y′, y″), 
 

in which R is a rational function of y′, y″ that is analytic in x and y, and that admit a 
continuous ∞1 group: 

x1 = x,  y1 = F(x, b, a, b, c) 
 
are either linear or reducible to linear by means of a transformation of the – possibly, 
associated − variable and a change of the function (2), such that one abandons any hope 
of being able to arrive that determination of new transcendental classes by taking this 
path. 
 ZINDLER (3) has instituted a direct line of systematic research on systems of 
ordinary differential equations that admit a finite, continuous group of point-like 
transformations, in which he arrived, in particular, at the determination of all differential 
systems in three unknown functions that admit a point-like ∞2, ∞3, or ∞4 continuous 
group, where in the last case one is limited to groups that contain an Abelian or transitive 
invariant subgroup (4). 
 CAMPBELL (5) has classified the types of second-order, linear, partial differential 
equations in three independent variables that admit a continuous group of transformations 
with no more than three parameters (6). 

                                                
 (1) “Zur Theorie der eingliedrigen Gruppen in der Ebene und ihre Beziehungen zu der gewöhnlichen 
Differentialgleichungen 1o Ordnung,” Wien. Ber. 112 (1903). – “Zur Geometrie der gewöhnlichen 
Differentialgleichungen,” Festschrift dedicated to L. Boltzmann (1904). 
 (2) “Sur les équations différentielles du troisième ordre, qui admettant un groupe continu de 
transformations,” Comptes rendus 136 (1903); Bull. de la Soc. math. de France 31 (1903). 
 (3) In order to get back to the case of a first-order system or a unique differential equation in two 
variables, it is sufficient to increase the number of variables or the maximum order of derivation.  However, 
it is clear that in this way one arrives at a differential system that is not completely equivalent to the given 
one. 
 (4) “Ueber simultane gewöhnliche Differentialgleichungen, welche continuierliche 
Transformationsgruppen gestatten,” Monats. f. Math. u. Phys. 11 (1900).  
 (5) “On the Types of linear partial differential Equations of the second order in three independent 
variables which are unaltered by the Transformations of a continuous group,”  Trans. Amer. Math. Soc. 1 
(1900). 
 (6) On the basis of this group-theoretic concept, BISCONCINI has classified the dynamical problems 
that relate to holonomic systems with time-independent constraints that, when no forces act, admit a group 
of fundamental integrals (“Di una classificazione dei problemi dinamici,” Nuovo Cim. (5) 1 (1901).  By 
tracing the research of LEVI-CIVITA on binary potentials, the same author has applied group-theoretic 
considerations to the determination of the types of solutions of the equation: 
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  Finally, WILCZINSKI, generalizing, in a certain sense, differential systems with 
fundamental solutions, has considered (1) ordinary differential systems in n unknown 
functions whose general solution ηi (i = 1, 2, …, n) is obtained from an arbitrary 
particular solution yi (i = 1, 2, …, n) by means of relations of the form (2): 
 

ηi = 1 2( , , , , )ik r k
k

x a a a yϕ∑ … , 

 
where the ϕik are uniform functions of x. 
 These relations, in which one considers the x to be an untransformed variable, define 
a continuous ∞r group that WILCZINSKI called linearoid, while referring to the 
differential systems above by the same name.  On the analytical nature of the solutions of 
these systems, which have critical fixed points, WILCZINSKI has arrived at an 
investigation of a general character, and then proceeded to a complete determination of 
the linearoid groups in two variables and the corresponding differential systems. 
 On the new contributions to the theory of the classification and integration of 
differential equations and systems on the basis of their respective rationality groups, one 
must mention that later on this will account for the investigations into infinite, continuous 
groups. 
 Meanwhile, here we must mention the research of MAROTTE, who has, above all, 
shed light upon the analytical study of the singularities of a linear differential equation 
with rational coefficients and the classification of the transcendents, and shown that its 
integration naturally and advantageously presents the consideration of those subgroups of 
PICARD’s rationality groups that he called meromorphy groups relative to the various 
singular points of the equation and that each, in substance, enjoy the characteristic 
property in the neighborhood of a singular point that is analogous to the one that defines 
the rationality group with to all of the complex plane (3). 
 In another direction, FANO has, with great profit, treated the theory of rationality 
groups in some investigations that, upon the basis of geometric considerations, has 
arrived at homogeneous, linear, differential equations whose fundamental solutions are 
constrained by algebraic relations (4). 

                                                                                                                                            
that can depend upon just two parameters.  (“Sulle vibrazioni di una membrana che si possono far 
dipendere da due soli parametri,” Mem. della R. Acc. delle Sc. di Torino (2) 54 (1903).  My paper “Tipi di 
potenziali che, divisi per una funzione fissa, si possono far dipendere da due sole variabili,” Rend. del Circ. 
mat. di Palermo 16 (1902) also belongs to this same line of reasoning. 
 (1) “On Systems of multiform functions belonging to a group of linear Substitutions with uniform 
coefficients,” Amer. J. Math. 21 (1899). – “On Linearoid Differential Equations,” ibid., ibid. – “On 
continuous Binary Linearoid Groups and the corresponding Differential Equations and A Functions,” ibid., 
22 (1900). 
 (2) He treated (particular) differential systems with fundamental solutions where the ϕa were 
independent of x.  
 (3) “Les équations différentielles linéaires et la théorie des groupes,” Ann. de la Fac. Sc. de Toulouse 12 
(1898). 
 (4) This research is, on the one hand, previous to the decade that we are concerned with.  We shall 
confine ourselves to mentioning the note on differential equations that belong to the same species as them 
additionally [Atti della R. Acc. delle Sc. di Torino 34 (1899); Rend. Lincei (5) 8 (1899)] and the 
voluminous paper in which all of the preceding research of FANO is summarized and coordinated: “Ueber 
lineare homogene Differentialgleichungen mit algebraischen Relationen zwischen der 
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 Finally, along this line of thinking, the research of LOEWY (1) on the reducibility of 
linear differential equations in relation to the respective rationality groups deserves some 
mention, along with his thoughts regarding the fundamental principles of PICARD-
VESSIOT theory (2). 

* 
*   * 

 
 In order to complete our summary regarding the work on the theory of finite, 
continuous groups, before passing on to the infinite groups in the LIE sense, we point out 
two species of groups that were spontaneously brought to the attention of mathematicians 
and might one day be the object of worthwhile investigations. 
 S. KANTOR, in his last paper, while referring to the group of birational 
transformations of an arbitrary space, has, by considerations and deductions that were, so 
to speak, very nebulous, taken the opportunity to study the mixed groups of infinite rank, 
also in the case in which the transformations that belong to the product of two such ranks 
are not given either in a unique rank or a finite number of them (3). 
 On the other hand, J. LE ROUX has introduced analytic functions of an infinite 
number of variables into the study of systems of partial differential equations and 
considered the general solutions to be functions of the independent variables, the initial 
values, and the initial values of the fundamental parameters (which are infinite in 
number, except for the MAYER systems) and showed how the study of the variations 
that such solutions are subjected to by varying the initial values are naturally connected to 
certain continuous groups of transformations with a finite number of parameters, but 
which operate on an infinite number of variables.  With regard to the research of LE 
ROUX along these group-theoretic lines, only the first part of which has been published, 
to my knowledge, it does not go beyond the first definitions (4). 

 
 

SPECIAL INFINITE CONTINUOUS GROUPS 
 

 Passing to the infinite, continuous groups, in the sense of LIE, we rapidly enumerate 
the various particular classes of infinite groups that have been the object of inquiry during 
the last decade in that field. 

                                                                                                                                            
Fundamentallösungen,” Math. Ann. 53 (1900).  To the note of FANO that was cited just now, we directly 
attach the two notes of LOEWY [Compted rendus 133 (1901); Münch. Ber. 32 (1902)]. 
 (1) “Ueber die irreduciblen Factoren eines linearen homogenen Differentialausdrückes,” Leipz. Ber. 54 
(1902). – “Ueber reduzible lineare homogene Differentialgleichungen,” Gött. Nachrichten (1902); Math. 
Ann. 58 (1903). – A noteworthy theorem on the various possible decompositions into factors of a linear 
differential form (a theorem was also proved in the first of the two preceding notes) is found in LANDAU: 
“Ein Satz über die Zerlegung homogener linearer Differentialausdrücke in irreducible Factoren,” J. f. d. 
reine u. angew. Math. 124 (1901). 
 (2) “Sur les groupes de transformations des équations différentielles linéaires,” Bull. des Sc. math. (2) 
26 (1902). – “Ueber die Adjunction von Integralen linearer homogener Differentialgleichungen,” Math. 
Ann. 59 (1904).  Cf., also, “Zur Gruppentheorie mit Anwendungen auf die Theorie der linearen homogenen 
Differentialgleichungen,” Trans. Amer. Math. Soc. 5 (1904). 
 (3) “Ueber eine neue Klasse gemischter Gruppen und eine Frage über die birationelen 
Transformationen,” Wien. Ber. 112 (1903). 
 (4) “Recherches sur les équations aux dérivées partielles,” J. de math. (5) 9 (1903). 
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 KOWALEWSKI has proved that in five variables there exist no other primitive, 
infinite, continuous groups except for three types that were noted by LIE: the total point 
group, the group of proportional transformations, and the group of equivalence 
transformations (1). 
 I will take this occasion to observe that the same thing happens in S4 that happens in 
S3 ; viz., along with the three primitive groups of LIE, there is also the infinite point 
group that transforms the Pfaffian equation: 
 

dz – y dx = 0 
 
(namely, the group of contact transformations in the plane (2)). 
 ENGEL, continuing a search that was initiated by VIVANTI (3) and completed by E. 
v. WEBER (4), has determined, analogous to what he had done for the infinitesimal 
contact transformations (5), all of the infinitesimal transformations that leave an arbitrary 
Pfaffian equation unaltered (6).  Following the path of ENGEL, F. WINKLER, in his 
dissertation at Lipsia, determined the infinitesimal transformation that transform an 
arbitrary Pfaffian into itself, up to a numerical factor and an additive term that is an exact 
differential (7). 
 PASCAL (8) has made noteworthy contributions to the analogous problems for the 
form of differentials of order higher than the first; in particular, ones of second order. 
 FORSYTH, continuing and modifying the process of ZORAWSKI (9), determined 
and discussed, in conformity with the methods and basis for the views of LIE, differential 
invariants of curves in the plane (10), of an arbitrary surface (11), and of the curves and 
surfaces in space (12), (13). 

                                                
 (1) “Die primitiven Transformationsgruppen in fünf Veränderlichen,” Leip. Ber., 51 (1899).  
 (2) “I gruppi continui infiniti primitivi in tre e quattro variabilii,” Atti della R. Accad. di Sc. L. e A. in 
Modena (3) 7 (1906).  
 (3) “Sulle trasformazioni infinitesime che lasciano invariata un’equazione pfaffiana,” Rend. del Circ. 
mat. di Palermo 12 (1898).  
 (4) (DHD: previous footnote duplicated in original )  
 (5) “Kleinere Beiträge u. s. w., III.  Die infinitesimalen Berührungstransformationen,” Leipz. Ber. 43 
(1891).  
 (6) “Die infinitesimalen Transformationen einer Pfaff’schen Gleichung,” Leipz. Ber. 51 (1899).  
 (7) “Die infinitesimalen Transformationen, welche einen Pfaff’schen Ausdruck absolut der modulo 
eines vollständigen Differentials invariant lassen,” Dissertation, Leipzig (1905).  
 (8) “Le trasformazioni infinitesime applicate ad una forma differenziale di ordine r.” Rend. Lincei (5) 
122 (1903). – “Sulle trasformazioni infinitesime che lasciano invariata una forma o una equazione ai 
differenziali totali,” ibid., ibid. 
 (9) “Ueber Biegungsinvarianten.  Eine Anwendung der Lie’schen Gruppentheorie,” Acta math. 16 
(1892).  
 (10) “Differential invariants of a Plane and of Curves in the Plane,” Rend. del Circ. mat. di Palermo 21 
(1906). 
 (11) “The differential invariants of a surface, and their geometric significance,” Phil. Trans. 201 (A) 
(1903); Proc. of the R. Math. Soc. 71. 
 (12)  “The differential invariants of space,” Phil. Trans. 202 (A) (1904); Proc. of the R. Math. Soc. 72 
(1904). 
 (13) Research into integral invariants, also in the context of the theory of continuous groups, has been 
carried out by TH. DE DONDER, “Étude sur les invariants intégraux,” Rend. del Circ. math. di Palermo 15 
(1901), 16 (1902): “Application nouvelle des invariants intégraux,” Mém. couronnés, etc., publiés par 
l’Acad. de Belgique; nuov. séries; 1 (1905). 
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 WILCZINSKI, generalizing the classical work of LAGUERRE, HALPHEN, and 
BRIOSCI (1), has determined the infinite point group that leaves unaltered the form of an 
arbitrary system of linear, ordinary differential equations in several unknown functions 
and has studied its differential invariants, and explicitly constructed the complete system 
in the particular case of two equations of second order in just two functions. 
 Just as any linear differential equation corresponds to a projective type of integral 
curve, any system of two second-order ordinary linear differential equations in two 
functions may be associated with projective type of ruled surface; this is why 
WILCZINSKI has applied his results to the study of the differential projective properties 
of the ruled surface (2). 
 Finally, MEDOLAGHI has considered the infinite, continuous groups that depend 
upon only one arbitrary function and one argument and has classified the second-order 
partial differential equations in two independent variables that admit such a point group 
(3). 
 
 As far as the infinite, continuous groups of contact transformations are concerned, it 
results from the work that was cited above by KOWALEWSKI (4) that any such group of 
S3 that does not coincide with the total group operates imprimitively on the five- 
dimensional space of surface elements.  That is why I determined the infinite groups that 
are analogous to the finite groups of SCHEFFERS, namely, the irreducibile, infinite, 
continuous groups of S3 that transform one of the ∞1 first-order partial differential 
equations (5). 
 LEBESGUE, recalling a problem that LIE had already occupied himself with, 
without actually publishing the solution, determined the contact transformations that 
make any minimal surface correspond to a minimal surface.  They are transformations of 
the plane, and the most general contact transformation of this group is obtained, except 
for a similitude, by arbitrarily fixing a minimal surface Σ0 and making any plane P 
correspond to the plane that is parallel and equidistant to P and to the tangent plane to Σ0 
that is parallel to P.  This same contact transformation transforms all of the surfaces that 
are parallel to a minimal surface amongst themselves (6). 

                                                
 (1)  The invariant theory of homogeneous, linear, differential equations has also been systematically 
elaborated using the methods of LIE, by BOUTON, “Invariants of the general linear differential equation 
and their relation to the theory of continuous groups,” Amer. J.  Math. 21 (1899). 
 (2) The numerous memoirs of WILCZINSKI on the subject in question are published, for the most part, 
in the Transactions of the Amer. Math. Society, starting in 1901.  The results were systematically presented 
by WILCZINSKI in their totality, with a personal revision of the theory of HALPHEN on the projective 
invariants of plane and bent curves, in: Projective differential Geometry of Curves and ruled surfaces 
(Leipzig, 1906). 
 (3) “Sui gruppi isomorfi al gruppo di tutte le trasformazioni di una variabile (Mem. I),” Rend. del Circ. 
Mat. di Palermo 12 (1898). – “Classificazione delle equazioni alle derivate parziali del secondo ordine, che 
ammettano un gruppo infinito di trasformazioni puntuali,” Ann. di. Math. (3), t. 1 (1898). 
 (4) “Die primitiven Transformationsgruppen in fünf Veränderlichen,” Leipz. Ber. 51 (1899).  
 (5) “Sui gruppi continui infiniti di trasformazioni do contatto dello spazio,” Mem. della R. Acc. delle Sc. 
di Torino (2) 57 (1906).  
 (6) “Sui gruppi isomorfi al gruppo di tutte le trasformazioni di una variabile (Mem. I),” Rend. del Circ. 
Mat. di Palermo 12 (1898). – “Classificazione delle equazioni alle derivate parziali del secondo ordine, che 
ammettono un gruppo infinito so trasformazioni puntuali,” Ann. di. Math. (3) 1 (1898). 
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 Lastly, we mention the reducible, infinite, continuous group of equidistant contact 
transformations of the plane, to which SCHEFFERS was led in his work on isogonal and 
equi-tangential curves (1).  This group of equidistant contact transformations is composed 
of all the contact transformations that transform lines into lines (2) in such a way that 
corresponding segments are equal. – Such infinite continuous groups compare perfectly 
to the planar conformal group.  They also contain, as maximal point-like subgroups, the 
group of motions and similitudes, and transform one system of ∞2 equi-tangential curves 
into another one in precisely the same way that the conformal group operates on systems 
of ∞2 isogonal curves.  Moreover, if in the plane the line assumes the coefficients u, v for 
its coordinates that appear in the normal form for the equation of the line: 
 

x cos u + y sin a – v = 0, 
 
and along with the real unit we introduce another unit j such that j2 = 0, then the most 
general equidistant contact transformation is represented in the form: 
 

u j v+  = f(u + j v), 
 
where f denotes an arbitrary analytic function of the complex field [1, j] (3). 
 As in the case of the conformal group, the equidistant transformations that transform 
circles into circles constitute a mixed algebraic group ∞6 that is analytically representable 
in the complex field [1, j] by means of linear transformations and constitutes a 
fundamental group of the “geometry of direction” of LAGUERRE (4). 
 STUDY has shown how there exists a group of equidistant contact transformations 
for any surface that is characterized by the properties of transforming geodesics into other 
ones and of leaving the geodetic distance between the points of two arbitrary linear 
elements of a geodesic unaltered.  In particular, for a surface of constant curvature, such 
equidistant contact transformations admit an analytic representation that is analogous to 
that of the conformal group and the SCHEFFERS group, on the basis of convenient 
systems of complex numbers.  Moreover, STUDY has also extended his considerations to 
three-dimensional spaces and to ones of constant curvature and it is noteworthy that 
whereas in non-Euclidian S3 the equidistant contact transformations, like the conformal 
point transformations, constitute a finite group with ten parameters, in Euclidian S3 they 
give rise to an infinite, continuous group (5). 

 
 
 
 

                                                
 (1) “Die primitiven Transformationsgruppen in fünf Veränderlichen,” Leipz. Ber. 51 (1899). 
 (2) Which certainly results in the reducibility of the group.  
 (3) “Isogonalkurven, Aequitangentialkurven, und komplexe Zahlen,” Verh. des 3. intern. Math.-Kongr., 
Heidelberg, 1904; Math. Ann. 60 (1905). 
 (4) GRÜNWALD, “Ueber duale Zahlen und ihre Anwendungin der Geometrie,” “Monats. f. Math. u. 
Phys. 17 (1906).  
 (5) “Ueber mehrere Probleme der Geometrie, die dem Problem der konformen Abbildung analog sind,” 
Sitzber. d. Miederrhein. Ges. f. Natur.-u. Heilkunde, Bonn (1904).  
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GENERAL THEORY OF INFINITE CONTINUOUS GROUPS 
 

 Due to its broader and more elevated level of ideas and results, we have finally seen 
fewer publications in this decade on the general theory of infinite continuous groups. 
 Only VESSIOT, CARTAN, and MEDOLAGHI have worked in that field. 
 VESSIOT, in the first part of his Memoir couronné in 1903, had chiefly the 
distinction of recalling, explaining, and completing the work of ENGEL and 
MEDOLAGHI in some respects, which has not attained a certain circulation and 
following that would be equal to its importance. 
 ENGEL, in his Dissertation that appeared in 1885) (1) and in a complementary note 
of 1894 (2), has given us a method that permits us to construct the defining equations of 
infinitesimal transformations for any continuous group – finite or infinite – in n variables 
when one knows the infinitesimal transformations of certain finite continuous groups 
with a particular composition.  This singular correspondence between groups in n finite 
or infinite variables and certain special finite groups – or characteristic groups − of Engel 
was studied and discussed in 1897 by MEDOLAGHI (3), and he succeeded, in particular, 
in identifying the characteristic groups of ENGEL with two series of transitive, simple 
groups that were pair-wise reciprocal, and whose finite equations are obtained in the 
following way: One imagines three sequences of n variables: 
 
     zi, yi, xi  (i = 1, 2, …, n) 
 
and if one thinks of the zi as composite functions of the xi , by means of the yi , then one 
expresses the derivative, which is finite to a certain order, of z with respect to x as a 
function of the derivative of z with respect to y and that of y with respect x.  Finally, in 
the equations thus obtained one considers the derivative of the z with respect to x as new 
variables, the derivative of z with respect to y (or of y with respect to x) as old variables, 
and the derivative of y with respect to x (or of z with respect to y) as parameters.  These 
are the indicated groups. 
 One striking result of the analysis of MEDOLAGHI it that it has led to a well-defined 
and direct procedure that permits one to pass to the defining equations of the infinitesimal 
transformations of any group from the defining equations of the respective finite 
transformations without having to know the corresponding characteristic group of 
ENGEL; at the moment, these defining equations in the MEDOLAGHI form represent 
the simplest and most manageable instrument for research that we possess in that field. 
 All of the continuous groups that belong to the same LIE type, namely, ones that have 
the similar mediating point transformations of the space in question, have the same 
characteristic group of ENGEL; however, conversely, to the same ENGEL group there 
generally corresponds more than one type of group in the LIE sense, which we, like 
MEDOLAGHI, say have ENGEL type. 

                                                
 (1) “Ueber die Definitionsgleichungen der continuirlichen Transformationsgruppen,” Math. Ann. 27 
(1886).  
 (2) “Kleinere Beiträge, etc.; I: Definitionsgleichungen der continuirlichen Transformationsgruppen,” 
Leipz. Ber. 46 (1894).  
 (3) “Sulla teoria dei gruppi infiniti continui,” Ann. di Mat. 25 (1897).  
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 In 1899, MEDOLAGHI, motivated by his defining equations, sketched out an 
admittedly perfunctory direct method for separating the various LIE types that were 
contained in the same ENGEL type (1). 
 Now, as we already alluded, in the first part of the Memoir couronné (2) VESSIOT 
revised and recast the analytical deductions of ENGEL and MEDOLAGHI, and was led 
to conclude the aforementioned discussion relative to the various LIE types that belong to 
the same ENGEL type in detail.  On the basis of an analogous argument, he showed how, 
starting from the defining equations of a group in MEDOLAGHI form, one may 
determine the various subgroups, and in particular, the invariant subgroups, and finally 
made the concept of isomorphism more precise for infinite groups, which preceded 
CARTAN in the work that he did shortly afterwards. 
 The second part of the Memoir couronné was dedicated to the integration of 
differential systems that admit a continuous group of transformations (3). 
 Such an integration problem, on the basis of LIE’s principle, may always be 
decomposed into a series of problems that lead to a series of differential resolvents, 
which must naturally be arbitrary, while considering, among other things, systems whose 
more general solutions may be deduced from a particular solution by means of the 
transformations of a simple continuous group.  Now, VESSIOT has proved that one can 
always proceed in such a way that these ultimate differential systems are automorphic, 
namely, in such a way that the most general solution is obtained from an arbitrary 
solution by means of a continuous group of point-like transformations that act upon only 
the unknown functions; despite it formal nature, this simplification has a noteworthy 
importance. 
 In the third and final part (4), VESSIOT occupied himself with the extension of 
GALOIS theory to linear partial differential equations and their complete systems, an 
extension that had already been first indicated by DRACH (5), and for which VESSIOT 
completely abandoned the algebraic methods of GALOIS, while generalizing that of 
PICARD for the case of ordinary differential equations, and substituted, by reason of the 
diverse nature of the problem being considered, an analytical method that was useful for 
the examination of both the problems of GALOIS and PICARD. 
 
 VESSIOT, in the paper that we just pointed out, discovered a gap in the proof of a 
theorem of MEDOLAGHI: It was occasioned by the recent research of MEDOLAGHI 
(6), in which his theorem was well-established on a solid basis, at least in a special case of 
obvious interest. 
 MEDOLAGHI (***** ) had already first noted how those infinite groups whose 
defining equations PICARD had arrived at in 1891 by generalizing the partial differential 

                                                
 (1) “Contributo alla determinazione dei gruppi continui in une spazio ad N dimensioni,” Rend. della R. 
Accad. dei Lincei (5) 8 (1899).  
 (2) “Sur la théorie des groupes continus,” Ann. de l’Éc. N. Sup. (3) 20 (1903).  
 (3) “Sur l’integration des systèmes différentielles qui admettant des groupes continus de 
transformations,” Acta math. 28 (1903). 
 (4) “Sur la théorie de Galois et ses diverses généralisations,” Ann. de l’Éc. N. Sup. (3) 21 (1904).  
 (5) Ann. de l’Éc. Norm. Sup. (3), vol. ? (1898).  
 (6) “Sopra i gruppi definiti da equazioni differenziali del 1.* ordine,” Rend. del Circ. mat. di Palermo, 24 
(1907).  
 (***** ) 
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equations of the theory of functions in one complex variable, or, if one prefers, the 
defining equations of the planar conformal group (1), could be characterized in the set of 
all infinite groups as the ones that contained the commutative group of all translations of 
the related space.  The PICARD groups are such groups, and MEDOLAGHI proved that 
any ENGEL type of first order (viz., one defined by a first-order equation) contains a 
PICARD group.  Also note that, as MEDOLAGHI has observed, when one abstracts 
from the total projective group or the infinite group of proportional transformations, 
which are defined by only second-order equations, any group is either finite or infinite 
and of first order, or it contains a group of first order. 
 Now, MEDOLAGHI, on the basis of his theorem and the fact that the characteristic 
groups of ENGEL of groups of first order are all contained in the parametric groups of 
the linear homogeneous group in n variables, has established a correspondence for the 
infinite groups of PICARD, and for various types of homogeneous, linear groups, of 
which already the first and most obvious consequence has proved its singular importance, 
for the time being, if one limits oneself as MEDOLAGHI did. – It is, in particular, 
noteworthy that the link between this method of research into the PICARD groups and 
the classical method that was given by LIE is developed in a series around a generic 
point. 
 
 While MEDOLAGHI and VESSIOT, like ENGEL before, had attached their 
deductions to the first principles that were previously established by LIE for the theory of 
infinite groups, the research of CARTAN completely excluded the consideration of 
infinitesimal transformations of the group, and it dealt systematically with the theory of 
integration of the system of total differential equations that he himself had illustriously 
constructed, while elaborating and generalizing some viewpoints that go back to 
GRASSMANN (2). 
 At the basis of his deductions one finds the concept of holohedral isomorphism − or 
the equivalence of composition − for infinite groups, which he defined in the following 
way: Among other things, he said that, given a group G that operates on n variables x1, 
…, xn, another group G′ that operates on the x, along with m other variables y1, …, yn, is 
obtained by prolonging G if G′ transforms the x amongst themselves in exactly the same 
way as the given group G; he called this prolongation holohedral when the identity 
transformation of the group G corresponds to only the identity transformation in the 
prolonged group.  Having assumed this, CARTAN called two groups holohedrally 
isomorphic if it is possible to holohedrally prolong them in such a way as to obtain two 
groups that operate on the same number of variables and are similar to each other. 
 Now, the most important problem consists in the search for the criteria that permit 
one to recognize that equivalence of composition, and CARTAN solved it by an analytic 
method that appears to be, to a certain degree, obscure and artificial, but, when one 
understands it, has led the author to some very precise and important results.  Assuming 
the definition of the finite transformations of a group G in the form of a system of total 

                                                
 (1) “Sur les groupes que se présentent dans la généralisation des fonctions analytiques,” Comptes rendus 
126 (1898).  
 (2) “Sur l’intégration des systèmes d’équations aux différentiels  totales,” Ann. sc. l’Éc. N. Sup. (3) 18 
(1901). – “Sur l’intégration des systèmes différentiels complètement intégrables,” Comptes rendus 134 
(1902). – “Sur l’equivalence des systèmes différentiels,” ibid., 135 (1902).  
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differential equations, he proved how it is always possible to holohedrally prolong the 
given group in such a way as to obtain a group G′ that is the maximal group with respect 
to the invariants of h particular functions Ui (which naturally omits the case of transitive 
groups) and r + p particular Pfaffians: 
  

ω1, …, ωr ; ϖ1, …, ϖp , 
such that if: 

dUi = Vi1ω1 + … + Virωr 
 
and the bilinear covariants of ωk (k = 1, …, r) have the form: 
 

ijk i j i k i j
ij i

c aρ
ρ

ω ω ωϖ+∑ ∑ , 

 
in which the Vik, cijk, aiρk are functions of the U (that reduce to numerical constants for 
transitive groups) then the aiρk constitute an involutory system (1).  These coefficients Vik, 
cijk, aiρk characterize the structure of the group, such that two groups for which those 
coefficients coincide are holohedrally isomorphic to each other. 
 CARTAN demanded that these structure coefficients (which generalize the 
composition constants of finite groups) must satisfy necessary and sufficient conditions, 
and this had the more noteworthy consequence that he mentioned some considerations 
about the possibility of reducing the degree of intransitivity in certain cases without 
altering the structure of the group and the observation that, contrary to what happens for 
finite groups, the minimum degree of intransitivity for the structure of an infinite group 
must be non-zero, or, in other words, that there exist intransitive infinite groups that are 
not holohedrally isomorphic to any transitive group. 
 CARTAN discussed in detail the problem of the determination of all groups that are 
holohedrally isomorphic to a given group, if one accepts the new definition of a group 
that it is characterized by all of the transformations that induce a certain linear group on 
certain Pfaffians (which is interesting for its possible relations with the characteristic 
group of ENGEL).  In particular, it resulted from this discussion that, contrary to what 
happens for finite groups, an infinite group may be merohedrally isomorphic to itself, 
which gives rise to the necessity of distinguishing two types of merohedral 
isomorphisms: proper and improper. One says that the merohedral isomorphism between 
two groups is proper if it is not possible to regard them as holohedrally isomorphic in 
some manner, which again implies that the simple groups can be distinguished as proper 
and improper.  The foremost examples are the ones that admit no merohedrally 
isomorphic group, whether proper or improper; other ones might admit improper 
merohedral isomorphisms, but not proper merohedral isomorphisms. 
 This reveals the exceptional difficulty in the problem of the decomposition of an 
infinite group into a normal series of subgroups, and indeed, as CARTAN pointed out, in 
certain cases one is led to doubt the possibility of finding a decomposition into a finite 
series of simple subgroups.  Finally, CARTAN applied his general theory to the study of 

                                                
 (1) Which implies certain linear relations between the aiρk (which depend, in part, upon possible linear 
relations between ωi , ϖi) that are pointless to specify.   
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the groups that depend upon arbitrary functions of each argument; in particular, he 
proved that such transitive and simple groups have the same structure as the total group 
in just one variable. 
 More recently, CARTAN, in a note to the Comptes Rendus, has resolved another 
problem of more advanced interest, chiefly in the theory of integration, namely, the 
determination of all infinite, simple, continuous groups, which, in contrast to the 
analogous problem for finite groups, offers a new level of difficulty for the existence of 
intransitive groups that are not holohedrally isomorphic to any transitive group (1). 
 Now, CARTAN has proved that, in the first place, the simple transitive groups all 
reduce to the four types that were already pointed out by LIE: The full point group, the 
group of proportional transformations, the full group of contact transformations, and the 
group of all contact transformations of the xi, pi . 
 In the second place, he determined all of the simple groups that are not isomorphic to 
any transitive group, proving, in particular, that the simple, intransitive groups, properly 
speaking, are obtained from transitive, simple groups, given that the arbitrary elements in 
them depend upon an arbitrary number of non-transformed variables of the group in a 
possibly more general way. 
 
 The consequences of this are truly beautiful and important! 
 In the field of infinite groups, which had been scarcely noticed until a few years ago, 
two viewpoints are discussed as of now: That of ENGEL-MEDOLAGHI-VESSIOT and 
that of CARTAN; both of them have pointed to paths that might lead to new and 
unexpected conclusions. 
 However, given the tribute that has been devoted to the intrinsic merit and lasting 
value of such results, others might beg to differ. 
 The two directions that were mentioned just now are mutually divergent, and contain, 
as it were, a regime in which it is, above all, important to carry out the investigations 
diligently until one has established a system of relations − if not, of communication − 
between the two viewpoints. 
 That might raise the fundamental problems of the theory of infinite groups to a new 
conception, perhaps a more synthetic conception, and one that would better respond to 
the general view of LIE that in any problem everything is subordinate to the untiring 
search for the intimate harmony between methods and results that inspires the character 
and esthetic value of all mathematical inquiry. 
 

 

                                                
 (1) “Les groupes de transformations continus, infinis, simples,” Comptes rendus 144 (1907).  


